Image Processing

Edge detection

Filtering: Noise suppresion

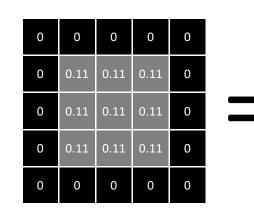
Image filtering

Linear filtering = Applying a local function to the image using a sum of weighted neighboring pixels.

Such as blurring:

0	0	0	0	0	0
0	0	0	0	0	0
0	0	200	0	0	0
0	0	0	0	0	0
0	0	0	100	0	0
0	0	0	0	0	0

Input image



Kernel

0	0	0	0	0	0
0	22	22	22	0	0
0	22	22	22	0	0
0	22	33	33	11	0
0	0	11	11	11	0
0	0	11	11	11	0

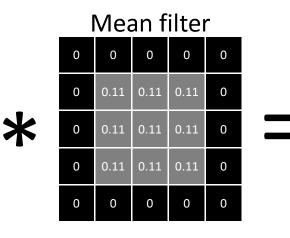
Output image

Image filtering

$$g(x,y) = \sum_{x'} \sum_{y'} f(x+x',y+y')h(x',y')$$

0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	200	0	0	0	
0	0	0	0	0	0	
0	0	0	100	0	0	
0	0	0	0	0	0	

Input $\operatorname{image} f$



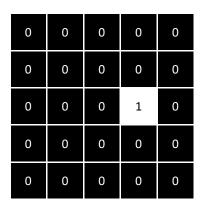
Filter *h*

0	0	0	0	0	0
0	22	22	22	0	0
0	22	22	22	0	0
0	22	33	33	11	0
0	0	11	11	11	0
0	0	11	11	11	0

Output image g

Image filtering

- Linear filters can have arbitrary weights.
- Typically they sum to 0 or 1, but not always.
- Weights may be positive or negative.
- Many filters aren't linear (median filter.)



What does this filter do?

Animation of Convolution

P _{1,1}	p _{1,2}	р _{1,3}	p _{1,4}	P _{1,5}	P _{1,6}					
p _{2,1}	p _{2,2}	p _{2,3}	p _{2,4}	p _{2,5}	p _{2,6}					
р _{3,1}	p _{3,2}	р _{3,3}	p _{3,4}	p _{3,5}	р _{з,6}					
р _{4,1}	p _{4,2}	p _{4,3}	P4,4	p _{4,5}	p _{4,6}					
P _{5,1}	p _{5,2}	р _{5,3}	p _{5,4}	p 5,5	p _{5,6}					
р _{6,1}	p _{6,2}	р _{6,3}	p _{6,4}	P _{6,5}	p _{6,6}					
	Original Image									

To accomplish convolution of the whole image, we just *Slide the mask*

m1,1	m1,2	m1,3
m2,1	m2,2	m2,3
m3,1	m3,2	m3,3

Mask

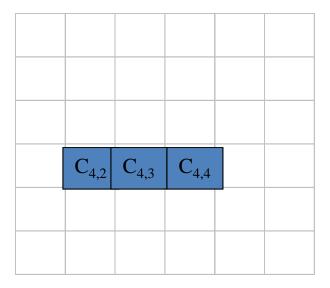
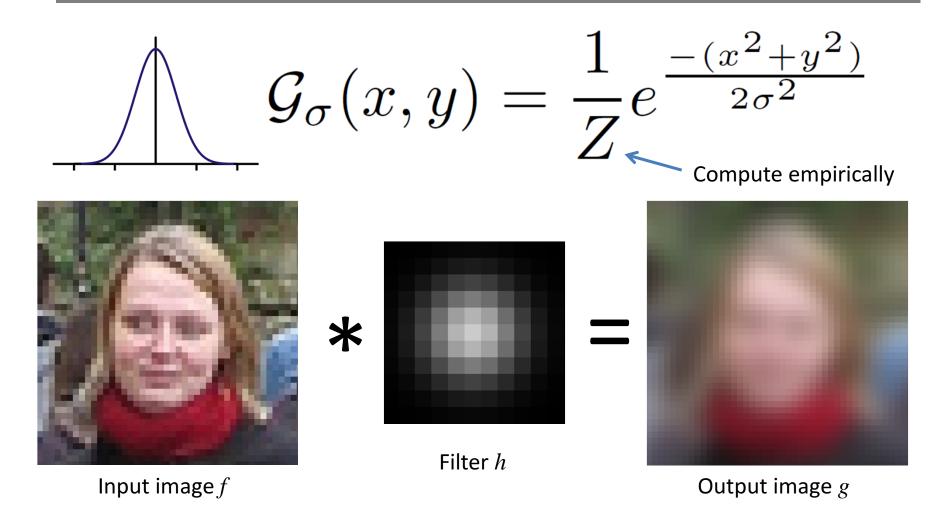
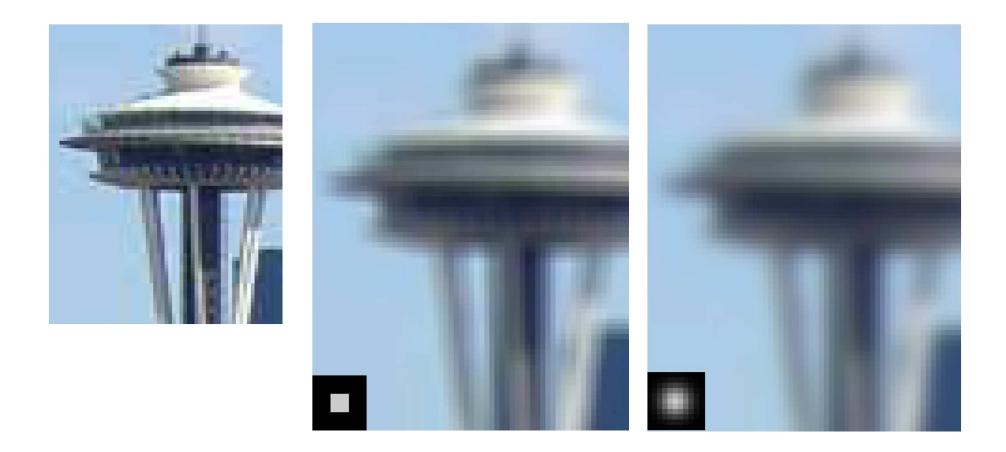


