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3D from video example
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* Inexpensive

*Quick and convenient
for the user

* Integrates with existing
SW e.g. Blender, Maya



$100: Webcams, Digital Cams $100,000 Laser scanners etc.



- p om video L hiidnat

*Quick and convenient
for the user

Camera-based 3D capture system - UniversityjofgAlberta

Capturing 3D from 2D video:



' Low budget 3D from V|deo

e Integrates with existing
SW e.g. Blender, Maya




- Appllcatlon Case Study

* New acquisition at the UofA: A group of 8
sculptures depicting Inuit seal hunt
 Acquired from sculptor by Hudson Bay Company




- Appllcatlon Case Study

Results:
1. A collection of 3D models of each component

2. Assembly of the individual models into
and



file:///E:/cleo/sealhunt/hunt.wmv
http://www.cs.ualberta.ca/~vis/models/sealhunt/
file:///E:/cleo/sealhunt/renders/hunter03.yxv
file:///E:/cleo/sealhunt/renders/hunter03.yxv

Shape From Silhouette

— Works for objects
— Robust
— Visual hull not true object surface

Structure From Motion
— Works for Scenes
— Typically sparse
— Sometimes fragile (no salient points in scene)
Space carving
— Use free space constraints

* (Dense “Stereo” -- later)
— Use as second refinement step




Multi-view geometry - resection

R =/ N

e
‘ o

* Projection equation
X;=P:X

e Resection:

Given image points and 3D points calculate camera projection
matrix.



lti-view geometry - intersection

»
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* Projection equation
X;=P:X

* Intersection:
-X,P; —X

Glven image points and camera projections in at least 2 views
calculate the 3D points (structure)



Multi-view geometry - SFM

Lo

L —— i B o

* Projection
equation
X;=P:X
e Structure from
motion (SFM)

— Xi— Pi’ X

Given image points in at least 2 views calculate the 3D points
(structure) and camera projection matrices (motion)

Estimate projective structure

*Rectify the reconstruction to metric (autocalibration)
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Tower Photographs










Ways to 3D pointcloud

« Aligned Cameras: Stereo camera (Lab 3)
« Know cameras beforehand (Photogrammetry)

First compatible cameras, then 3D Geom

— Fundametal matrix F -> Pcompat -> 3D triang
— All of this in projective geom.

« Simultaneous computation of cameras and 3D
— Compact math formulation. Easy to understand?



Pinhole camera

«Central projection -

(X,Y,Z) = (fX1Z,fY1Z)
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e Camera rotation and translation

X=[R t]X,, X, =[RT -RTt}X
 The projection matrix
x=KR'[I —t[X

—

P
In general: Properties: P=[Mp,]
*P is a 3x4 matrix with 11 DOF *Center: PC=0M |
| Py _ _
Finite: left 3x3 matrix non-singular C‘( 1 j C—(Oj"\"d—o

Principal ray (projection direction)

Infinite: left 3x3 matrix singular
v = det(M)m®



. ) R RV s e
« Infinite cameras where the last row of P'is (0,0,0,1) °

* Points at infinity are mapped to points at infinity
it (i)
P=Klj t | R=|]j
0" dy K




)=P)(X)

known ? known

«11 DOF => at least 6 points

 Linear solution min Ap =0
— Normalization required ||p|| -1
— Minimizes algebraic error

* Nonlinear solution
— Minimize geometric error (pixel re-projection)

 Radial distortion O =1+Kr+K,ri+.. &
— Small near the center, increase towards periphery




Application: raysets

N\ .
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Gortler and al.; Microsoft ~ H-Y Shum, L-W He; Microsoft
Lumigraph Concentric mosaics




Multi-view geometry - resection

R =/ N

e
‘ o

* Projection equation
X;=P:X

e Resection:

Given image points and 3D points calculate camera projection
matrix.



lti-view geometry - intersection

»
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* Projection equation
X;=P:X

* Intersection:
-X,P; —X

Glven image points and camera projections in at least 2 views
calculate the 3D points (structure)



Multi-view geometry - SFM

Lo

L —— i B o

* Projection
equation
X;=P:X
e Structure from
motion (SFM)

— Xi— Pi’ X

Given image points in at least 2 views calculate the 3D points
(structure) and camera projection matrices (motion)

Estimate projective structure

*Rectify the reconstruction to metric (autocalibration)



Depth from stereo

-Calibrated alig
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ned cameras
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Trinocular Vision System

(Point Grey Research)









Images

e |nitialize structure and motion from two views

e For each additional view

— Determine pose
— Refine and extend structure

« Determine correspondences robustly by jointly
estimating matches and epipolar geometry
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The epipolar geometry

"'.‘:“! 4' ol ﬁ\-

epipolar plane TT

C,C’,x,x” and X are coplanar



The epipolar plane

All points on & projecton | and I’



The epipolar planes

N

Family of planes = and linesland I
Intersection in e and e’




The epipoles

> “‘. ..‘,' » ' - . > | ‘.'ﬂ == g 3
epipoles e,e o S e
= intersection of baseline with image plane

= projection of projection center in other image

= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras







Example: forward motion




algebraic representation of epipolar geometry

Xl

we will see that this mapping is (singular)
correlation (i.e. projective mapping from points to
lines) represented by the fundamental matrix F



