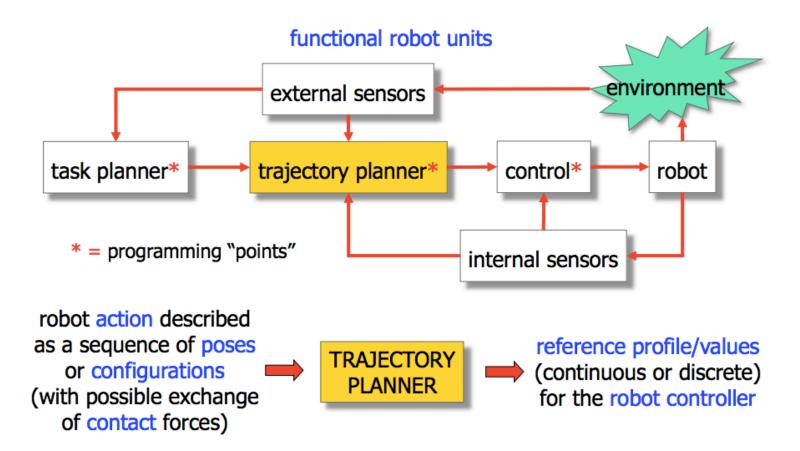
CMPUT 312
Intro Robotics & Mechatronics:

Trajectory Planning

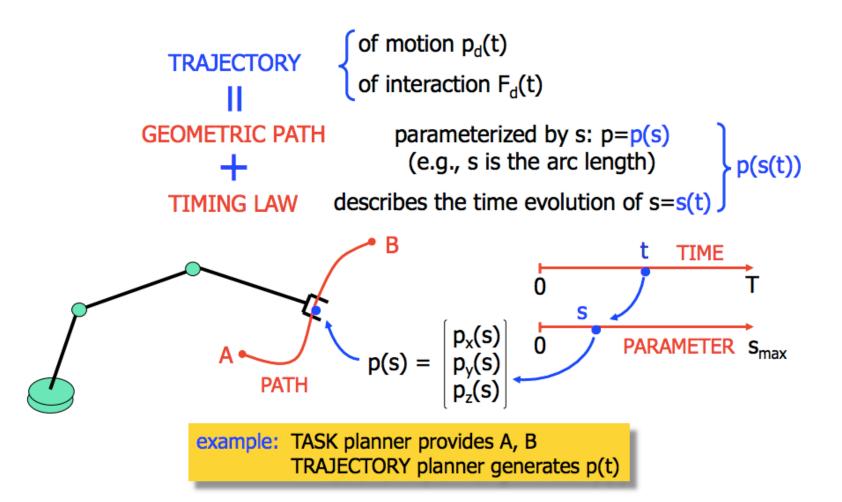
Control

Slides from Prof. A. De Luca - lecture notes (Robotics 1)



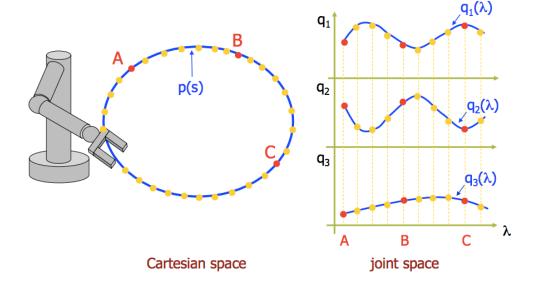
- 1. define Cartesian pose points (position+orientation) using the teach-box
- program an (average) velocity between these points, as a 0-100% of a maximum system value (different for Cartesian- and joint-space motion)
- linear interpolation in the joint space between points sampled from the built trajectory

From Task to Trajectory



Example

analytic inversion



- sequence of pose points ("knots") in Cartesian space
 - interpolation in Cartesian space
- Cartesian geometric path (position + orientation): p = p(s)
 - path sampling and kinematic inversion
- sequence of "knots" in joint space
 - interpolation in joint space
- geometric path in joint space: $q = q(\lambda)$

Cartesian vs. Joint Trajectory planning

Joint space

- Easy to go through via points
 (Solve inverse kinematics at all path points and plan)
- No problems with singularities
- Less calculations
- Can not follow straight line

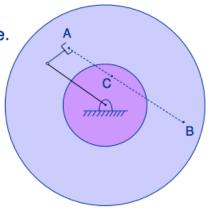
Cartesian space

- We can track a shape (for orientation : equivalent axes, Euler angles,...
- More expensive at run time (after the path is calculated need joint angles in a lot of points)
- Discontinuity problems

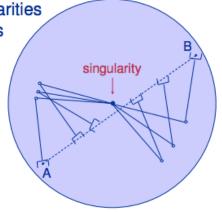
Difficulties in Cartesian Space

Initial and Goal Points are reachable.

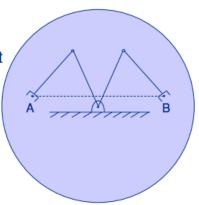
Intermediate points (C) unreachable.