Image after convolution

Gaussian filter

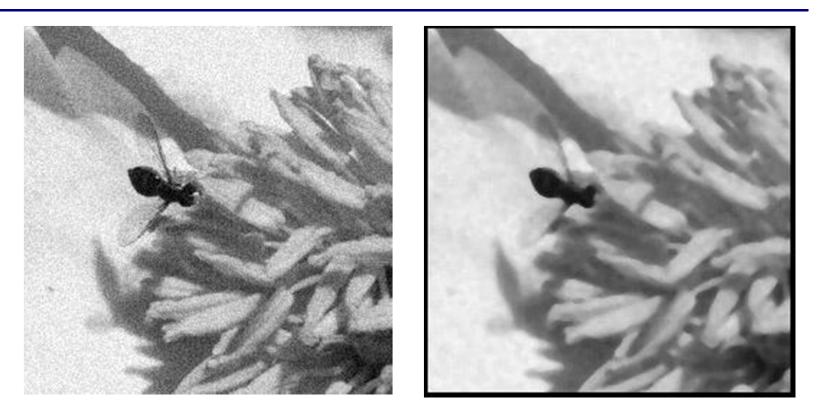


Gaussian vs. mean filters



What does real blur look like?

Convolution for Noise Elimination



--Noise Elimination The noise is eliminated but the operation causes loss of sharp edge definition.

In other words, the image becomes *blurred*

Convolution with a non-linear mask Median filtering

There are many masks used in *Noise Elimination Median Mask* is a typical one

The principle of Median Mask is to mask some sub-image, use the median of the values of the sub-image as its value in new image

Masked Original Image

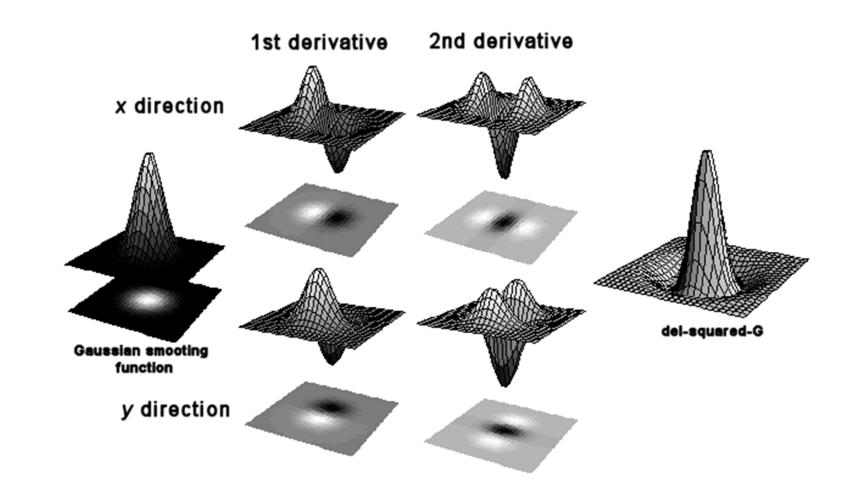
Median Filtering

Original Image

Noisy Image

After Median filtering

Back to Linear filters: First and second derivatives

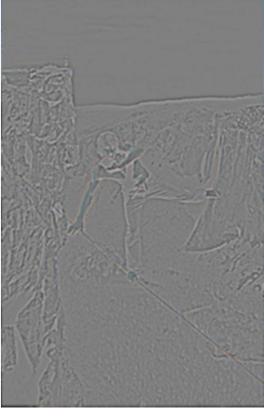


First and second derivatives

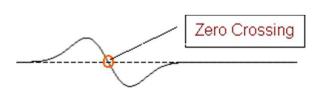
Original

What are these good for?