The fundamental matrix F

algebraic derivation (of existence)
X(1)=P"X+AC (PP=1)
=P'CxP'P'x L

F=[e'|,P'P*

(note: doesn’t work for C=C’ = F=0)

Alternatively can write:

F=lelH.  (H, =K'RK)
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N\ : e : ' a X e
=] % . C s .
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geometric derivation

Step 1: Xonaplaner X=H_X
Step 2: epipolar lineI’  ['=exX = [e']>< H_X=Fx
mapping from 2-D to 1-D family (rank 2)



The fundamental matrix F

A
A}
e A
epipolar line
forx

correspondence condition

The fundamental matrix satisfies the condition
that for any pair of corresponding points x«<x’ in

the two images :
= xTEx =0 (xTr=0)



F is the unique 3x3 rank 2 matrix that
satisfies X’ TFx=0 for all x<>X’

(i) Transpose: if F is fundamental matrix for (P,P’), then
FT is fundamental matrix for (P’,P)

(i) Epipolar lines: '=Fx & I=FTX’

(iii) Epipoles: on all epipolar lines, thus e’TFx=0, ¥x
—=e’'TF=0, similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(v) Fis a correlation, projective mapping from a point x to
a line I'=Fx (not a proper correlation, i.e. not invertible)



-undamental matrix, summary

7 geras- 02 Hartl"92 g < @ £l -
» Algebraic representation of eplpolar geometry WS

\///\ \ Step 1: Xonaplanem  x'= Hx

X"-\_ " ___7<< Step 2: epipolar lineI>  I'=exx'=[e']. X’

Ve =[e'], Hx = Fx
X" Fx=0
F Epipolar lines: I'=Fx |=F"x
«3x3, Rank 2, det(F)=0 Epipoles: Fe=0 F'e'=0

-Linear sol. — 8 corr. Points (unique) | Projection matrices: P =[1]0]

Nonlinear sol. — 7 corr. points (3sol.) P'= [[e']x F+e'v' |/1e']

\/ery sensitive to noise & outliers




Relatmg 3D geometry and 2D |mages

F Relates to three questions:

(i) Correspondence geometry: Given an image point X in
the first view, how does this constrain the position of the

corresponding point X’ in the second image?

(i) Camera geometry (motion): Given a set of corresponding
iImage points {x; <x’}, i=1,...,n, what are the cameras P and

P’ for the two views?

(ili) Scene geometry (structure): Given corresponding image
points x; <»x’; and cameras P, P’, what is the position of

(their pre-image) X in space?



Computing

\ e ) S

o ,“ » : o N -‘5 ‘.ﬂ 8 _‘ '. ’

X" Fx =0

KX+ Xy, Xyt Y E, gt Xy yEy, 4 fy =0

separate known from unknown

DY XYY Y g f f fy g fa f ] = 0
(data) (unknowns)
(linear)

Xll. Xl Xll. yl X.Il yll. Xl y'1. yl y.ll )sl Yl 1

XX X0¥e Xa VX VLY. Y Xy, 1

Af =0



8-point algorithm

=
N

[EEN
w

7

Xl Xl yl Xl Xl X1 yl yl yl yl Xl yl
XoXo  YoXo Xy XY, o YoV, Y, X, Y, 1

N
=

~h Th Th —h —h —h —h —h
N
|l
o

XX VX X X Ye T YaYa© Ve Xoo Y. 1.7
Af =0 31
Solve for nontrivial solution using SVD: 32
= ! Th=(svT | 133
A=USVE JusvT=[svT] [ =|w

Var subst: y=Vx Now Min Sy <vy=[00,..,01]
Hence x = last vector in V



(AI 0 3,4,N V|ew geometry HZ 15 16)

e Trifocal tensor (3 view gebmetrv\
[Hartley *97][Torr & Zisserman ’97][ Faugeras *97]

T:[T,T,,T,] 3x3x3tensor;
27 params. (18 indep.)

I'ITLT2, T3] =1" lines
[X1.(EXT)[x], =0 points

 Quadrifocal tensor (4 view geometry) [Triggs *95]
*Multiview tensors [Hartley’95][ Hayden ‘98]

There is no additional constraint between more than 4 images. All the constraints
can be expressed using Ftriliear tensor or quadrifocal tensor.



Using Fundamental Matrix F to

tructure and motlpn;\t |

Epipolar geometry > PrOJectlve callbratlon

m,Fm, =0

1 :[I O]

~[e],F+ea” e

compatible with F

Yields correct projective camera setup

(Faugeras '92,Hartley "92)

Obtain structure through triangulation

Use reprojection error for minimization
Avoid measurements in projective space



1. Compute P1 and P2
2. Triangulate 3D points



Structure from images:
3D Point reconstruction




linear triangulation

X=PX X=P'X
XxP'X=0 AX :_8p3T_p1T -
X(pgTX)_ (plTX): 0 yp3T —p?"
Y(psTX)_ (pZTX): 0 A= ¥’ p.3T_p.1T
X(p7X)-y(p'"X)=0 ST p?T
homogeneous invariance?
X]=1 (AH")(HX)=¢
inhomogeneous algebra_ic error yes,
(X ,Y | 7 ’1) constraint no

(except for affine)



linear triangulation

X=PX X=P'X

XxP'X=0 AX :_8p3T_p1T -
X(pBTX)_ (plTX): 0 yp3T —p?"
Y(psTX)_ (pZTX): 0 A= ¥’ p.3T_p.1T

X(DZTX)— y(plTX)= 0 % p|3T_p|2T

homogeneous invariance? ) )
X]=1

inhomogeneous algebraic error yes,

( XY 7 1) constraint no

(except for affine)



Linear triangulation

-y ) .

