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Robot Arms, Hands:
Kinematics

With slides from Renata Melamud




Kinematics studies the motion of bodies




What a robot arm and hand can do

e Martin 1992-97 PhD work



What a robot arm and hand can do




iRobot | i iT

Roomba

Robotics field

6 Million mobile robots

— From $100 roomba to $millions Mars rovers

e 1 million robot arms
— Usually $20,000-100,000, some millions

e Value of industrial robotics: $25 billion
 Arms crucial for these industries:

— Automotive (Welding, painting, some assembly)
— Electronics (Placing tiny components on PCB)

— General: Pack boxes, move parts from conveyor to
machines


http://www.youtube.com/watch?v=DG6A1Bsi-lg

An classic arm - The PUMA 560

There are two more
joints on the end
effector (the gripper)

The PUMA 560 has SIX revolute joints
A revolute joint has ONE degree of freedom ( 1 DOF) that is
defined by its angle



An modern arm - The Barrett WAM

 The WAM has SEVEN revolute joints.

» Similar motion (Kinematics) to human



UA Robotics Lab platform
2 arm mobile manipulator

2 WAM arms, steel cable transmission and drive
» Segway mobile platform

* 2x Quad core computer platform.

« Battery powered, 4h run time.



Robotics challenges

C Manipulation ‘11-14
Navigation “05 Humanoids *12-



Build or buy‘?

Lynxmotion

o Off the shelf kits:




Mathematical modeling

Robot

Abstract model
Strategy:

1. Model each joint separately

2. Combine joints and linkage lengths

http://www.societyofrobots.com/robot arm tutorial.shtml



Other basic joints

; - Revolute Joint
@ 1 DOF ( Variable - B)

Yo

Yi

Prismatic Joint
1 DOF (linear) (Variables - d)

Spherical Joint
3 DOF ( Variables - &, B&,, &)




Example
Matlab robot

Successive
translation and
rotation

B2




Problem: Lots of coordinate frames
to calibrate

Robot

— Base frame

— End-effector frame
— Object




Problem: Lots of coordinate frames
to calibrate

Robot Camera

— Center of projection
— Base frame Pro]

— Different models

— End-effector frame
— Object




We are 1nterested in two kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(i.e. 1it’s (X, Yy, z) coordinates

Inverse Kinematics (position to angles)

What you are given: The length of each link

The position of some point in the world
(reachable)

What you can find: The angles of each joint needed to obtain
that position



Change Coordinate Frame

1
Q) AY
(VR.VO)
0
AY
VNO N
VXY
»
...... > > Xl
P
......................... Translation along P followed by rotation by 0

Pt _—

VXY _ \% _ P, N cos® —sin0 | V"
vY P, | |sin® cos® |V©°
(Note : Py, Py are relative to the original coordinate frame. Translation followed by

rotation is different than rotation followed by translation.)

In other words, knowing the coordinates of a point (VN,V©) in some coordinate
frame (NO) you can find the position of that point relative to your original
coordinate frame (X°Y?).



HOMOGENEOUS REPRESENTATION

Putting it all into a Matrix

VY _ vy | P N cos® —sin@ || VN
VY| |P,| |sin®@ cos® | V°
VX| [P.] [cos® —sin@ 0]
=| VY |=|P, |+|sin0 cos® 0
1| [1]] o 0 1]
(VX]| [cos® —sin@ P | VY]
=| VY |=|sin® cos® P, ||V°
1| o o 1)1
(cosO —sin0 P_ |
H=|sin® cos® P,
_ 0 0 1_ the z-axis

What we found by doing a
translation and a rotation
N
v Padding with 0’s and 1°’s
Vo
1

Simplifying into a matrix form

Homogenous Matrix for a Translation in
XY plane, followed by a Rotation around



Rotation Matrices 1in 3D — OK, lets return from

d
<«

A

_ homo;
cosO —sinO 0
sinO cosO O

] 0 0 1_

' cos® 0 sinO |

0 1 0

- sinO o0 cosﬂ_

1 0 0

cosO —sin0

cosO

A

oenous repn

Rotation around the Z-Axis

Rotation around the Y-Axis

Rotation around the X-Axis



Homogeneous Matrices in 3D

H 1s a 4x4 matrix that can describe a translation, rotation, or both 1n one matrix
A O

S O -
S = D
.-

=
=R =)
&

—
=)
o

&
- & &

>X OTO

Rotation part:
Z Rotation without translation Could be rotation around z-axis,
A X-axis, y-axis or a combination of
the three.

