CMPUT 399
Intro Robotics & Mechatronics:

Statics & Dynamics

Some slides are taken from Prof. O. Khatib - lecture notes (Introduction to Robotics)
Some slides are taken from Prof. A. De Luca - lecture notes (Robotics 1)



CASSIE biped robot

e CASSIE, a biped robot created by Agility Robotics (spin-off Oregon St. University)
— Balance while walking
— Interact with unknown environment
— uses sensors embedded in its legs to keep its balance.
* Robots move from industry to human environments which is
— Unknown (time varying) with lots of uncertainties

* Interaction with human -> safety -> control
— Statics (force balance) >> Dynamics (force & motion)



Kinematics (review)

e Kinematics:

i = Jg

(relation between ¢, x )

* |[nverse Kinematics:

when J square and
non-singular

— near singularity of the Jacobian matrix (high g)!

Gg=J"(q) &

Base \/VT

&

— for redundant robots (n#m), no standard “inverse” of a rectangular
matrix - pseudo-inverse.



Generalized Forces and Torques

T, T environment

?
g

“generalized” vectors: may contain
linear and/or angular components

7, convention: generalized forces are
Z positive when applied on the robot

t = forces/torques exerted by the motors at the robot joints

F = equivalent forces/torques exerted at the robot end-effector

F. = forces/torques exerted by the environment at the end-effector
principle of action and reaction: | F.= - F
reaction from environment is equal and opposite to the robot action on it




Statics - Transformation of Forces

T2 Tn
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in a given configuration
= what is the transformation between F at robot end-effector and t at joints?

environment

I\
-n

in static equilibrium conditions (i.e., no motion):

= what F will be exerted on environment by a t applied at the robot joints?

= what t at the joints will balance a F, (= -F) exerted by the environment?
all equivalent formulations



Virtual displacement and works

= ,/ME\‘ dp |_
dq2 2 [ [(0 dt}_ qu

—_ \ aas / / da, dx

~ infinitesimal (or “virtual”, i.e., satisfying all possible
constraints imposed on the system) displacements
at an equilibrium

‘ = without kinetic energy variation (zero acceleration)
= without dissipative effects (zero velocity)

the “virtual work” is the work done by all forces/torques
acting on the system for a given virtual displacement



Principle of Virtual Work

tndqn
m 07;
%5d; dq, = - FTJdq

the sum of the “virtual works” done by all principle of
forces/torques acting on the system = 0  virtual work

dp

T T s ol 1 e
T dq— F [w'dt =71 dq— F " Jdg=0

m (r=J(¢F

At static equilibrium, the virtual work done by active forces is zero.




Duality between Velocity & Force

@ N

~ velocity q generalized velocity v
(or displacement dq) (or e-e displacement [ e ])
in the joint space in the Cartesian space - =~
forces/torques T generalized forces /'
at the joints at the Cartesian e-e

W

the singular configurations
for the velocity map are the same o(J) = p(AT)
as those for the force map



Duality between Velocity & Force

planar 2R arm with unitary links
velocity manipulability ellipsoid
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“how easily” can the end-effector be
moved in the various directions of the
task space




Duality between Velocity & Force

planar 2R arm with unitary links

velocity manipulability ellipsoid
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“how easily” can the end-effector be
moved in the various directions of the
task space
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same directions of the principal
axes of the velocity ellipsoid, but . taSk. force . .
with semi-axes of inverse lengths manipulability ellipsoid

“how easily” can the end-effector apply forces
(or balance applied ones) in the various
directions of the task space




Kinematics - Statics Duality

* Kinematics: x = J q r<, I g
v=Jg
(relation between ¢, x ) X #'
\or

Base
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e Statics: '
(relation between 7 and F)) I\fl . /p

r=J'F



Example 1

 What are the joint torques required for the 2-link
robot to push against the wall in x-direction?

| -lyS17l815 1384, _
J(q) _L1C1+|2C12 |2C12 det J(Q) - IIIZSZ
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) =/ 0




Example 2: WAM robot video

 WAM robot: applying force/moment in all 6-dofs

wam.
l\b:lb base_frame
b %




Example 3: estimation of external forces form
joint torques measurement

e |n static condition:

T
J. F. = Twam, — Ty
N—— ~—

wam.getJointTorque()  bt_calgrav_eval

F. = JCT(Twam —Ty) J;f = (J.JH) I,




Valkyrie NASA robot
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Dynamics

Dynamics: relates forces/torques and motion (in joint space or
workspace variables)
— Given motion variables (e.g. 6, 8, 6 or x %, ¥), what joint torques (t) or

end-effector forces (f) would have been the cause?
(this is inverse dynamics)

— Given joint torques (1) or end-effector forces (f), what motions (e.g.
0,0,0 or x x, x) would result? (this is forward dynamics)

M(q)d+ N(q,q)d+9(q) =T

 Need to understand rigid body dynamics
— Newton — Euler method
— Lagrange formulation (energy-based)