First Derivative x

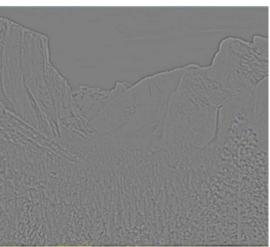


Second Derivative x, y



Subtracting filters

$Sharpen(x, y) = f(x, y) - \alpha(f * \nabla^2 \mathcal{G}_{\sigma}(x, y))$

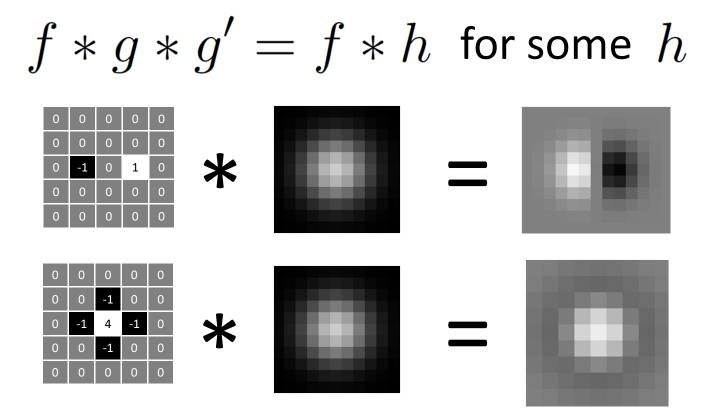


Original

Second Derivative

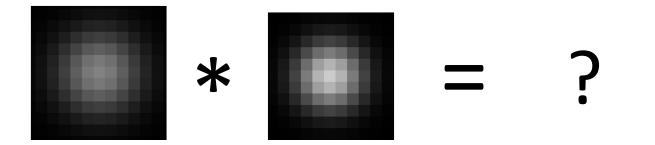
Sharpened

Combining filters



It's also true: f * (g * h) = (f * g) * hf * g = g * f

Combining Gaussian filters



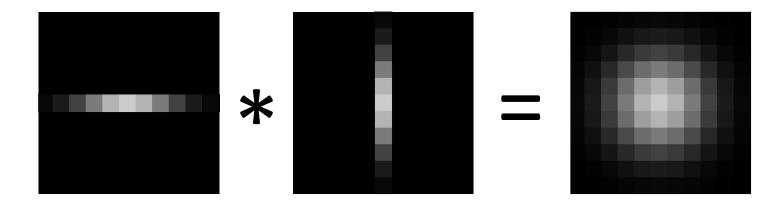
$$f * \mathcal{G}_{\sigma} * \mathcal{G}_{\sigma'} = f * \mathcal{G}_{\sigma''}$$
$$\sigma'' = \sqrt{\sigma^2 + \sigma'^2}$$

More blur than either individually (but less than $\sigma'' = \sigma + \sigma'$)

Separable filters

$$\mathcal{G}_{\sigma} = \mathcal{G}_{\sigma}^{x} * \mathcal{G}_{\sigma}^{y}$$
$$\mathcal{G}_{\sigma}^{x}(x, y) = \frac{1}{Z} e^{\frac{-(x^{2})}{2\sigma^{2}}}$$
$$\mathcal{G}_{\sigma}^{y}(x, y) = \frac{1}{Z} e^{\frac{-(y^{2})}{2\sigma^{2}}}$$

Compute Gaussian in horizontal direction, followed by the vertical direction. Much faster!



Not all filters are separable.

Freeman and Adelson, 1991

Sums of rectangular regions

How do we compute the sum of the pixels in the red box?

After some pre-computation, this can be done in constant time for any box.

This "trick" is commonly used for computing Haar wavelets (a fundemental building block of many object recognition approaches.)

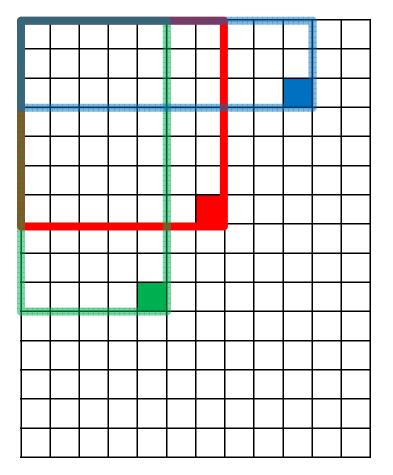
243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110	67	31	34	152	213	206	208	221
243	242	123	58	94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69	56	52	201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138	65	63	234	249	241	245
237	236	247	143	59	78	10	94	255	248	247	251
234	237	245	193	55	33	115	144	213	255	253	251
248	245	161	128	149	109	138	65	47	156	239	255
190	107	39	102	94	73	114	58	17	7	51	137
23	32	33	148	168	203	179	43	27	17	12	8
17	26	12	160	255	255	109	22	26	19	35	24

Sums of rectangular regions

The trick is to compute an "integral image." Every pixel is the sum of its neighbors to the upper left.

Sequentially compute using:

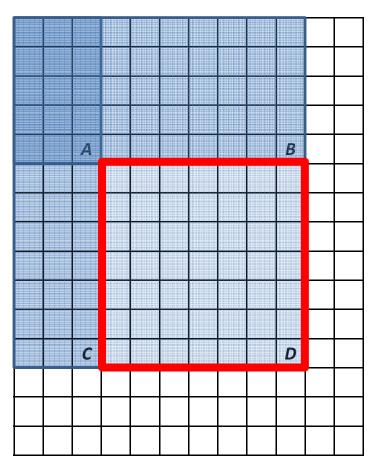
$$I(x, y) = I(x, y) + I(x, y - 1) - I(x - 1, y - 1) - I(x - 1, y - 1)$$