Approaching singularities some joint velocities go to ∞ causing deviation from the path



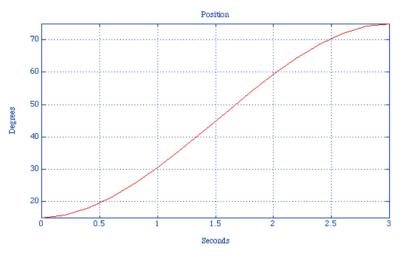
Start point (A) and goal point (B) are reachable in different joint space solutions (The middle points are reachable from below.)



Trajectory Planning in any space:

```
Assume one generic variable <u>U</u>
 (can be x, y, z, orientation - \alpha, \beta, \gamma)
       joint variables
                             direction cosines
Candidate curves :
straight line (discontinuous velocity at path points)
straight line with blends
cubic polynomials (splines)
higher order polynomials (quintic,...) or other curves
```

Cubic Polynomial



$$u(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Initial Conditions:

 $u(0)=u_0$; $u(t_f)=u_f$

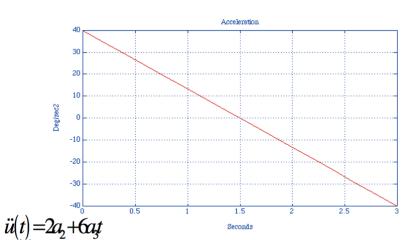
Solution:



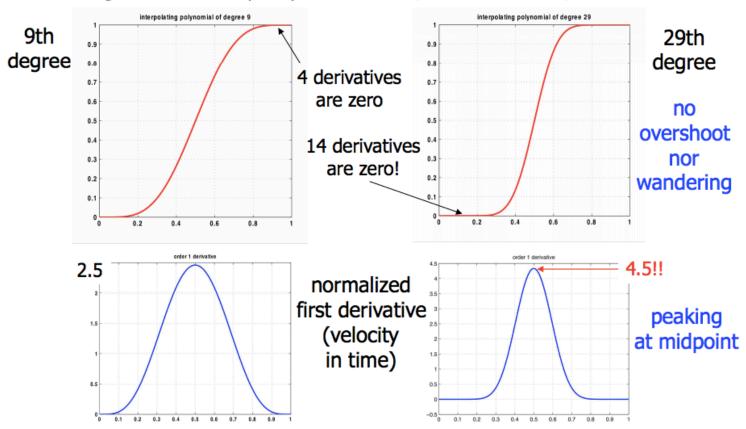
 $\dot{u}(t)=a_1+2a_2t+3a_3t^2$ $\dot{u}(0)=0\;;\;\dot{u}(t_f)=0$ Starts and ends at rest

Initial

Conditions:



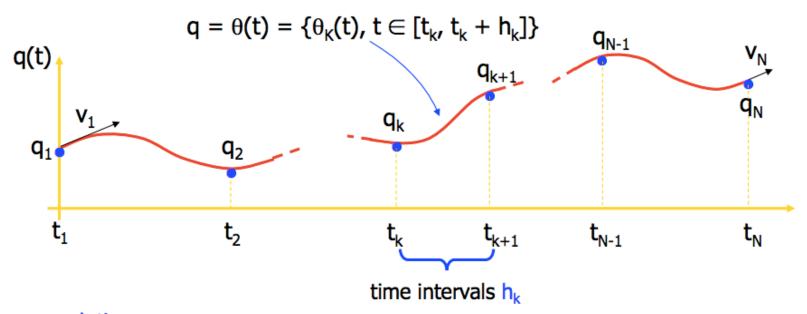
- 3rd order >> still non-zero accelerations
- use higher order polynomials (5th, 7th, ...)



- higher order polynomials >> computationally more expensive
- hard to handle N way-points.
- oscillations arise out of the interpolation points (wandering)

practical solution >> spline

Problem: interpolate N knots, with continuity up to the second derivative?



solution

spline: N-1 cubic polynomials, concatenated so as to pass through N knots and being continuous up to the second derivative at the N-2 internal knots

$$\theta_{K}(\tau) = a_{k0} + a_{k1} \tau + a_{k2} \tau^{2} + a_{k3} \tau^{3} \qquad \tau \in [0, h_{k}], \tau = t - t_{k} \quad (k = 1, ..., N-1)$$

continuity conditions for velocity and acceleration

$$\dot{\theta}_{K}(h_{k}) = \dot{\theta}_{K+1}(0)$$
 \vdots
 $\dot{\theta}_{K}(h_{k}) = \dot{\theta}_{K+1}(0)$
 $k = 1, ..., N-2$