Rigid body dynamics (linear + angular)

Dynamic forces on Link i —f
+1

[0, + ;%1 0, i
m.v
Cz'
n, l
my. = Zforces
[0+, %10 = Z moments /
Inertial forces/moments
F;- — miVCl- Linear motion: (Newton Eqn)

Ni — ]Cia)i + C()l- X ]Cia)i Angular motion: (Euler Egn)



Lagrange formulation (energy based)

Lagrange Equations

d JL.  JL

a’t(ﬁq)_—q

Lgrangian _— Kinetic Energy

\ —
L =K L "\ Potential Energy
Since U—_D(Q)

d 0K, JK é’U

= i o5 2 o~

Inertial forces Gravity vector




Inertial forces
d JK ﬁK

(—)— -G
dt Oq ﬁq
K 0 1
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ey [2 (9)4]
d JK d

= 2 (Mg)=Mi+ Mg
dt(é,q.) dt( q) q q




Kinetic energy of a link

Equations of Motion Explicit Form
SN
.
B 1 T T
77777 Kl' — E(miVC.VC. +a)i ]Cia)i)

Total Kinetic Energy=) K :ZKZ
=]



Equations of Motion Explicit Form

l . A
5 TMQZEZ(mivgivq + o, 1. o)
i=1
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B 5 (mquJ\:Jvlq + q.TJafi[CiJa)iq.)
i=1



Equations of Motion Explicit Form

oA, )} g

M = Z (miJ\ZJVi + JZ;iICiJwi)



Dynamic Simulation

Cup Grasping and Handling

https://www.youtube.com/watch?v=MnY8z1DO0xiU&feature=youtu.be

M(q)G+ N(q,4)¢+g(q) =7


https://www.youtube.com/watch?v=MnY8z1D0xiU&feature=youtu.be

Properties of M(q) matrix

T 0

A NN
>

55 my, M, m,

m m m
21 22 2n
M(q) = :
(nxn)
_mnl mn2 o mnn
M(q) is Symmetric: M=M" ie. m;,=m,,

M(q) is Positive definite: E'"M(q) &> 0 forall §# 0



Potential Energy

oU )
G, = 2 = -2 (mg
G=-(J]




Gravity Vector

G = —(JVT1 (m,g)+ Jf; (ng)+---+Jf; (m,g))



Example: 1-Rev. Joint + 1-prismatic

taken from Prof. O. Khatib lecture notes

(CS223A - Introduction to Robotics)
https://see.stanford.edu/Course/CS223A

Matrix M

T
M = an’J’+n] [qu-+n5J'J’—+J@Ibfﬂ%
J and Jv2 : direct differentiation of the vectors:

%1

¢, (d,c, |
Opc1 =|1/s, |, and Opq =| d,s,
In frame {0}, these matrices are:
__IISIO_ __dzslq_
= lg 0 and"J, =| dg s
00 00
This yields

12 0 d; 0
ml(OJTOJ ) |:m0 Oj| andmz(OJTOJvz):|:m202 i|

m,



The matrices/, », and J , are given by

J, =|€z 0]=andJ, =[§z 7§ z,]

Joint 1 is revolute and joint 2 is prismatic: 1
B m g9 L™
00 \ s

'J =7 =l0 0

70 T 0
(g )= 0} and (U711, lez):{ }

Finally, ””1112 +1_, + m2d22 +7_, O
M
0 m,



VectorV(q,q) om
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B(q) [qq] =
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2b1,12 2b1,13 2bl,(n—l)n il q.lq.Z |
2b2,12 2b2,13 2b2,(n—l)n 41%
2bn,12 2bn,13 2bn,(n—1)n__q.(n—l)q.n_




Centrifugal and Coriolis Vector V

2 2
b _l(m M. —m ) . rnlll +Izzl +m2d2 +[zz2 0
ik = A Mk ikj ki = 0
o .
where M, = —L : withby; = 0 and by, = 0 for i > j
qx

For this manipulator, only m;; is configuration dependent
- function of d,. This implies that only m,,,is non-zero,

My = 2,4, lg zy@
- G
' 2b 2m,d \ X
Matrix 8, _ m} [ 2 2}_ " AN

0| | o
Matrix C [ 0 b122:| |: 0
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The Gravity Vector G
G= —[Jlemlg + JVT2 ng].

T
In frame {O}O,g = (O —g 0) and the gravity vector is

0 0
G ~ls, lLc, O ol ~d,s, d,c, 0 .
o 0o of T ¢ s 0 02g

and
G = |:(m111 +m,d, )gcl:|

m,gs,



Equations of Motion

|:m1112 +1_ +m2d22 +1, O }|:‘91}

0 m,

2myd, T 0 ofe
o T g d, ]+ o
0 -m,d, 0] d;

+{(mlll+m2d2)gcl} _ {71}
m,gs, &