=)



Homogeneous Continued....

N
\%
VO ) The (n,0,a) position of a point relative to the
VXY —H A ) current coordinate frame you are in.
\%
1

nX OX aX PX_ VN
veo_|my o 8 P |V V¥=n V" +0 V°+a V*+P,
n, o, a, P ||V
0 0\o A1

The rotation and translation part can be combined into a single homogeneous
matrix IF and ONLY IF both are relative to the same coordinate frame.



Finding the Homogeneous Matrix

EX.
Y
T --------
.......................... :
W
. | Point relative to the
W X-Y-Z frame
WZ
I_ [ ] p—
w'| [P] [n o
K
W ] _Pk_ n, o,

.o
.....
.....
e

.....

Point relative to the
I-J-K frame

......
.....
ces
......
.....
....
ces

LER

WN

WO

WA
n, 0,
nk Ok
0O 0

Point relative to the

N-O-A frame

a. P || w"
a, P |W°
a, P ||W*
0 1 1




Y
T e
| et X . P
Z
_ - . _ X |
w* T | [i, j, k | W W
Y N J WY
Whi=T, |+]i, J, Kk, | W — W2 =
Wl T, | i, i, k,|W" .
B N _WX_ _ix jx kx Tx__ni
WI Y . .
Substituting for | W’ W _| by ky T,]mn
WK WZ iz jz kz Tz nk
| 1 | _0 0 0 1__0

Qo o
Qo @




WX WN _ix jx kx Tx_ _ni Oi ai Pi ]
Y o . .
w = H w __H-= I, )y ky Ty n.i Oj a.l Pj
w* w4 i j kT P
I, J, 2 2 || Dk Op Ay k
1 [ 1 00 0 10 0 0 1|

» Product of the two matrices

1 0 0 T i, j, k, 041 0 0 P |n, o a O
H- 010 T, (i, j, k, 0j0 1 0 P |n, o a, O
0O 01 T (i, j, k, 00 0 1 P |n_ o a O
00 0 10 0 10 00 1/0 0 0 1]

H = (Translation relative to the XYZ frame) * (Rotation relative to the XYZ frame)
* (Translation relative to the IJK frame) * (Rotation relative to the IJK frame)



The Homogeneous Matrix is a concatenation of numerous
translations and rotations

One more variation on finding H:

H= (Rotate so that the X-axis is aligned with T)
* (' Translate along the new t-axis by || T || (magnitude of T))
* ( Rotate so that the t-axis is aligned with P)
* (' Translate along the p-axis by || P || )
* ( Rotate so that the p-axis is aligned with the O-axis)

This method might seem a bit confusing, but it’s actually an easier way to
solve our problem given the information we have. Here 1s an example...



Forward Kinematics



Ao The Situation:

You have a robotic arm that
L starts out aligned with the x_-axis.
- You tell the first link to move by B,
and the second link to move by [l,.

N, .
_ S . The Quest: | N
. Xo What is the position of the

Z end of the robotic arm?

Solution:
1. Geometric Approach

This might be the easiest solution for the simple situation. However,
notice that the angles are measured relative to the direction of the previous
link. (The first link 1s the exception. The angle is measured relative to it’s
initial position.) For robots with more links and whose arm extends into 3
dimensions the geometry gets much more tedious.

2. Algebraic Approach
Involves coordinate transformations.



Example Problem:

You are have a three link arm that starts out aligned in the x-axis.
Each link has lengths /,, [,, [;, respectively. You tell the first one to move by @,

, and so on as the diagram suggests. Find the Homogeneous matrix to get the
position of the yellow dot in the X°Y? frame.