Alternative way of linear intersection:

«Formulate a set of linear equations explicitly
solving for A’s
Avxy = P X and Asxs = X and rewrite
-

- .J“l o G{
U= [.f"}g G‘Ir XK ] }\l
L '}12 -

See our VR2003 tutorial p. 26



Reconstruction uncertainty

consider angle between rays



~\Ob|ectlye | | é 5
Given two uncalibrated i Images compute(PM,P T )f ?-
(i.e. within similarity of original scene and cameras)
Algorithm
(i) Compute projective reconstruction (P,P‘,{X})
(a) Compute F from XX
(b) Compute P,P‘ from F
(c) Triangulate X; from XX,
Rectify reconstruction from projective to metric
Direct method: compute H from control points X .. = HX .

P, =PH® P/ =P'H* X, = HX,

Stratified method:
(a) Affine reconstruction: compute =, H = {l |0}
T

o0

(b) Metric reconstruction: compute IAC o

H :{Ao'l ﬂ AAT = (MToM |




Compute Pi+1 using robust approach
Find additional matches using predicted projection
Extend, correct and refine reconstruction



IN€ Camera Tactorization
D structure from many |mages

_Xj_
Xij | _ P Y,
Yii P71l Z;
_1 —
- _'XJ_'
Xij R
Y.
Yii | = I:)iy ZJ
1 0001 1j




Orthographic factorization

The o?t/ob?aphi‘c‘ pTojeCtion-equtio@are‘.- ¢

where

i m=PM
where mll le . m1n
. m m - m _
AT — .21 .22 .2n | P —
_mml mm2 mmn_

.. N‘U| .-\_Ul

j’i - 11"'1m1 J - 1,--.,n

M=[M,M,,..M_]

Note that P and M are resp. 2mx3 and 3xN matrices and

therefore the rank of M is at most 3



_Orthographlc factorization

Factorize M through singular value decon '_s*a tion

I

An affme reconstruction is obtained as follows

P=UM =3V’

Closest rank-3 approximation yields MLE!

1n

- [M17M2 ----- Mn:

Til 12
m

.. 3 3
3| 3|
...;Fﬂp:u|

min 21 22

3l ..
=
3l ...
0|

m1 m2 mn |




.rthographic factorization

-y ) - "
(

N ~ ~. . > ra '
Factorize m through smgular value decomposition

m=ULv'
An affme reconstructlon IS obtained as follows
P - U, M =3V’
A metric reconstruction is obtained as follows
P-=PQ ' M =QM
Where A Is computed from

&Qgé ;@R xT 3lirfear equations per view on

symmetric matrix C (6DOF)
RRPGL =1
. Q can be obtained from C
P y thrqqgh Cholesky factorisation
> RPGORY ' s Y

and inversion




._eak perspectlve factorlzatlon
| . ( - % '\L

[D. Weinshall] _
\Weak perspective camera M {S'}

* Affine ambiguity  j — Moo *X = (MQ)(Q*X)

*Metric constraints " oo7si = 57007 s = ¢
si'TQQsj=0
Extract motion parameters

— Eliminate scale
— Compute direction of cameraaxisk =1x j
— parameterize rotation with Euler angles



‘ FuII perspectlve factorlzatlon

- P / < : 3 ' ~‘.".‘_L
‘ o 5~
gL N, 0N ‘,a =37

The camera equatlons

A m, -P M i=1..,m, j=1..,n

for a fixed image 1 can be written in matrix form
as

mA =P.M

where

m, =[mgmy..m, ], M=[M M,...M, ]
i_dlag(}“ilixiz" Y )



; Perspectlve factorlzatlon

g O
‘$ < 4“::,‘
-

~ 4‘ f/“ “‘ ‘%;ﬁ— .“
All equatlons can be collected for aII fas P oy
m =PM

where _ _ o

m,A, P,

m.A P

m = 2t . P = 2
mA, P,

In these formulas M are known, but A;,P and M are
unknown

Observe that PM is a product of a 3mx4 matrix and a
4xN matrix, I.e. it is a rank 4 matrix




' spectlve factorlzatlon algorlthm

Assume that A; are known, then PM is known.

Use the singular value decomposition
PM=UZ VT

In the noise-free case

S=diag(c,,6,,03,04,0, ... ,0)
and a reconstruction can be obtamed by setting:

P=the first four columns of UX.
M=the first four rows of V.



Iterative perspectlve

used:
1. Set A=1 (affine approximation).