Sums of rectangular regions

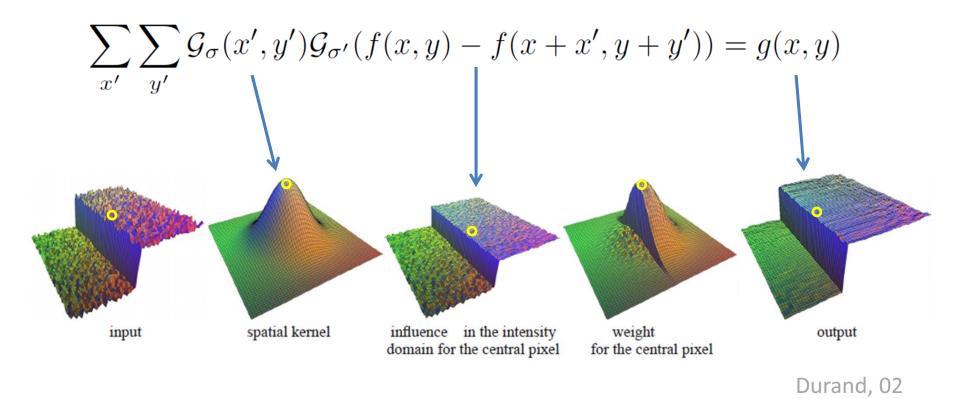
Solution is found using:

A + D - B - C



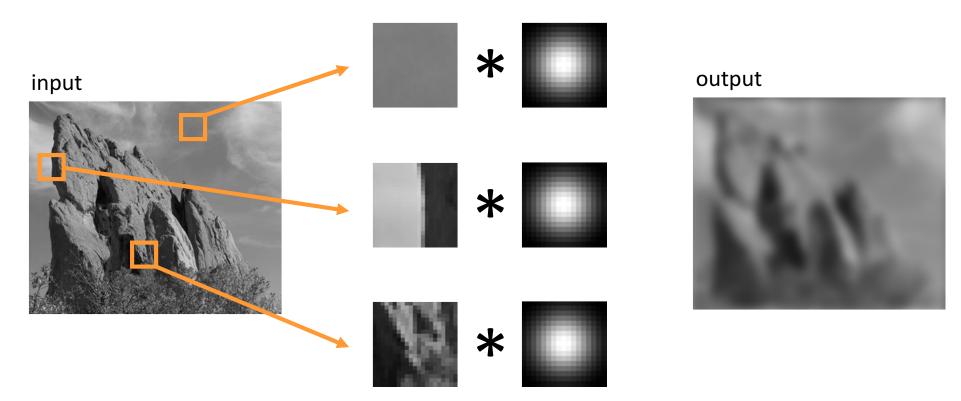
Spatially varying filters

Some filters vary spatially.



Useful for deblurring.

Constant blur

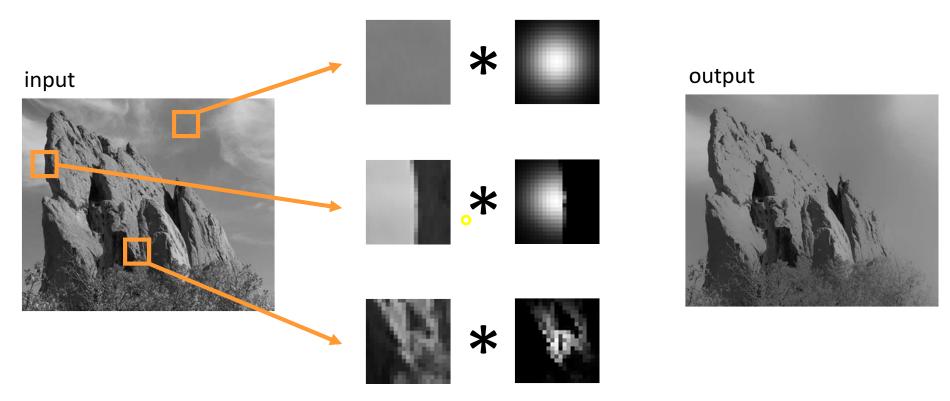


Same Gaussian kernel everywhere.

Slides courtesy of Sylvian Paris

Bilateral filter

Maintains edges when blurring!



The kernel shape depends on the image content.

Slides courtesy of Sylvian Paris

Borders

What to do about image borders:

black

fixed

periodic

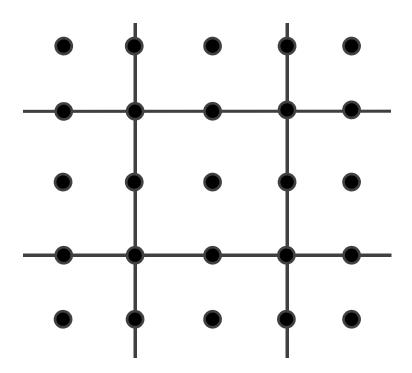
reflected

Sampling

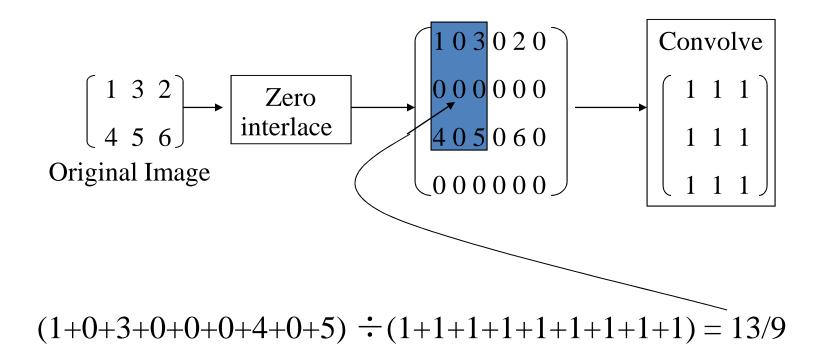
Larry Zitnick

Up-sampling

How do we compute the values of pixels at fractional positions?