H=R,@) * Ty *R(3;) * Tyu(l2) * R,(®;)

i.e. Rotating by @, will put you in the X'Y! frame.
Translate in the along the X! axis by /,.
Rotating by @, will put you in the X?Y? frame.
- and so on until you are in the X*Y? frame.

The position of the yellow dot relative to the X3Y? frame is
(Z;, 0). Multiplying H by that position vector will give you the
coordinates of the yellow point relative the the X°Y" frame.



Y

Slight variation on the last solution:
Make the yellow dot the origin of a new coordinate X4Y* frame

X4

H=R,@) * Tu() *R,@) * Tyr(ly) *R,(@;) * Ty3(l;)
This takes you from the XY? frame to the X*Y* frame.

The position of the yellow dot relative to the X4Y* frame

. 8 > X0 )
| | is (0,0).
~ S
Y 0 : L :
— H Notice that multiplying by the (0,0,0,1) vector will
Z 0 equal the last column of the H matrix.
1 1




More on Forward Kinematics...

Denavit - Hartenberg Parameters



Denavit-Hartenberg Notation

IDEA: Each joint is assigned a coordinate frame. Using the Denavit-
Hartenberg notation, you need 4 parameters to describe how a frame ()
relates to a previous frame (i -7 ).

THE PARAMETERS/VARIABLES: B, a, d,



The Parameters

You can
align the
two axis
just using
the 4
parameters

1) i1

Technical Definition: a; ;) is the length of the perpendicular between the joint
axes. The joint axes is the axes around which revolution takes place which are the
Z;.1y and Z;, axes. These two axes can be viewed as lines in space. The common
perpendicular is the shortest line between the two axis-lines and is perpendicular
to both axis-lines.




A(i-1) cont...
Visual Approach - “A way to visualize the link parameter a;_;) 1s to imagine an

expanding cylinder whose axis is the Z; ;, axis - when the cylinder just touches the
joint axis i the radius of the cylinder is equal to a_;, ” (Manipulator Kinematics)

It’s Usually on the Diagram Approach - If the diagram already specifies the
various coordinate frames, then the common perpendicular is usually the X;
axis. So a_j) 1s just the displacement along the X; |, to move from the (i-7) frame
to the i frame.

If the link is prismatic, then a_;,
1s a variable, not a parameter.




2) Blg.p

Technical Definition: Amount of rotation around the common perpendicular so that
the joint axes are parallel.

i.e. How much you have to rotate around the X; ;, axis so that the Z; ;, is pointing
in the same direction as the Z; axis. Positive rotation follows the right hand rule.

3)d;.,

Technical Definition: The displacement
along the Z, axis needed to align the a;_;,
common perpendicular to the a; common
perpendicular.

In other words, displacement along the

Z; to align the X; ;) and X; axes. {

S
D
4) 2,

Amount of rotation around the Z; axis needed to align the X;_ ;) axis with the X;
axis.



The Denavit-Hartenberg Matrix

cos0, —sin0, 0 Ay
sin,cosa; ;, cosO,coso; ,, —sino; ,, —sino; d
sinf;sina;_,, cosOsina; , cosa, ,, coso, ,d
0 0 0 1

Just like the Homogeneous Matrix, the Denavit-Hartenberg Matrix 1s a
transformation matrix from one coordinate frame to the next. Using a series of
D-H Matrix multiplications and the D-H Parameter table, the final result is a
transformation matrix from some frame to yc -,

Put the transformation here




3 Revolute Joints

Y;

A

Denavit-Hartenberg Link

ZO Zl
I
0 1 X
0 Y]
dg a

Notice that the table has two uses:

1) To describe the robot with its
variables and parameters.

2) To describe some state of the
robot by having a numerical values
for the variables.