2. Factorize PM and obtain an estimate of P and M.
If o5 IS sufficiently small then STOP.

3. Use m, P and M to estimate A, from the camera
equations (linearly) m;, A,=P;M

4. Goto 2.
In general the algorithm minimizes the proximity
measure P(A,P,M)=c.

Note that structure and motion recovered
up to an arbitrary projective transformation



\N-VIew geometry

Affme factorlzatlon

[Tomasi &Kanade ’92]
 Affine camera

P.=[M|t] M 2x3 matrix; t 2D vector
- - X
*Projection [ij MMH

Y Z

°‘n pomts m Views: measurement matrix xX=x-—t

XX MY W —UDYT
W= : . =] X, - X,] W:Rank 3 -
= P3><3an3

"X M Yomas

Il
<
x>




Projective factorization

, coord &scale fac;ors

[Sturm & Triggs’96][ Heyden 97 ]
e Measurement matrix

_ﬂixi Lo AP 3mxn matrix
W = L =X e X ] Rank 4
z;"xm o ANX™ P
«Known prOJectlve depth 2
W =UDV’

W = Uomea D4><4VnT><4 = PX
— Projective ambiguity
e lterative algorithm

— Reconstruct with £, =1
— Reestimate depth ﬂ,‘j and iterate



_ Further Factorization work
D A | . ._a -

Factorization with uncertainty
(Irani & Anandan, [JCV’02)

Factorization for dynamic scenes
(Costeira and Kanade ‘94)

(Bregler et al. 2000,
Brand 2001)




~\Ob|ectlye | | é 5
Given two uncalibrated i Images compute(PM,P T )f ?-
(i.e. within similarity of original scene and cameras)
Algorithm
(i) Compute projective reconstruction (P,P‘,{X})
(a) Compute F from XX
(b) Compute P,P‘ from F
(c) Triangulate X; from XX,
Rectify reconstruction from projective to metric
Direct method: compute H from control points X .. = HX .

P, =PH® P/ =P'H* X, = HX,

Stratified method:
(a) Affine reconstruction: compute =, H = {l |0}
T

o0

(b) Metric reconstruction: compute IAC o

H :{Ao'l ﬂ AAT = (MToM |




Compute Pi+1 using robust approach
Find additional matches using predicted projection
Extend, correct and refine reconstruction



4.8i

m/pt

64 images

Problem:
Features are |ost
and reinitialized as
new features

Solution:
Match with other
close views



For every view i

Extract features

Compute two view geometry i-1/i and matches

Compute pose using robust algorithm

For all close views k
Compute two view geometry k/i and matches
Infer new 2D-3D matches and add to list

Refine pose using all 2D-3D matches

Refine existing structure

Initialize new structure

Problem:
find close views in projective frame




If viewpoints are close then most image changes
can be modelled through a planar homography

Qualitative distance measure is obtained by
looking at the residual error on the best possible
planar homography

Distance = min median D (Hm m'|




64 images

4.8im/pt

64 images



eflnmg structure and motlon

« Minimize reprojection error

m|n ZZD(mkI,P M, )2

Ik1|1

— Maximum Likelyhood Estimation
(if error zero-mean Gaussian noise)

— Huge problem but can be solved efficiently
(Bundle adjustment)



ning a captured model:
Indle adjustment

* Refine structure X; and motion P'
« Minimize geometric error min > d(P'X;,x})?
« ML solution, assuming noise is Gaussian "

* Tolerant to missing data



Projective ambiguity and
self-calibration

. & Uk
. i JY r
N R o e

 Autocalibration (self-calibration): Determine a projective
transformation T that upgrades the projective reconstruction to a metric
one.

m=PM=(PT)TM)=PM

o)




Remember:

Stratification of geometry

Projective Affine

15 DOF 12 DOF 7 DOF

plane at infinity absolute conic
parallelism angles, rel.dist.

More general

Goto slide 78 More structure




e Scene constraints

— Parallellism, vanishing points, horizon, ...
— Distances, positions, angles, ...

Unknown scene — no constraints
« Camera extrinsics constraints

—Pose, orientation, ...

Unknovv_n camera motion — no constraints
e Camera Intrinsics constraints

—Focal length, principal point, aspect ratio & skew

Perspective camera model too general
— some constraints



«Goto slide 91



Factorization of Euclidean projection matrix
P=K|[R" -R"t]

Intrinsics: K = f u (camera geometry)

Extrinsics: (R | t) (camera motion)

Note: every projection matrix can be factorized,
but only meaningful for euclidean projection matrices



Cnstralnts on |ntr|n3|c parameters

f, s uy
K = fy uy
1 —
Constant
e.g. fixed camera: K K. =
1~ Ny T
Known
e.g. rectangular pixels: S =
square pixels: £ Zf so

principal point known: S A w h
(ux'uy):[ J



S_elf-calibration

A oA
g N g : AN, AT

Upgrade from projective structure to
metric structure using constraints on

Intrinsic camera parameters

— Constant intrinsics
(Faugeras et al. ECCV'92, Hartley 93,

Triggs'97, Pollefeys et al. PAMI'98, ...)
— Some known intrinsics, others varying

(Heyden&Astrom CVPR™97, Pollefeys et al. ICCV'98,...)
— Constraints on intrincs and restricted motion

(e.g. pure translation, pure rotation, planar motion)
(Moons et al.”94, Hartley "94, Armstrong ECCV'96, ...)




