

and A Casals

Review Kinematics

Forward Kinematics (angles to position)

What you are given:

The length of each link The angle of each joint

What you can find:

The position of any point (i.e. it's (x, y, z) coordinates

Inverse Kinematics (position to angles)

What you are given:The length of each linkThe position of some point on the robot

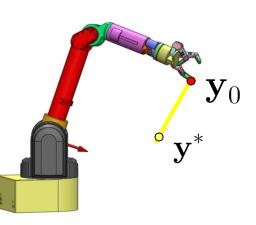
What you can find:The angles of each joint needed to obtain
that position

Numerical Inverse Kinematics

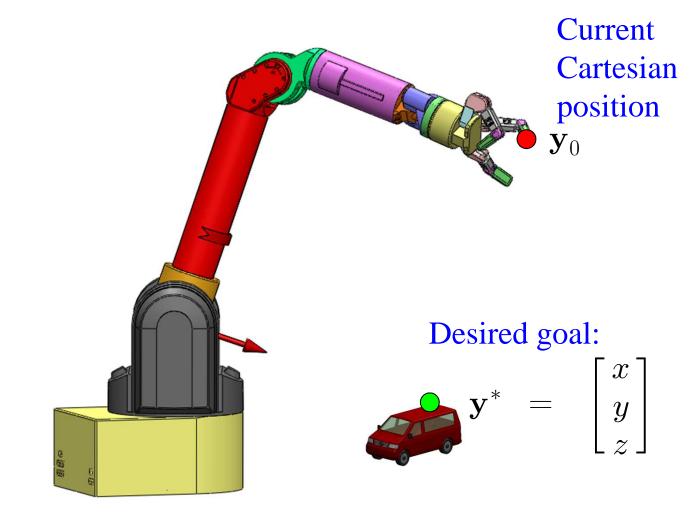
- •Cartesian Location
- •Motor joint angles:
- •Local linear model:

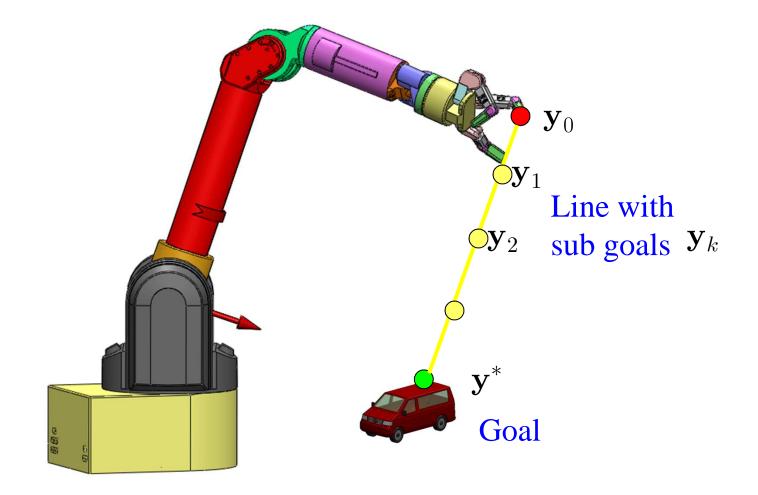
$$egin{aligned} \mathbf{y} &= \left[x, y, z
ight]^T &= f(\mathbf{x}) \ \mathbf{x} &= \left[x_1, \quad x_2, \dots \quad x_n
ight]^T \ \Delta \mathbf{y} &= \mathbf{J}(\mathbf{x})\Delta \mathbf{x} \end{aligned}$$

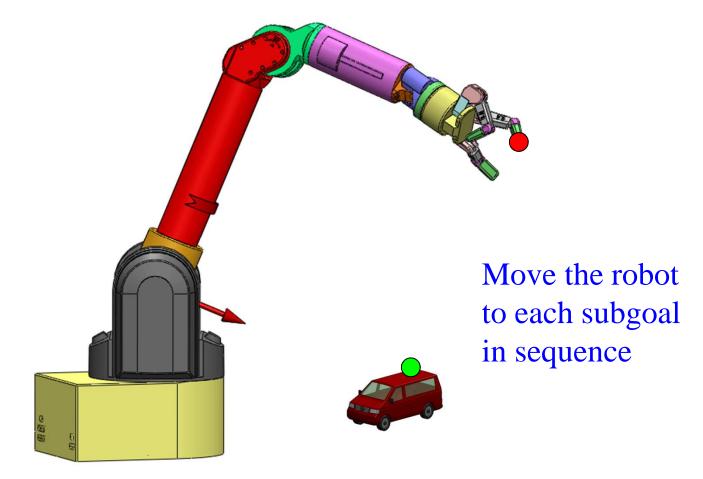
•Numerical steps: 1 Solve: $\mathbf{y}^* - \mathbf{y}_k = \mathbf{J} \Delta \mathbf{x}$