Parameter Table

I Olg-1) | AG-1 d; 0;
0 0 0 0 B0
1 0 ao 0 0,
2 -90 a; d> 0,




I Oy | i1 d; 0;

V XoeYoZo

T=(, DT

Note: T 1s the D-H matrix with (i-/1) =0 and i = 1.



i | oy | aep | di |6 (cos®, —sin®, 0 0
sin0, cosO, 0 0

0 | 0 | 0 | 0 | 8 ol =
0 0 1 0
1 | 0 | a | 0 | o 0 0 0 1

This is just a rotation around the Z, axis

cos®, —sin®, 0 a, - cos®, —sin@, 0 a,
0 sinO, cosO, 0 0 . 0 0 1 d,
L= 1= .
0 0 0 0 —sin@, —-cos0, 0 O
0 0 0 1 0 0 0 1|

This is a translation by a; and then d,
followed by a rotation around the X, and
Zz axis

T=(, DT

This is a translation by a, followed by a
rotation around the Z; axis



Inverse Kinematics

From Position to Angles



A Simple Example

Revolute and

Prismatic Joints Finding & y
Combined 0= arctan(=—)
X
/ More Specifically:
(X, ¥)g P 4

arctan2() specifies that it’s in the
first quadrant

0 = arctan Z(X)
X

Finding S:

S = \/(X2+ y2)




Inverse Kinematics of a Two Link Manipulator

(x,Y)

Given: I, L, x,y

Find: @, &,

Redundancy:

A unique solution to this problem
does not exist. Notice, that using the
“givens” two solutions are possible.
Sometimes no solution is possible.




The Geometric Solution
(X,y)

YNy

Using the Law of Cosines:

smB sinC

b c
sinf, ~sin(180-0,)  sin(0,)

Using the Law of Cosines:

c’=a*+b>-2abcosC
(x> +y*)=1°+1," =211, ¢cos(180-0,)
cos(180—-0,)=—cos(0,)

x? +y2 —112 —122

cos(0,) =
0,) o
2, 2 72 g2
0, = arccos x Ay - =k
201,

Redundant since 0, could be in the
first or fourth quadrant.

0,+a

o = arctan Z(Xj
X

Redundancy caused since 0, has two possible
values

0, = arcsin[ L s, )j + arctan Z(X

JXo+Y’ X

|




The Algebraic Solution

c, = cos0,

c,., =cos(0,+0),)
(Dx=/Lc¢c+1lc,,
)y =/ s,+,s1n,
(3)0=0,+0,

ST
(1) + @7 =x+y =
= (112 C12+ 122 (c1n)" +211, C1(C1+2))+ (112 312+ lzz(Sin1+2)2 +211, S1(Sin1+2))

= 112 + 122 + 21112 (C1(01+2) + SI(Sin1+2)) ‘\

_ 7?2 2 < Only Unkn .
=["+1,"+2l1c, nly Unknown Note:

X2+ y?i— 112 _ 122 cos(ah) = (cosa)(cosh), (sina)(sinb)
211, sin(a_b) = (cosa)(sinb)~ (cosb)(sina)

50, = arccos[




Y1

The Numeric solution

We model forward kinéfnatics as
H=Ry(r;) * Ty1(l)) * Ry(ry) * Tyo(ly) * Ry(r;) * Tys(l5)

xX (] )
Yl=ro=me.n|?
Z. 0
| _1 | _1_

Now given desired Cartesian position [X,Y,Z] solve

numerically for the corresponding joint angles [r;r;rs3] :
X

o=|_ |-ru

Y
z
_1_



The Numeric solution: How to solve?
Newton’s Metod

X4

Function:
W= f(r)=H(r,)I

Jacobian J = matrix of partial derivatives:

; _Ffm}
or;

] Newton’s method:

Guess 1nitial joint angles r

Iterate
J*dr=W-{(r)
r=r+dr

If guess 1s close enough r converges to solution.
Otherwise may diverge.



Newton’s Metod: Convergence 1ssues

Use a start position with known W and r
(e.g. Wi=]0, ;+l,+1;,0, 1]"T forr =0)

Let next Wk close to this initial.
Use r0 as 1nitial guess for rl

Iterate
J*dr = Wk-f( 1)
r=r+dr

r guess 1s close so r converges to solution.



Newton’s Metod: Convergence 1ssues

X To make a large movement, divide the total
J distance from (known) initial W1 to the new
v +—= final W1 into small steps - Wk
S ¢.g. on a line
3 °

*Try this in lab!