A counting argument

-y ) %

 To go from projective (15DOF) to metric (7DOF) at least 8
constraints are needed

« Minimal sequence length should satisfy

nx (# known J+ (n - 1)« (#fixed ) > 8
» Independent of algorithm
« Assumes general motion (i.e. not critical)



— Euclidean geometry: hyperbola, ellipse, parabola & degenerate
— Projective geometry: equivalent under projective transform
— Defined by 5 points

) ) ) " a b/2 d/2]
a)T( +bxy+cy” +dx+ey+ 1 =0 C=|b/2 ¢ el2
X Cx=0 d/2 e/2 f |

| =Cx , ==

e Tangent

TH™ _
eDual conic C* Fei=0




Quadrics: Q

4x4 symmetric matrix

9 DOF (defined by 9 points in general pose) X'"QX =0

Dual: Q*

Planes tangent to the quadric A Q*n=0



Summary:

- \'/\

Conlcs & Quadrlcs

conics quadrics
m'cm=0 [1'Cl=0
o

Cro C~H'CH™
C'h C'~HCH'

projection

C'~PQ P’



The absolute conic

. " ‘ ) 3 ‘%_ -‘;‘\'L -
- Absolute conic ©, is a imaginary circleonm,
» The absolute dual quadric (rim quadric) Q-

«In a metric frame |- =(0.0.01) o _{ | 0}
2 | y2 | 2 AT
0 x1+x2+x3}_O 0 0
X4 7' Q=0
On | (X, Xy, X )1 (X, %5, %) =0

Note: s the nullspace of Q.




Self-calibration

-Theoretlcally formulated by [Faugeras 97

*2 basic approaches

— Stratified: recover T, Q,
— Direct: recover Q. [Triggs’97]

 Constraints:
— Camera internal constraints
—Constant parameters [Hartley’94][ Mohr’93]
—Known skew and aspect ratio [Hayden&Astrom’98][Pollefeys’98]
— Scene constraints (angles, ratios of length)

«Choice of H: H:{ K 0

! ﬂ.oo — (pT ’1)T
Knowing camera K and ., -p'K J



Absolute Dual Quadrlc and Self-

Eliminate extrinsics from equation

P-KR" -Rlt|— KRRK™ KK
Equivalent to projection of dual quadric
PQOPT cKK' Q" =diag(1110)
Abs.Dual Quadric also exists in projective world
KK ' o PQ*PT (PT ‘1)(TQ;TT)(T'TPT)
x P'Q° P !

Transforming world so that Q —) Q
reduces ambiguity to metric



Absolute Dual Quadric and

Self-calibration

Projection equation:

T T
o;x PQP o« KK,
Translate constraints on K

through projection equation to
constraints on Q*

Q*

constraings




Image of the absolute conic

-y ) .

Y o é. : B

-~

HZ 7.5.1: yy
x =PX_ =KR][l| —C](O) = KRd

mapping between &, to an image is given by the planar
homogaphy x=Hd, with H=KR

Image of the absolute conic (IAC) =1
o=(KK']' =KTK* (C>HTCH?)

(i) IAC depends only on intrinsics
(i) angle between two rays C0S6=—— =
(iif) DIAC=w=KKT \/(Xl (DxlxXZ (sz)
(iv) o < K (cholesky factorisation)

(v) image of circular points

;
X, ®X,




fi+s*+c, sf, +cc,

o 2 2
o, =| sf,+ccC, f,+c,
C, Cy |
condition constraint type #constraints
Zero skew * o« % | (Quadratic m
01,035 = @450 55
Principal point ot linear 2m
0= 0y =0
Zero skew (& p.p.) x linear m
W) =
Fixed aspect ratio (& * o % x| quadratic m-1
p.p.& Skew) 0110 9y = 04,0,
Known aspect ratio 0. =0, linear m
(& p.p.& Skew) 1 22
Focal length n ;3 _— Il linear m
(& p.p. & Skew)




Summary Self calibration

-Callbrated camera
—Dual absolute quadric (DAC) | =diag(1110)
—Dual image of the absolute conic (DIAC) @ =KK'

*Projective camera

_DAC Q. =HIHT

_DIAC @ ' =P'QP"=KK/
« Autocalibration

—Determine Q°,, based on constraints on o
—Decompose Q" = HIH"




[llustration of self-calibration

“ P - N bt &~ ‘-\_:.

Projective Affine Metric




2. N
B

Degenerate configurations

T /) € e : -
iy 8§ S ~N. n

« Pure translation: affine transformation (5 DOF)
» Pure rotation: arbitrary pose for =_ (3 DOF)

 Planar motion: scaling axis perpendicular to plane
(1DOF)

» Orbital motion: projective distortion along rotation axis
(2DOF)




A complete modeling system

—  — ""i’ Y

Sequence of frames —»scene structure

1. Get corresponding points (tracking).

2. 2,3 Vview geometry: compute F,T between consecutive frames
(recompute correspondences).

3. Initial reconstruction: get an initial structure from a
subsequence with big baseline (trilinear tensor, factorization ...)
and bind more frames/points using resection/intersection.

4. Self-calibration.
5. Bundle adjustment.




A complete modeling system

affine

- . »
. , &g s =
) _‘ —— C c Sem L
= ( T e’ G

Sequence of frames ==>scene structure

1. Get corresponding points (tracking).

2. Affine factorization. (This already computes ML
estimate over all frames so no need for bundle
adjustment for simple scenes.