Up-Sampling as a Convolution Application Example

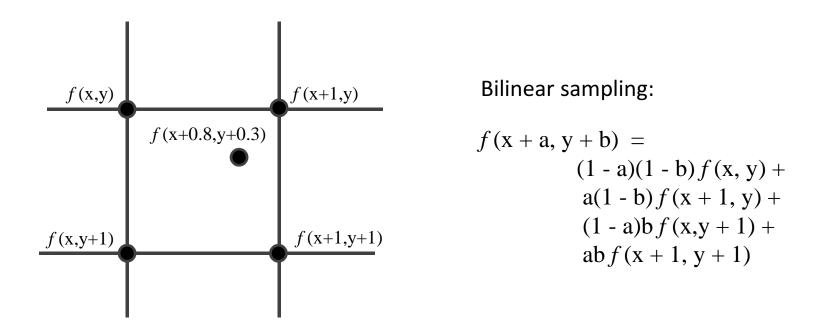


The value of a pixel in the enlarged image is the average of the value of around pixels. The difference between insert 0 and original value of pixels is *"smoothed"* by convolution

Up-Sampling as a Convolution Application Example

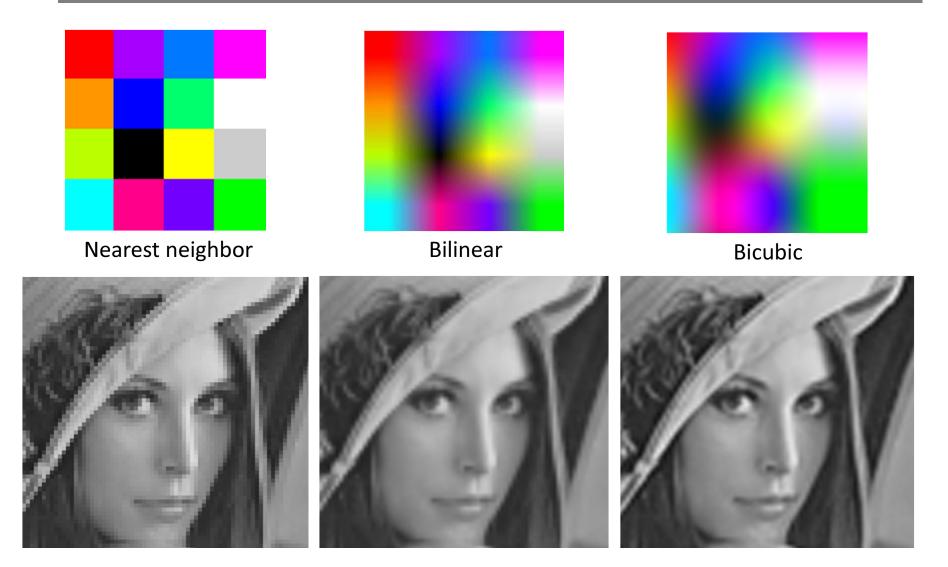
Up-sampling: General solutions

How do we compute the values of pixels at fractional positions?



Bicubic sampling fits a higher order function using a larger area of support.

Up-sampling

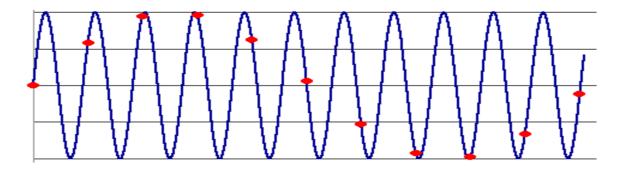


Down-sampling

If you do it incorrectly your images could look like this:

Check out Moire patterns on the web.

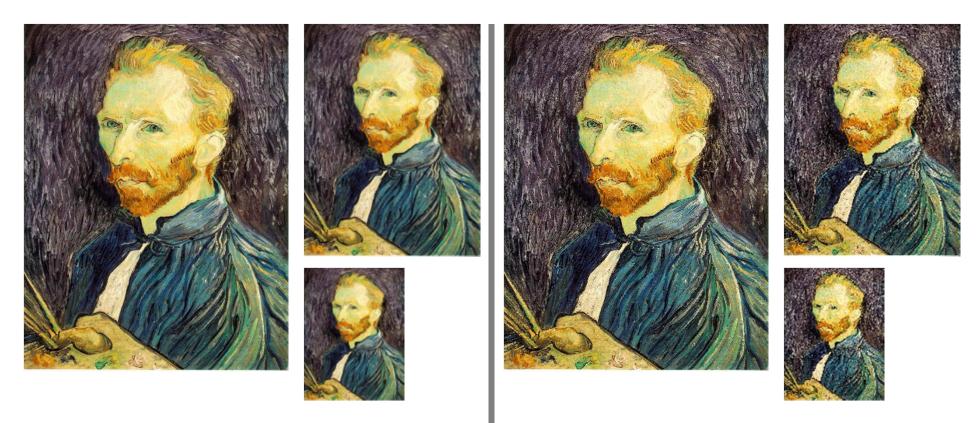
Down-sampling



- Aliasing can arise when you sample a continuous signal or image
 - occurs when your sampling rate is not high enough to capture the amount of detail in your image
 - Can give you the wrong signal/image—an *alias*
 - formally, the image contains structure at different scales
 - called "frequencies" in the Fourier domain
 - the sampling rate must be high enough to capture the highest frequency in the image

Solution

Filter before sampling, i.e. blur the image first.