Resolved rate control

« Here instead of computing an inverse kinematics
solution then move the robot to that point, we
actually move the robot dr for every iteration in
newtons method.

e Letdr -2 0, then we can view this as velocity
control:

F=J(r()"'w

w =v = Cartesian translation velovity



Conclusion

 Forward kinematics can be tedious for multilink arms

« Inverse kinematics can be solved algebraically or
numerically. The latter 1s more common for complex arms
or vision-guided control (later)

o Limitations: We avoided details of the various angular representations (Euler,
quarternion or exponentials) and their detailed use in Kinematics. (this typically takes

on



Quick Math Review
Dot Product:

Geometric Representation:

A« B =|a][B]coso

Matrix Representation:

Unit Vector

Vector in the direction of a chosen vector but whose magnitude is 1.

_ B

q. = —
B HBH //' B



Quick Matrix Review
Matrix Multiplication:
An (m x n) matrix A and an (n x p) matrix B, can be multiplied since

the number of columns of A 1s equal to the number of rows of B.

Non-Commutative Multiplication
AB is NOT equal to BA

a b RE Al (ae+bg) (af+bh)
¢c d||g h| (ce+dg) (cf +dh)
Matrix Addition:

bl




Basic Transformations
Moving Between Coordinate Frames

Translation Along the X-Axis
Y O

A A

(VR,VO)

VO

_ X _ N — | P
Notation: VXY = M vNO — \ P=| *
VY VO 0



Writing v*¥i
ng V*in terms of V\°




Translation along the X-Axis and Y-Axis

4

VO




Using Basis Vectors
Basis vectors are unit vectors that point along a coordinate axis

A

N Unit vector along the N-Axis

0  Unit vector along the N-Axis

HVNO H Magnitude of the VNOvector
O

o _ \Va V™eoso | | HVNOHCOSO | VYO 4
V°[sin® _HVNOHCOS(% -0)




Y
Rotation (around the Z-Axis) |
X
V4

Y
Q) A

= Angle of rotation between the XY and NO coordinate axis

VXY_ VX VNO_ VN
o VY - VO



Z Unit vector along X-Axis

A\ Can be considered with respect to
the XY coordinates or NO coordinates

S vEI=veed

V> = HVXYHcosa — HVNOHcosa — VN0 ox

(Substituting for VNO using the N and O
components of the vector)

VX = (VN %1+ VO +0)eX
V¥*=VY¥(Xen)+V?(Xe0)
= V™(cos0) + V°(cos(0 +90))

= VY(cos0) — V°(sin0)



Similarly....
VY = HVNOHSina = HVNOHCOSQO —a)=V ey
VY=(V¥*n+V?*0)ey
VY=VY¥Fen)+V?(yeo)

=V~ (cos(90—-0))+ V?(cos0)

= VY (sin0) + V°(cos0)
So....
V* =V¥(cos0)—V(sin0) VXY _ {VX}
VY =V (sin0) + V°(cos0) v?

Written in Matrix Form

VXY _ {VX} B {COSO — sinO}{VN} Rotation Matrix about the z-axis

VY| |sin® cos® | V°



x=1¢c,+1, ¢, Note:
=/ c,+1,cc,—1,s,s, cos(a_b) = (cos a)(cosb), (sin a)(sinb)
=c (/; +1,¢,)—5,(L55,) sin(a*h) = (cosa)(sinb)’ (cosb)(sin a)
y==4s,+sn,, We know what 0, 1s from the previous
=1[,8,+1,s,c,+1,s,C slide. We need to solve for 6, . Now
=c,(,s,)+s,(, +1,¢c,) we have two equations and two

unknowns (sin 0; and cos 9, )

_ X+51(/555)

Cy

(L +15¢5)
X+ 57(1555) Substituting for ¢; and simplifying
y= ([ys82)+s(/;+15¢5) many times
([y +15¢3) Y
B 1 ( 5 > ) Notice this is the law of cosines
(U, +1,¢5) Xlasy +5 (47 + 17+ 201 Ci) and can be replaced by x2+ y?2
s; = y(/ "‘12202);?(1252 0, = arcsin y(/; "‘Zzzcz);XIzSz
X +y X +y