3. Self-calibration.
4. If several model segments: Merge, bundle adjust.
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Tower Photographs







INRIA —VISIRE project

Reconstruction
from single

images using
parallelepipeds




CIP Prague —

Projective Reconstruction Based on Cake Configuration







How to go from sparse SFM

...to detailed, model?
Here In the form of

disparity/depth map
Rectified left . Rectified right
image 1(x,y) Dense Disparity map D(x,y) image I'(X.y)




any object/surface representat

Tolg

- W) e AV '\_‘-

Image-centered Object-centered
= Depth/disparity w.r. to image = Voxels esacae
plane f
Q- @ = |_evel sets (implicit)
3D point
Image plane
= Mesh
Partial object reconstr.
Limited resolution = Depth with respect to a base
Viewpoint dependent mesh
= |_ocal patches




_» Stereo image rectification

W gSCR A A
R 4

B




Stereo Image rectification

™

* reproject image planes onto a common

. plane parallel to the line between optical
centers
« pixel motion is horizontal after this transformation

« two homographies (3x3 transform), one for each
input image repro;ectlon

»C. LoopandZ Zhang. Computing Rectifying Homographies fol
Stereo \ . IEEE Conf. Computer Vision and Pattern
Recognltlon 1999


http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification

All epipolar lines are parallel in the rectified image plane.



Image rectification through

simplify stereo matching
by warping the images

Apply projective transformation so that epipolar lines

correspond to horizontal scanlines
e

«—

e

E—

——

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image



Unrectified

Rectified




Depth from dlsparlty

c baseline :C’

— . 1 __ baselinexf
disparity = x — ' = .




Stereo matching algorlthms
atch IPlxefs |nC6mugate Epipolar L e

— Assume brightness constancy
— This is a tough problem
— Numerous approaches
—A good survey and evaluation:


http://www.middlebury.edu/stereo/

ur basic stereo algorlthm

T"" HON. ABRAIIAM LINCOLN, President of United ¢ Matcs. ““““ ié -

‘
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For each epipolar line

For each pixel in the left image
« compare with every pixel on same epipolar line in right image

» pick pixel with minimum match cost

Improvement. match windows
* This should look familar...



tereo as energy m|n|m|zat|on

* Find disparities d that minimize an energy |

function E(d)

* Simple pixel / window matching

__ SSD distance between windows
Cla,y,d(@Y)) = 10 and s, y+ doy)



C(x, y, d); the disparity space image (DSI)



Tm~.~mnm

Simple pixelf window matching: choose the minimum of each
column in the DSI independently:

d(x,y) = argmin C(z,y,d’)
d/



ching windows

JI 1 L

Sum of Absolute Differences (SAD) (I_;W G =G+ by + )]
i Y (LGD) - LG+ iy +))
Sum of Squared Differences (SSD) e
Zero-mean SAD )= () = Dol + iy +) + (e iy +))

v L(i,j) s
Locally scaled SAD {.;W"”("”‘mfﬂx+w+ﬂ|
ocally sca -

Zapew L) L(x + Ly +))

Normalized Cross Correlation i]Z(mew 2 0). Spew I2Gc+i,v + )

Ground truth


http://siddhantahuja.wordpress.com/category/stereo-vision/

—
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Constraints

* epipolar

* ordering

* uniqueness

* disparity limit

« disparity gradient limit
Optimal path

(dynamic programmin Trade-off

« Matching cost (data)
* Discontinuities (prior)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen 97,
Van Meerbergen,Vergauwen,Pollefeys,VanGool 1JCV‘02)



Disparity map D(x,y) image I'(X",y’)

(XY )=(x+D(x,y).y)



Downsampling

(Gaussian pyramid)

Allows faster computation

Deals with large disparity
ranges

Disparity propagation

(Falkenhagen "97;Van Meerbergen,Vergauwen,Pollefeys,VanGool 1JCV‘02)
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Example: reconstruct image from




I\/Iany SFM and stereo systems

* Microsoft Photosynth: SFM only, on-line
Arc3D: SFM + Stereo, on-line
*VisualSFM SFM + Stereo, download and install

3 Sparse Reconstruction

[ |
|#. VisualSFM - [Sparse Reconstruction] - [ﬂm ) k E@ij

View Tools Hel

File 1]
ElICSE L BN R Y 2 S -
4 4

1 Add some images 2 Match the images 4 Dense Reconstruction




\ N

Visual SFM, House by Bin

|£. VisualSFM - [Sparse Reconstruction] - [0] - [] Log Window

#points w) large errors: 77 o~
Focal Length : [2705.872]->[2714.921]
Radial Distortion : [0, 142 -= -84]

File SfM  View Tools Help

B e AR oo mes L@ X |Swan

e T e e e e e e
#36; [IMG..74108] sees 2370 (+279) 3D points
Estimated Focal Lenath [2759] [0.85M]

# 1561 projs (323 pts and &80 merges)

SKIP: 0 cams, 2213 points, 7124 projs

PBA: 6671 3D pts, 20 cams and 32602 projs. ..
PBA: 1.803 -= 1.483 (5 LMs in 0.45sec)
#points w/ large errors: 20

Focal Length ; [2758.833]-=[26583.024]

Radial Distortion : [-0.141 -= -85]

EMD: Mo more images to add [0 prajs]

e T T e e ey
Failed to find two images for initialization
Resuming 5 finished, 40 sec used

36 cams, 8393 pts (3+: 5660)
39387 projections {3+: 32900)

LY

1 model(s) reconstructed from 36 images;
36 modeled; 0 reused; 0 EXIF;
1ME(1) used to store feature location.