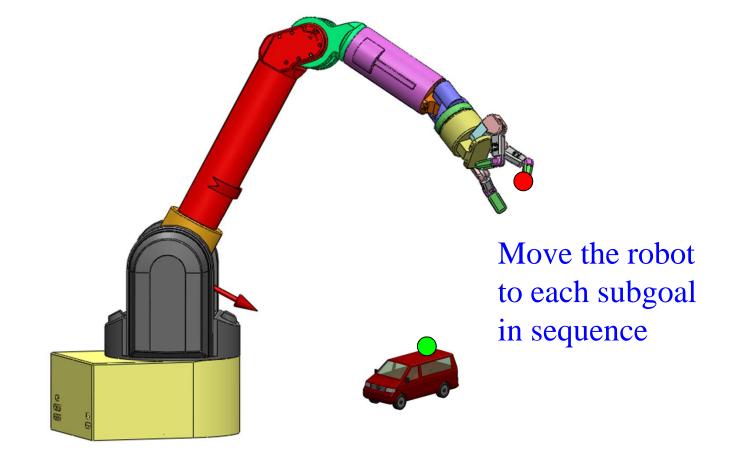


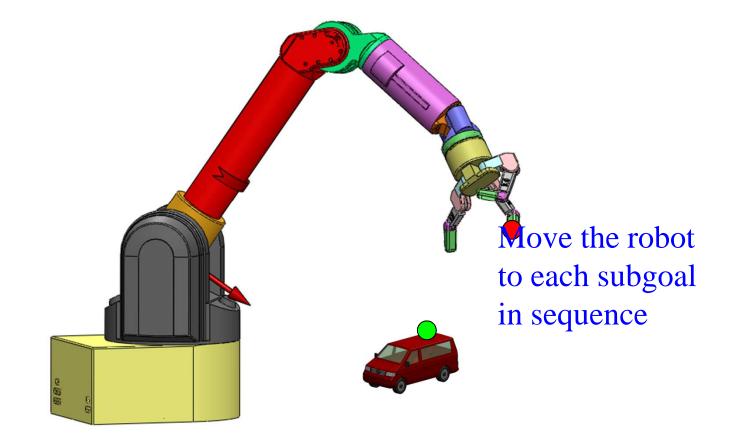
2 Update: $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}$

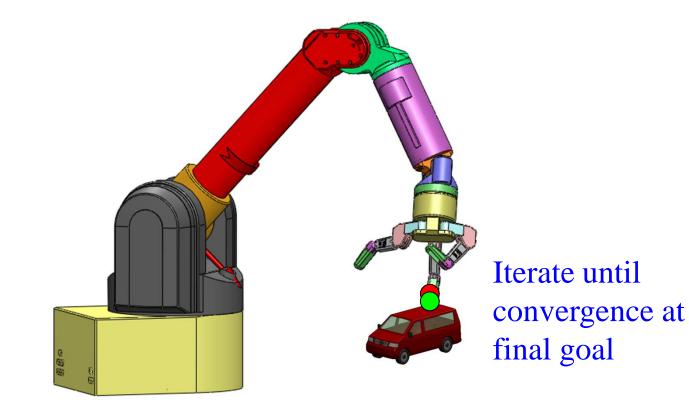








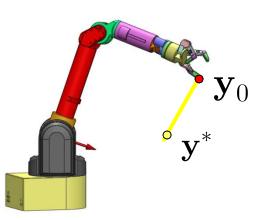




Numerical Inverse Kinematics

How do we find the Jacobian J(x)?