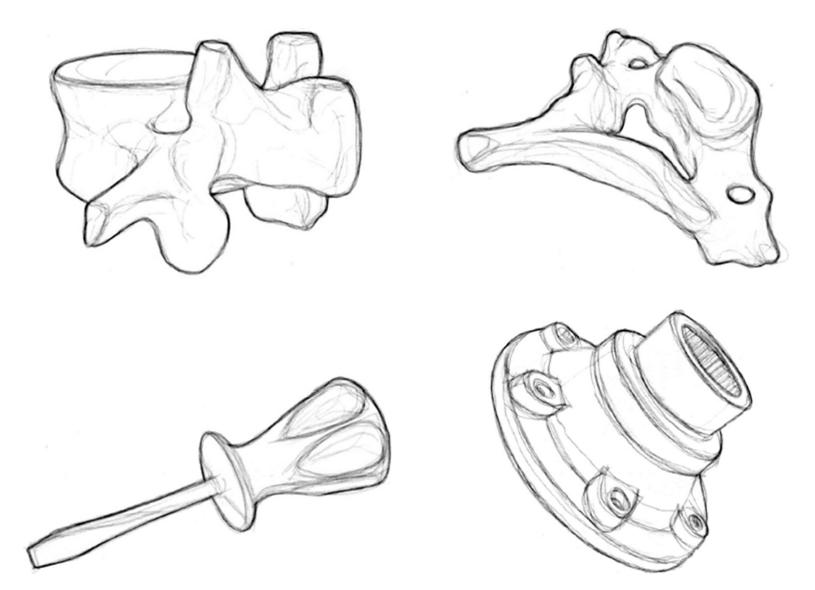
Without blur

With blur

Edge Detection

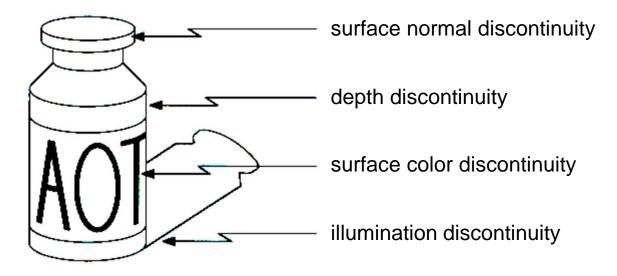
Larry Zitnick

What is an edge?



Cole et al. Siggraph 2008, results of 107 humans.

Origin of edges

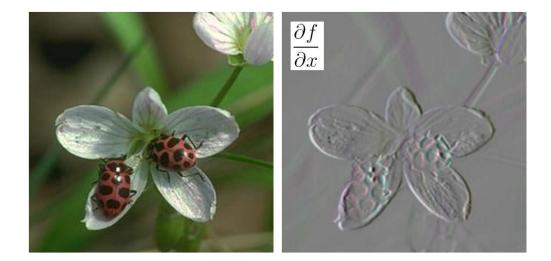


Edges are caused by a variety of factors

Illusory contours

7

Image gradient



• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \quad \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix} \quad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\frac{\partial f}{\partial x} = f(x+1, y) - f(x, y)$$

How would you implement this as a filter?

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

How does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Sobel operator

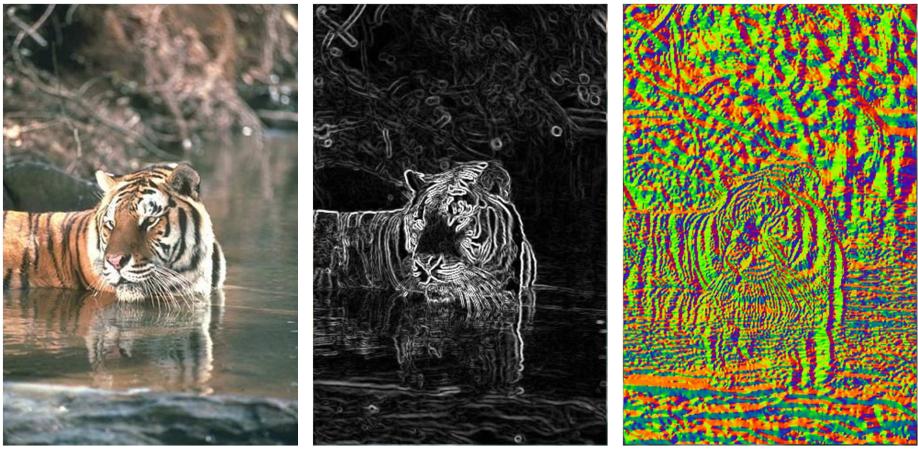
In practice, it is common to use:

Magnitude: $g = \sqrt{g_x^2 + g_y^2}$

Orientation:

$$\Theta = \tan^{-1}\left(\frac{g_y}{g_x}\right)$$

Sobel operator



Original

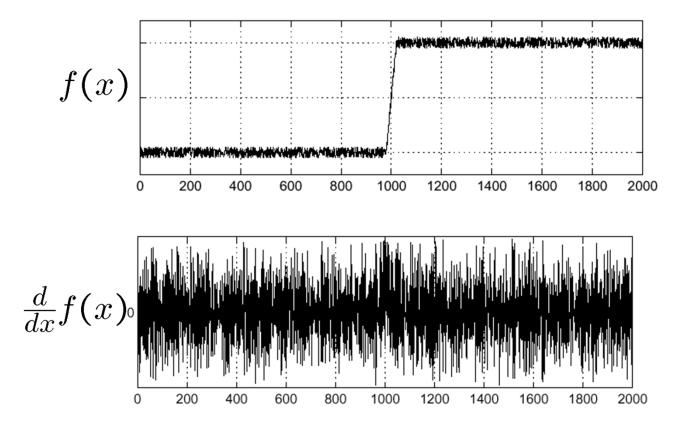
Magnitude

Orientation

Effects of noise

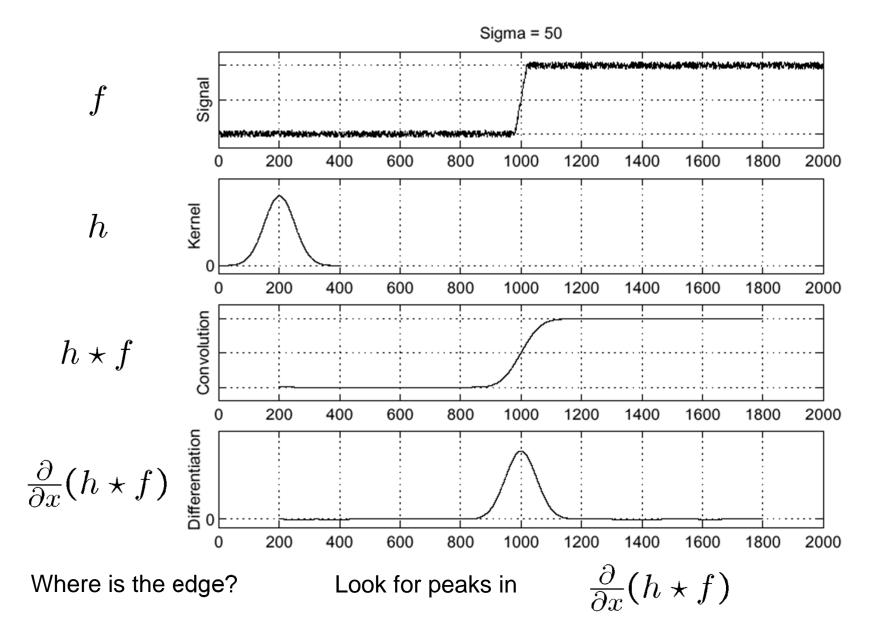
• Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

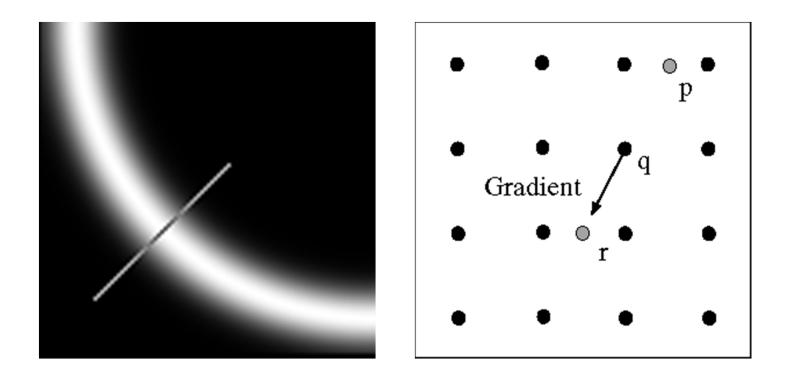


Where is the edge?

Solution: smooth first

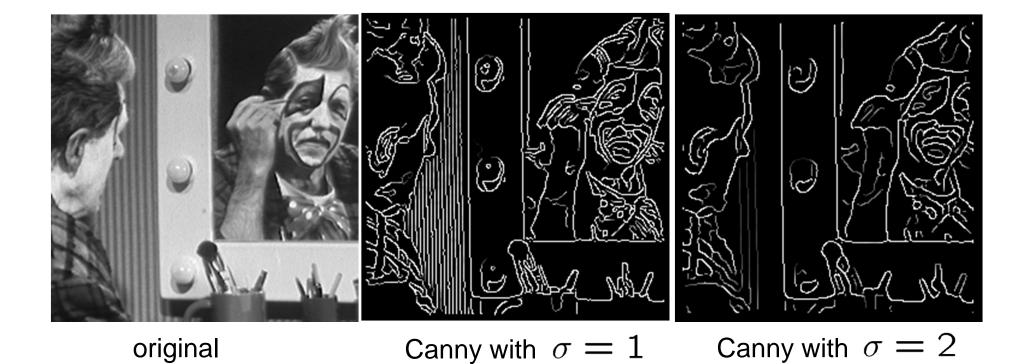


Non-maximum suppression



- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

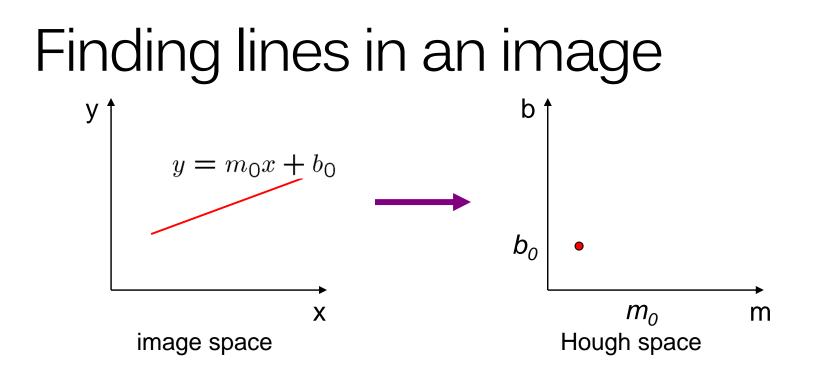
An edge is not a line...