EEFEREEE fiming-———-FZ2FFFEFFF
Structure-From-Motion finished, 42 sec used
40.6(35.9) seconds on Bundle Adjustment (+)
39,9(35.4) seconds on Bundle Adjustment ()
e T T e e ey

Totally 42,000 seconds used

Run full 3D reconstruction, finished EI

#24 : IMG_20160303_174108 y




> Visual SFM, House by Bin
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_aReconstructing scenes

*| ‘Small’ scenes (one, few buildings)

= SFM + multi view stereo

* man made scenes: prior on architectural
elements

" [nteractive systems

City scenes (several streets, large area)

= aerial images
= ground plane, multi cameras
SFM + stereo [+ GPS]

depth map fusions




qu scale (city) modeling




_Modeling (large scale) scenes




Man-made environments :

= straight edges
= family of lines
= vanishing points

[Dellaert et al 3DPVTO6 |
[Zisserman, Werner ECCVO02 |




SFM + stereo

= dominant planes
= plane sweep — homog between 3D pl. and camera pl.

el S e

iR )

(d) €

[Zisserman, Werner ECCVO02 ] [Bischof et al SDPVTO06 |



-

hypoth
segment

-

/

[Zisserman, Werner ECCV02 ... ]

—

" andiPa |
\ initial
\segment



../movies/Other/boujou.mov
../movies/Other/boujou.mov

- Dbl

ARC 3D Webservice

A Family of Web Tools for Remote 3D Reconstruction

www.arc3d.be

[Pollefeys, Van Gool 98,00,01]



Based on SFM

(points, lines, stereo)
Some manual modeling
View dependent texture

[Debevec, Taylor et al. Siggraph 96]



‘Jors on architectural primitives

Pr(M6|DI) o Pr(D|M6I) Pr(M6I)

0 — parameters for architectural priors
type, shape, texture

M — model

D — data (images)

| — reconstructed structures (planes, lines ...

[Cipolla, Torr, ... ICCV01]

Pediment

Column PI{95|3LMI] PI{BL |MI]
Door

Window .

Pedestal p ror

Occluded windows




Video, sparse 3D points, user input
Pr{M|DI) o Pr(D|MT)PriM|I).
M — model primitives
D- data
| — reconstructed geometry

Solved with graph cut

Video lrace

[Torr et al. Eurogr.06, Siggraph07]




. aClty modeling — aerial images

P' X
FEng

Imaae plane

Airborne pushbroom camera

[HeikO HirSCth”er et al - DLR] Sem|_g|0ba| stereo match|ng
(based on mutual information)



t modelmg ground plane

Camera cluster

Calibrated cameras — relative pose
GPS — car position - 3D tracking

[Nister, Pollefeys et al
3DPVTO06, ICCV07]

[Cornelis, Van Gool CVPRO06...]

car + GPS

2D feature tracker

Video: Cannot do

frame-frame
correspondences

SFM

4

3D points
Dense stereo+fusion
Texture

—

3D MODEL




- Clty modelmg example'

- Best Match

[Cornelis, Van Gool CVPR06 ]
1. feature matching = tracking
2. SFM — camera pose + sparse 3D pomts

3. Facade reconstruction Grouna T

— rectification of the stereo images

- vertical line correlation

4. Topological map generation
- orthogonal proj. in the horiz. plane
- voting based carving

5. Texture generation 5

- each line segment — column in texture

space VIDEO




-

On-line modeliné fro

) %

~

mvideo ,
Model not perfect but enough for scene visualization
Application predictive display S

' : SLP;M i

: _ | Video ]_4 T |
Tracking and Modeling | [Teytane ] |
New Image Sniing

Detect fast corners (similar to Harris)
SLAM (mono SLAM [Davison ICCV03])
Estimate camera pose
Update visible structure
Partial bundle adjustment — update all points
Save image if keyframe (new view — for texture)
Visualization
New visual pose
Compute closet view
Triangulate

e

R T I !
3D srriictire |1 [
" ,rl | Surface |
|

~o camera ) : modeling i . '

. pose + :—r,xNuv-eF View |
___.; keyframes ak_%_,, Rendering i
Visuallzatlon

SLAM

Camera pose

3D structure

Noise model

Extended Kalman Filter

Project images from closest views onto surface









— Modular Tracking Framework

- Y Nor o302

Modular Tracking Framework
A Unified Approach to Registration based Tracking

Abhineet Singh and Martin Jagersand

* | Open source

* | C++ implementation UNIVERSITY OF
* | ROS interface

| Matlab/Pyhton A RT

 Cross platform




KINC

!

s >

D trac and modellng application:
J s nenter Ree R i

E-nr-ivr Lll '[.:' Orient Lost:0
Thresh 128

N\

de Patte

Ehers: off {Sub-Pixel: t‘
SRILILII) -



[Neil Birkbeck]



Several cameras mutually registered (precalibrated)

Video sequence in each camera
Moving object



Techniques

* Integrate stereo and image motion cues
= Extend stereo in temporal domain
» Estimate scene flow in 3D from optic flow and stereo

Ny 8 s a —— — “{-
laive : reconstruct shape every frame .