- •Cartesian Location
- •Motor joint angles:
- •Local linear model:
- •Visual servoing steps:

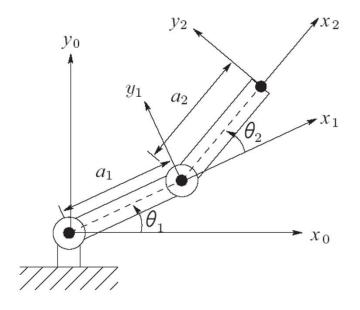


$$\mathbf{y} = [x, y, z]^T = f(\mathbf{x})$$
$$\mathbf{x} = [x_1, x_2, \dots x_n]^T$$
$$\Delta \mathbf{y} = \mathbf{J}(\mathbf{x})\Delta \mathbf{x}$$
$$1 \text{ Solve:} \qquad \mathbf{y}^* - \mathbf{y}_k = \mathbf{J}\Delta \mathbf{x}$$
$$2 \text{ Update:} \qquad \mathbf{y}^* - \mathbf{y}_k = \mathbf{J}\Delta \mathbf{x}$$

Jacobian

- We can analytically derive the Jacobian from the forward kinematics
- EX: two link manipulator
 - Analytic Jacobian *J* is:

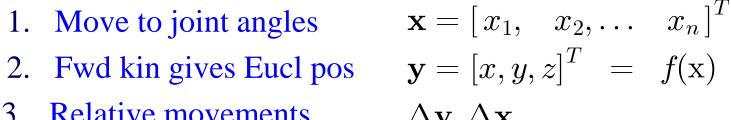
$$J(q) = \begin{bmatrix} -a_1s_1 - a_2s_{12} & -a_2s_{12} \\ a_1c_1 + a_2c_{12} & a_2c_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$



Jacobian

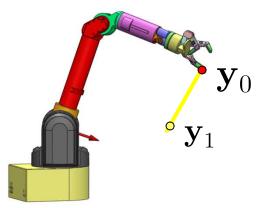
- •We can also numerically compute the Jacobian in various ways based on the Secant constraint

 - Relative movements 3
 - 4. Secant constraint for J:



$$\Delta \mathbf{y}, \Delta \mathbf{x}$$

 $\Delta \mathbf{y} = \mathbf{J}(\mathbf{x})\Delta \mathbf{x}$



Find J Method 1: Test movements along basis

•Remember: J is unknown m by n matrix

– For position only: 3x3, position and orientation 6x6 or mx6

$$\mathbf{J} = \begin{pmatrix} \frac{\partial \mathbf{f}_1}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}_1}{\partial x_n} \\ \vdots & \ddots & \\ \frac{\partial \mathbf{f}_m}{\partial x_1} & & \frac{\partial \mathbf{f}_m}{\partial x_n} \end{pmatrix}$$

•Do test movements

•Finite difference: :

$$\begin{pmatrix} \frac{\partial \mathbf{f}_m}{\partial x_1} & \frac{\partial \mathbf{f}_m}{\partial x_n} \end{pmatrix} \qquad \begin{array}{l} \Delta \mathbf{x}_1 = [1, 0, \dots, 0]^T \\ \Delta \mathbf{x}_2 = [0, 1, \dots, 0]^T \\ \vdots \\ \mathbf{\Delta x}_n = [0, 0, \dots, 1]^T \\ \mathbf{ference:} \\ \mathbf{Jt} \left(\begin{bmatrix} \vdots \\ \Delta \mathbf{y}_1 \\ \vdots \end{bmatrix} \right) \begin{bmatrix} \vdots \\ \Delta \mathbf{y}_2 \\ \vdots \end{bmatrix} \cdots \begin{bmatrix} \vdots \\ \Delta \mathbf{y}_n \\ \vdots \end{bmatrix} \right)$$

Find J Method 2: Secant Constraints

- •Constraint along a line:
- •Defines m equations

$$\Delta \mathbf{y} = \mathbf{J} \Delta \mathbf{x}$$

- •Collect n arbitrary, but different measures y
- •Solve for J

$$\begin{pmatrix} \begin{bmatrix} \cdots & \Delta \mathbf{y}_1^T & \cdots \\ \vdots & \Delta \mathbf{y}_2^T & \cdots \end{bmatrix} \\ \vdots & \vdots & \vdots \\ \begin{bmatrix} \cdots & \Delta \mathbf{y}_n^T & \cdots \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \cdots & \Delta \mathbf{x}_1^T & \cdots \\ \vdots & \Delta \mathbf{x}_2^T & \cdots \end{bmatrix} \\ \begin{bmatrix} \cdots & \Delta \mathbf{x}_n^T & \cdots \end{bmatrix} \end{pmatrix} \mathbf{J}^T$$