How can we detect *lines*?

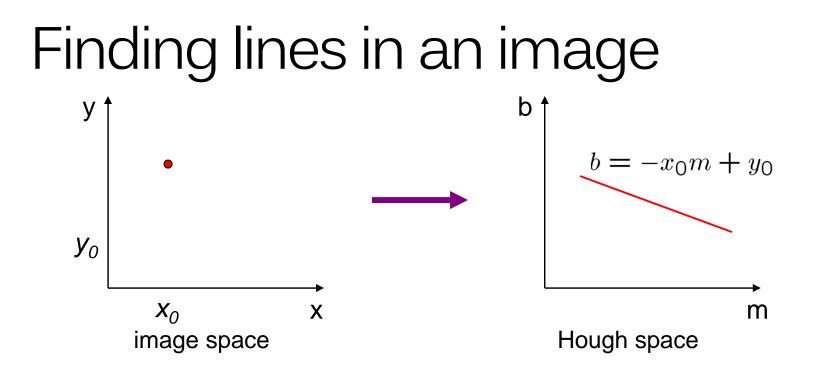
Finding lines in an image

- Option 1:
 - Search for the line at every possible position/orientation
 - What is the cost of this operation?
- Option 2:

- Use a voting scheme: Hough transform



- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b



- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
 - What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of $b = -x_0m + y_0$
 - this is a line in Hough space

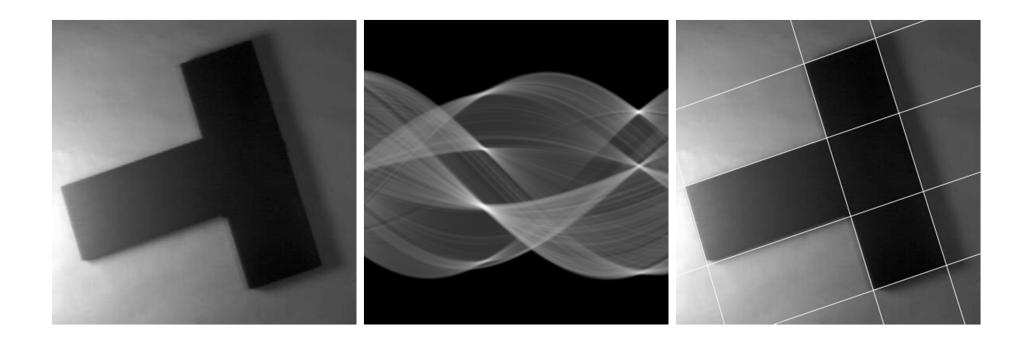
- Typically use a different parameterization $d = xcos\theta + ysin\theta$
 - d is the perpendicular distance from the line to the origin
 - θ is the angle
 - Why?

- Basic Hough transform algorithm
 - 1. Initialize H[d, θ]=0
 - 2. for each edge point I[x,y] in the image

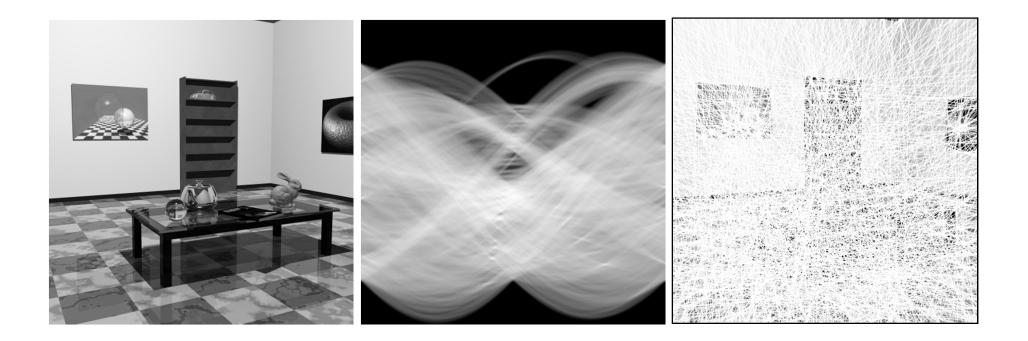
```
for \theta = 0 to 180
d = x cos \theta + y sin \theta
```

H[d, θ] += 1

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = xcos\theta + ysin\theta$
- What's the running time (measured in # votes)?



http://www.cs.utah.edu/~vpegorar/courses/cs7966/



http://www.cs.utah.edu/~vpegorar/courses/cs7966/

Extensions

- Extension 1: Use the image gradient
 - 1. same
 - 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1

- 3. same
- 4. same
- What's the running time measured in votes?
- Extension 2
 - give more votes for stronger edges
- Extension 3
 - change the sampling of (d, θ) to give more/less resolution
- Extension 4
 - The same procedure can be used with circles, squares, or any other shape

Sources

- •Zitnick course. Has filtering etc
- •http://www.cs.washington.edu/education
 /courses/csep576/11sp/schedule.htm
- http://sern.ucalgary.ca/courses/CPSC/533/W99/ presentations/L2_24A_Lee_Wang/ http://sern.ucalgary.ca/courses/CPSC/533/W99/ presentations/L1_24A_Kaasten_Steller_Hoang/main.htm http://sern.ucalgary.ca/courses/CPSC/533/W99/ presentations/L1_24_Schebywolok/index.html http://sern.ucalgary.ca/courses/CPSC/533/W99/ presentations/L2_24B_Doering_Grenier/
 http://www.geocities.com/SoHo/Museum/3828/ optical.html