Representations :

= Disparity/depth

= VVoxels / level sets
» Deformable mesh — hard to keep time consistency

Knowledge:
= Camera positions
= Scene correspondences (structured light)




g

[Zhang, Curless, Seitz: Spacetime stereo, CVPR 2003]

N N

Extends stereo in time domain: assumes intra-frame correspondences

Static cases:

A fronto-parallel surface An oblique surface
t=0,1,2 t=0,1,2
| m m |t=2 | ;m A, t=2
- L — N
ad ] " ad G
I / \ I, I / \ I,
X Xp X Xr
4 < 4 d4
Left camera Right camera Left camera Right camera

. Solve for x shift.. ]
Static scene: disparity

d(X1 y1t) ~ do +dx0 (X_XO)_l_dy0 (y_yO)

Solve for x shift, x scale, y shear.

Moving case:

An oblique surface

I

X Xr
4 4

Left camera Right camera

Solve for x shift, x scale, y shear, t shear.

Dynamic scene:

d(x,y,t) =dy+d, (X=%)+d, (Y—Yo)+

dt0 (t _to)




Jiff I
“” i L“n \J il ’ hl nu:l

nm " ’. /ﬂ;” | ’” ," |

Spacetime stereo reconstruction with 9x5x5 window






One color camera

projectors — 3 different positions

Calibrated w.r. camera

Each channel (R,G,B) — one colored light pose
Photometric stereo



S .Y anee_F o
- '

Non-rigid Photometric Stereo
with Colored Lights

C. Hernandez', G. Vogiatzis', G.J. Brostow?,
B. Stenger’ and R. CipollaZ

Toshiba Research ICaml::uridgva1

University of Cam brid982

P~ & . )



3. Scene flow

ICCV 99] {:}

Surface S

Mumination Flux £
(Radiance)

Camera C, Center of\Rrojection

2D Optic flow projecton Matenc B 3D Scene flow

du du. ol X =Xx(u, (t);t)

P VI, dtl 8t| dx _ ox du;  ox
dt 6u dt at

Scene flow on Motion of x
tangent plane along a ray



Camera C, Camera C, Camera C, Camera C

et al. ICCV 99]
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[Vedula, et al. ICCV 99]



4 Carvmg IN 6D

}rf

/

zI

: E 6D Space of Hexels E .
3D Voxels at T t=1 ] P ] 3D Voxels at T t=2
oxels at time i (Pairs of Voxels; Not All Shown) 1 oxels at time

Hexel: (X, Yp, Zy, AX, AY, AZ)
(X2, Y5,2,) = (%, Y1, 21) + (A%, Ay, A7)

6D photo-consistency: gt :Z L' (P(x')); SS :Z(Iit(Pi(Xt)))z

S5 4+552 — (St +52) % (S +5?)
n'+n?




- 6D slab sweeping

—y Search Region F '

7 4 Known
N / Hexels Occupancy

==:EEEE
Slab N ‘‘‘‘‘‘

l (el ylzh)

Approximate
Occupancy

2 9 o Unknown
_x (x y%, 2% v Occupancy

Sweep
Direction

S

Time 1 Time 2

Slab = thickened plane (thikness = upper bound on the flow magnitude)
= compute visibility for x?

= determine search region

= compute all hexel photo-consistency

= carving hexels

= update visibility

(Problem: visibility below the top layer in the slab before carving)



Time 2

Time 1 Time 2



7 Surfel sampllng

Surfel: dynamic surface element

= shape component : center, normal, curvature S =(X;,Ng,K)
= motion component: M = (X, X0, X0 )
= reflectance component: Phong parameters
R=(f,k {0, 0o}



Reconstruction algorithm

Step 1: Generate Step 2: Generate Step 3: Generate = .
n-Samples d-Samples <SR E>-Samples R .
n n n e ‘ f}:
[c !
d
Step 7: Complete Query
B(o.g)
3 <o£@d> S €osn@> S <oend> B(o.¢)
g <fk=> B <fk> Eﬁflﬂ:» E=g]|
Step 4: Optimize & Test Step 5: Optimize Step 6: Optimize & Test
<SR E>-Samples Accepted <SR E>-Samples || Accepted <SR E>-Samples
(Linear) (Linear) (Non-Linear) Choose Best
n Accepted <$§,RE>-Sample
! ! / ! / or Return “B(o, £) Empty”
S <oemnd> S <oend> S <o &lnd
R <flk> B=E, R <fk> R {flk> B
0yt
. pred
E(S,R) =Y >, ()]l (0) - 1; ()] .
visibility
* * - -
<S R >:arg min (mén E(S,R)) |- light |

17 (p,) = 2 r(p,n,c, —p, 1, =P)L; (p)

! Phong reflectance shadow






Multiple
calibrated
cameras Instantaneous model that can
<% be viewed from different poses
Human in (‘Matrix’) and inserted in an
motion SN artificial scene (tele-
~ .| conferences)

Our goal: 3D
animated human
model

" capture model
deformations and
appearance change in
motion

GRIMAGE platform- INRIA Grenoble ;;r:}i;nated in a video




Skeleton + skinned mesh
(bone weights )

50+ DOF (CMU mocap data)
Tracking

= visual hull — bone weights by
diffusion

» refine mesh/weights

Components
" silhouette extraction

= tracking the course model
= learn deformations
= learn appearance change







Beyond 3D
n- f-a 1d ar |. ICL Iate mt
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Humans ubiquitous in graphics applications

A practical, realistic model requires
Skeleton
Geometry (manually modeled, laser scanned)
Physical simulation for clothes, muscle
Texture/appearance (from images)
Animation (mocap, simulation, artist)




PhD work of Neil Birkbeck, Best thesis prize winner



Computer Vision