Find J Method 3: Recursive Secant Constraints Broydens method

- Based on initial J and one measure pair $\Delta y, \Delta x$
- Adjust J s.t. $\Delta \mathbf{y} = \mathbf{J}_{k+1} \Delta \mathbf{x}$
- Rank 1 update:

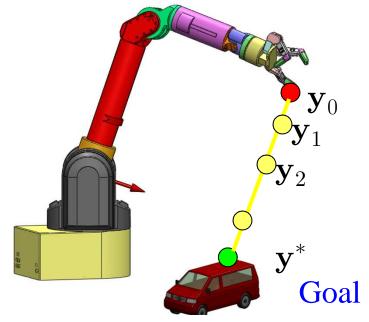
$$\hat{J}_{k+1} = \hat{J}_k + \frac{(\Delta \mathbf{y} - \hat{J}_k \Delta \mathbf{x}) \Delta \mathbf{x}^T}{\Delta \mathbf{x}^T \Delta \mathbf{x}}$$

• Consider rotated coordinates:

– Update same as finite difference for n orthogonal moves Δx

Numerical Inverse Kinematics

1. Solve for motion: $[\mathbf{y}^* - \mathbf{y}_k] = \mathbf{J}_k \Delta \mathbf{x}$ 2. Move robot joints: $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}$ 3. Read actual Cartesian move $\Delta \mathbf{y}$ 4. Update Jacobian: $\hat{J}_{k+1} = \hat{J}_k + \frac{(\Delta \mathbf{y} - \hat{J}_k \Delta \mathbf{x}) \Delta \mathbf{x}^T}{\Delta \mathbf{x}^T \Delta \mathbf{x}}$



Move the robot to each subgoal in sequence \mathbf{y}_k

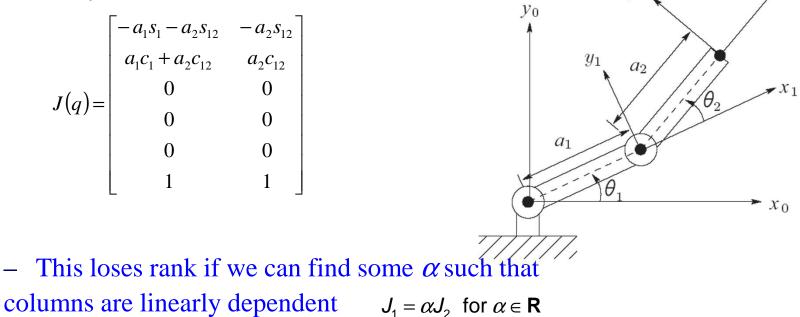
Iterate until convergence at final goal

Singularities

- J singular \Leftrightarrow cannot solve eqs $[\mathbf{y}^* \mathbf{y}_k] = \mathbf{J} \Delta \mathbf{x}$
- Definition: we say that any configuration in which the rank of *J* is less than its maximum is a singular configuration
 - i.e. any configuration that causes *J* to lose rank is a singular configuration
- Characteristics of singularities:
 - At a singularity, motion in some directions will not be possible
 - At and near singularities, bounded end effector velocities would require unbounded joint velocities
 - At and near singularities, bounded joint torques may produce unbounded end effector forces and torques
 - Singularities often occur along the workspace boundary (i.e. when the arm is fully extended)

Singularities

- How do we determine singularities?
 - Simple: construct the Jacobian and observe when it will lose rank
- EX: two link manipulator
 - Analytic Jacobian *J* is:



 $\mathbf{1} x_2$

Singularities

- This is equivalent to the following: $a_1s_1 + a_2s_{12} = \alpha(a_2s_{12})$ $a_1c_1 + a_2c_{12} = \alpha(a_2c_{12})$
- Thus if $s_{12} = s_1$, we can always find an α that will reduce the rank of J

 x_2

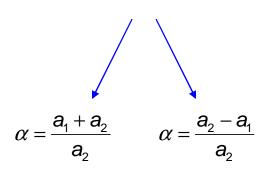
- X1

 $-x_0$

 a_2

 a_1

• Thus $\theta_2 = 0, \pi$ are two singularities

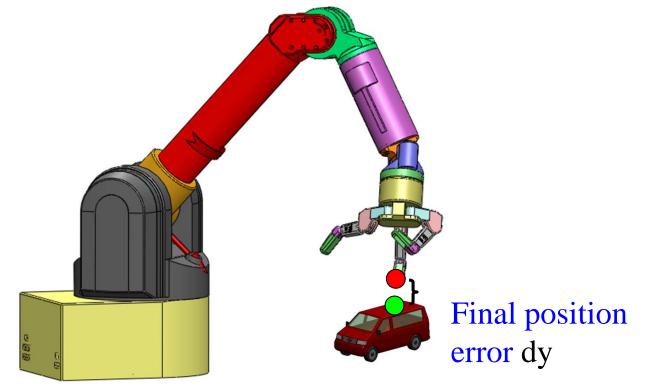


Determining Singular Configurations

- In general, all we need to do is observe how the rank of the Jacobian changes as the configuration changes
- •Can study analytically
- •Or numerically: Singular if eigenvalues of square matrix 0, or singular values of rectangular matrix zero. (Compute with SVD), or condition number tends to infinity.

How accurate is the movement?

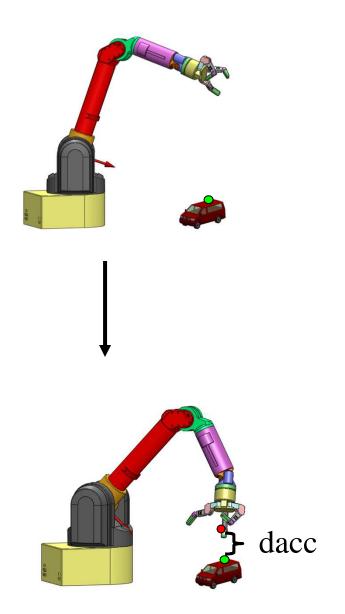
• Does the robot always reach the goal?



Accuracy, Repeatability and Resolution

Accuracy:

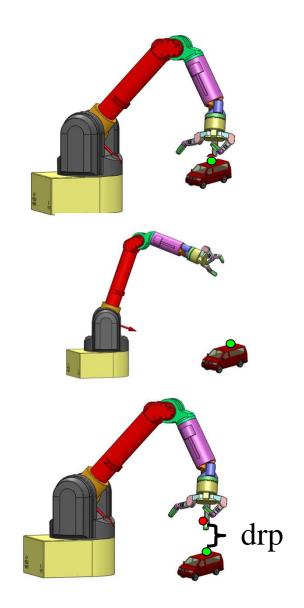
- •Start far away
- Move a long distance
- •Measure error dacc



Accuracy, Repeatability and Resolution

Repeatability:

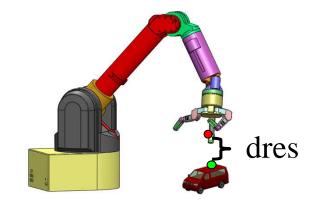
- •Start at goal
- Move away a long distance
- Move back to goal
- •Measure error drp

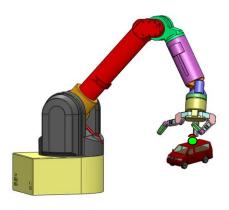


Accuracy, Repeatability and Resolution

Resolution:

- The smallest incremental distance a robot can move.
- •Typically limited by joint encoder resolution.