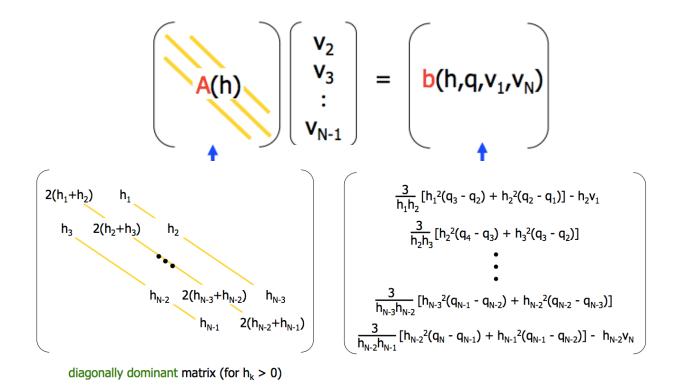
Algorithmic Implementation

 if all velocities v_k at internal knots were known, then each cubic in the spline would be uniquely determined by

impose the continuity for accelerations (N-2 conditions)

$$\theta_{K}(h_{k}) = 2 a_{K2} + 6 a_{K3} h_{K} = \theta_{K+1}(0) = 2 a_{K+1,2}$$

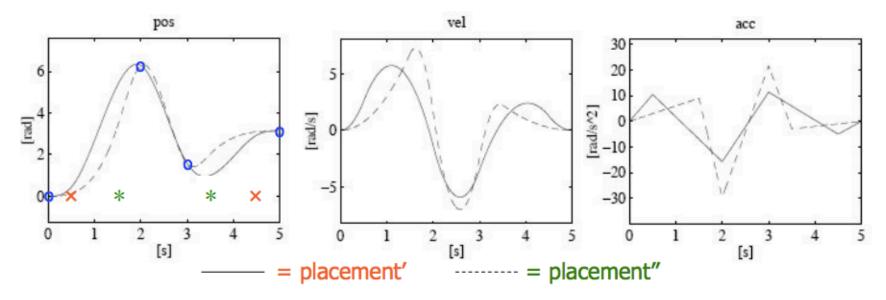
 expressing the coefficients a_{k2}, a_{k3}, a_{k+1,2} in terms of the still unknown knot velocities (see step 1.) yields a linear system of equations that is always (easily) solvable



- a spline is uniquely determined from the set of data q₁,...,q_N,
 h₁, ..., h_{N-1}, v₁, v_N
- in time, the total motion occurs in $T = \Sigma_k h_k = t_N t_1$
- the time intervals h_k can be chosen so as to minimize T (linear objective function) under (nonlinear) bounds on velocity and acceleration in [0,T]
- in time, the spline construction can be suitably modified when the acceleration is also assigned at the initial and final knots

Example

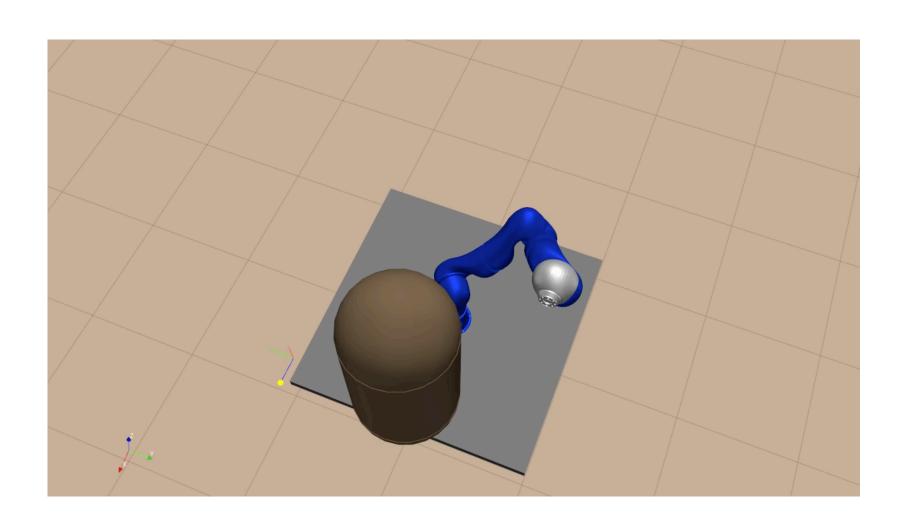
- N = 4 knots (3 cubic polynomials)
 - joint values $q_1 = 0$, $q_2 = 2\pi$, $q_3 = \pi/2$, $q_4 = \pi$
 - at $t_1 = 0$, $t_2 = 2$, $t_3 = 3$, $t_4 = 5$ (thus, $h_1 = 2$, $h_2 = 1$, $h_3 = 2$)
 - boundary velocities v₁ = v₄ = 0
- 2 added knots to impose accelerations at both ends (5 cubic polynomials)
 - boundary accelerations α₁ = α₄ = 0
 - two placements: at $t_1' = 0.5$ and $t_4' = 4.5$ (×), or $t_1'' = 1.5$ and $t_4'' = 3.5$ (*)



Trajectory Planning with Obstacles

- Path planning for the whole manipulator
 - Local vs. Global Motion Planning
 - Gross motion planning for relatively uncluttered environments
 - Fine motion planning for the end-effector frame
 - Configuration space (C-space) approach
- Planning for a point robot
 - graph representation of the free space, quadtree
 - Artificial Potential Field method
- Multiple robots, moving robots and/or obstacles

Obstacle Avoidance



Learning from demonstration