Points potentially weak in mechanical design

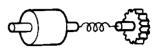
Weak points	Mechanical correction
Permanent deformation of the whole structure and the components	Maight reduction
Dynamic deformatior	 Increase rigidness Reduction of the mass to move Weight distribution
Backlash	 Reduce gear clearances Use more rigid transmission elements

11/1/

Points potentially weak in the mechanical design

7101010	
00000	

Ľ	 3
Γ]
1	



Weak points	Mechanical correction
Axes clearance	 Use pre stressed axes
Friction	Improve clearance in axesIncrease lubrication
Thermal effects	 Isolate heat source
Bad transducers connection	 Improve mechanical connection Search for a better location Protect the environment

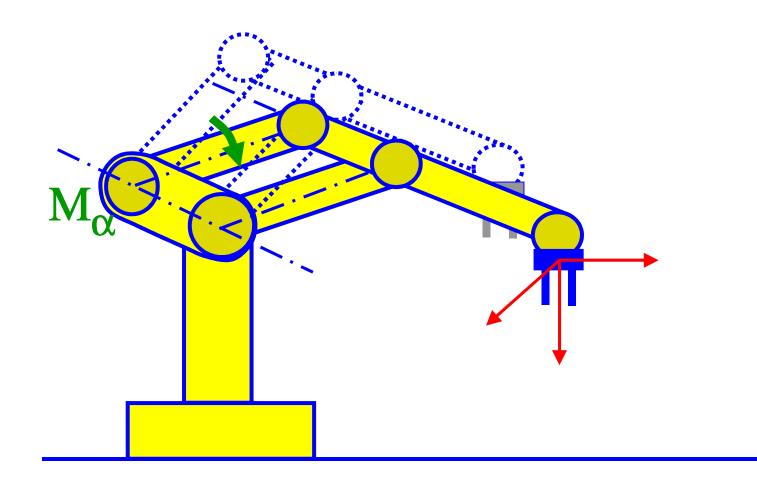
Robot Morphology: An classic arm - The PUMA 560

- Accuracy
 - Factory about 10mm
 - Calibrated 1-5mm
- •Repeatability 1mm
- Resolution 0.1mm

An modern arm - The Barrett WAM

- Resolution and repeatability similar or better than PUMA
- Accuracy worse due to lighter, more flexible linkage
- But can move faster
- Needs external feedback (e.g. camera vision) for accurate motions

5 – Bar linkage

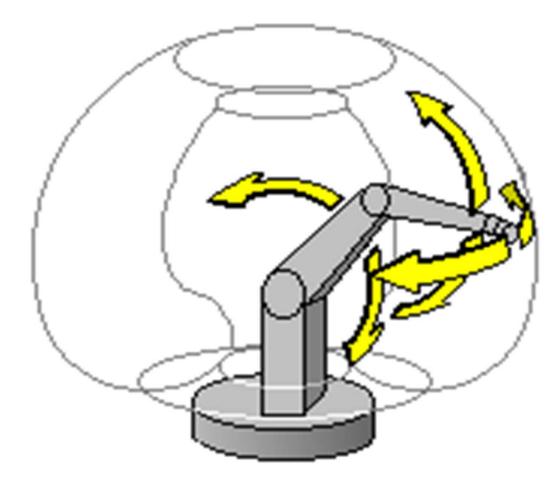


Can build this with LEGO!

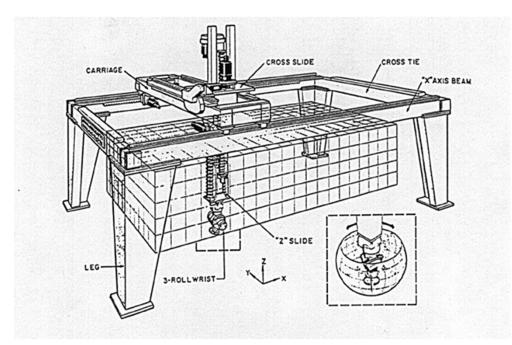
Parallel linkage Sensable Phantom



Workspace of a typical serial arm



Cartesian robot



Typical performance

- Accuracy 0.1-1mm
- Repeatability: 0.01mm
- Resolution: 0.01mm
- Drawbacks
 - Large, heavy
 - Workspace "inside" the robot

Measuring Accuracy

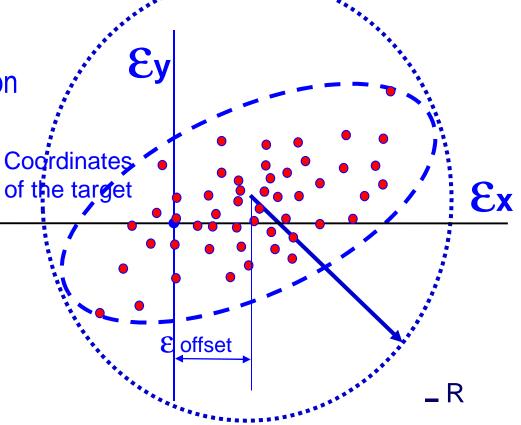
Accuracy

• Capacity to place the end effector into a given position and orientation (pose) within the robot working volume, from **a random** initial position.

ε increases with the motion distance

Measure:

- Sample many start and end positions
- Characterize errors:
 - systematic E (offset)
 - random

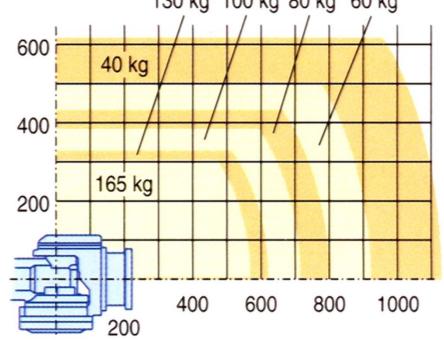


Dynamic Characteristics

Payload:

- The load (in Kg) the robot is able to transport in a continuous and precise way (stable) to the most distance point
- The values usually used are the maximum load and nominal at acceleration = 0
- The load of the End-Effector is not included.
 130 kg 100 kg 80 kg 60 kg

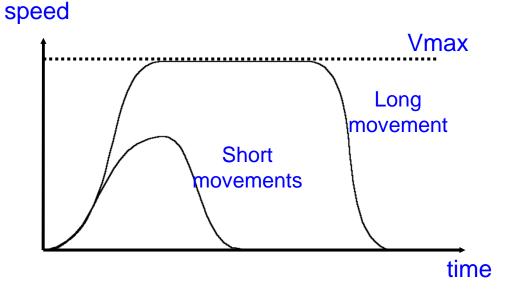
Example of Map of admitted loads, in function of the distance to the main axis



Dynamic Characteristics

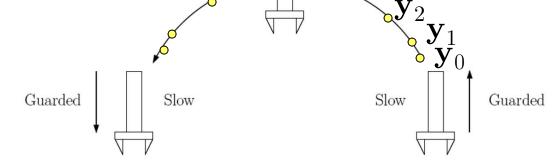
Velocity

- Maximum speed (mm/sec.) to which the robot can move the End-Effector.
- It has to be considered that more than a joint is involved.
- If a joint is slow, all the movements in which it takes part will be slowed down.
- For shorts movements acceleration matters more.



Path/trajectory planning

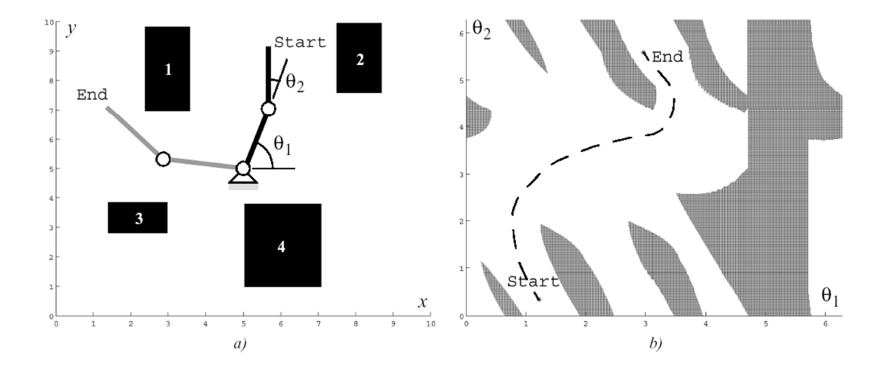
• Split the workspace into areas of fast and slow guarded motion: Fast Free Space \mathbf{y}_2 \mathbf{y}_1



- In practice robot has to smoothly accelerate.
- •Can create position/velocity profiles with linear or higher order polynomials/splines.

Path/trajectory planning

• With many obstacles may need motion planning algorithms (Potential fields, RRT etc -- later)



Conclusions:

- Different architectures have different kinematics and different accuracy.
 - Serial arms: Slender, agile but somewhat inaccurate
 - Cartesian (x,y,z- table): Very accurate, but bulky
- •Accuracy can be improved by:
 - Cartesian calibration
 - Visual or other sensory feedback (next in course)