Masood Dehghan Sep. 2018

CMPUT 399 Intro Robotics & Mechatronics: Control

Outline

- Control
 - 2nd Order ODEs
 - Natural (passive) systems
 - PID Control

Motivation

Control >>> design the behavior of your mechatronic system.

Boston Dynamics' Atlas robot can backflip now

Natural (passive) systems

Mass-spring system 2nd order system:

Newton's Law: F = m.a

$$m \ddot{x} = F = -kx$$

$$m\ddot{x} + kx = 0$$

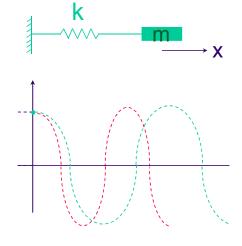
$$x(t) = x_0 \cos\left(\sqrt{\frac{k}{m}} \ t + \phi\right)$$

Natural Frequency
$$\omega_n = \sqrt{\frac{k}{m}}$$

Frequency increases with stiffness and inverse mass

$$\ddot{x} + \omega_n^2 x = 0$$

$$x(t) = c \cos(\omega_n t + \phi)$$



Normalized

Dissipative systems

Dissipative systems

Dissipative Systems

Viscous friction:
$$f_{friction} = -b\dot{x}$$

$$m\ddot{x} = -kx - b\dot{x}$$

$$m\ddot{x} + b\dot{x} + kx = 0$$
 Normalized:
$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = 0$$

2nd order system

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = 0$$

$$\ddot{x} + 2\xi_n \omega_n \dot{x} + \omega_n^2 x = 0$$

Natural frequency
$$\omega_n = \sqrt{\frac{k}{m}}$$
; $\xi_n = \frac{b}{2\sqrt{km}}$ Natural damping ratio

$$x(t) = ce^{-\xi_n \omega_n t} \cos(\omega_n \sqrt{1 - \xi_n^2} t + \phi)$$

$$x(t)$$

$$\omega$$

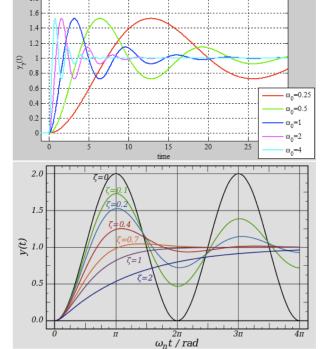
$$damped$$

$$Natural$$

$$frequency$$

$$\omega = \omega_n \sqrt{1 - \xi_n^2}$$

https://www.myphysicslab.com/ springs/single-spring-en.html



Unit step response, $H_{0.1.P}=1$, ω_0 varies, $\zeta=0.2$

Higher ω : faster response

Higher **ζ**: slower response

ζ = 1: optimal choice

2nd order system

https://www.myphysicslab.com/springs/single-spring-en.html

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = 0$$

$$\ddot{x} + 2\xi_n \omega_n \dot{x} + \omega_n^2 x = 0$$

Natural frequency
$$\omega_n = \sqrt{\frac{k}{m}}$$
; $\xi_n = \frac{b}{2\sqrt{km}}$ Natural damping ratio

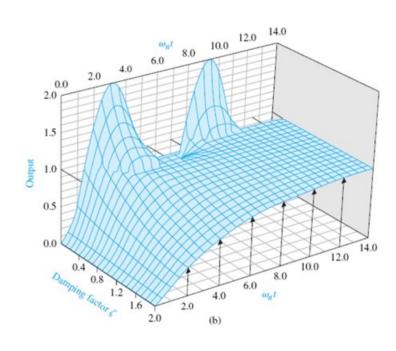
$$x(t) = ce^{-\xi_n \omega_n t} \cos(\omega_n \sqrt{1 - \xi_n^2} t + \phi)$$

$$x(t)$$

$$\omega$$

$$\text{damped Natural frequency}$$

$$\omega = \omega_n \sqrt{1 - \xi_n^2}$$



Higher ω : faster response

Higher ζ : slower response $\zeta = 1$: optimal choice

2nd order systems are Practical

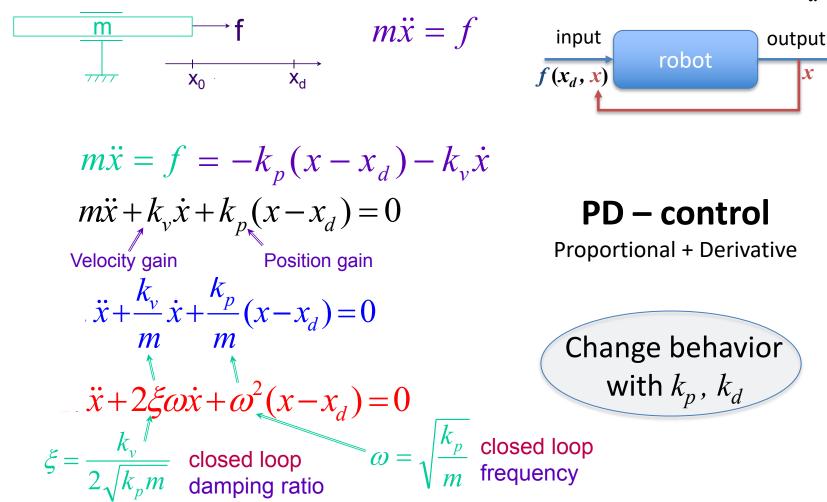
Cool animation with multiple spring-dampers:

https://codepen.io/dissimulate/pen/KrAwx

Control >>> Design how your system behave.

Use **Control** to make robots behave like a **dissipative** system

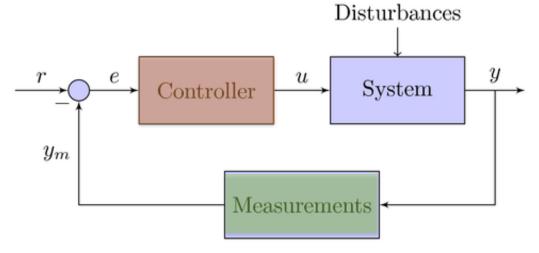
1-dof Robot Control: goal of controller is to move robot to x_d



Control Systems

Overall block diagram

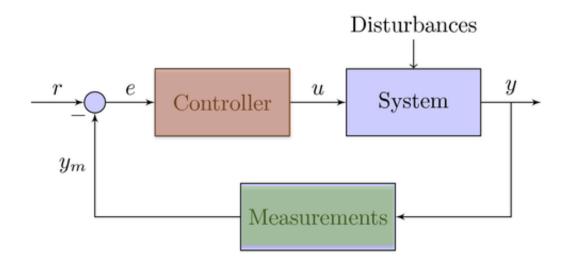
- System (+actuator)
- Feedback (sensors)
- Controller (design)



Control Methods:

- Model-based
 - Requires an approximate (linear / nonlinear) model of system.
 - Uncertainties (un-modeled dynamics) are modeled as disturbance
- Model-free
 - Learning-based approaches, e.g. RL, adaptive, etc.

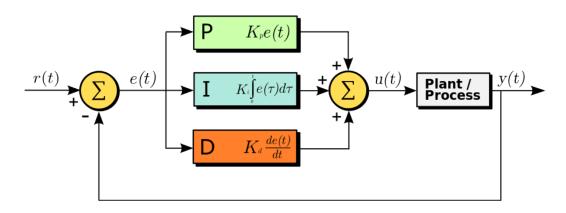
Proportional + Integral + Derivative



- PID:
 - simple, easy to implement, practical, model-free
 - need heuristics for tuning the gains
- Proportional + Integral + Derivative Control

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \dot{e}(t)$$

Proportional + Integral + Derivative



Proportional + Integral + Derivative Control

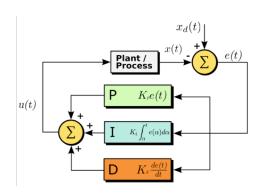
$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \dot{e}(t)$$

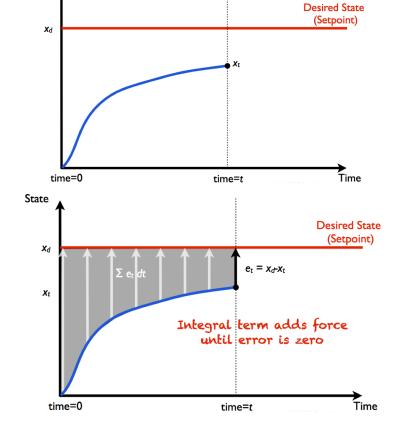
- P term is proportional to the current value
- I term accounts for past values
- D term is a best estimate of the future trend
- Based on mass-spring-damper system

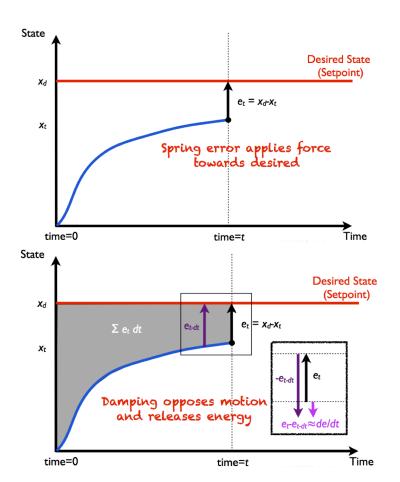
State

$$e(t) = x_d(t) - x(t)$$

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau)d\tau + K_d \dot{e}(t)$$





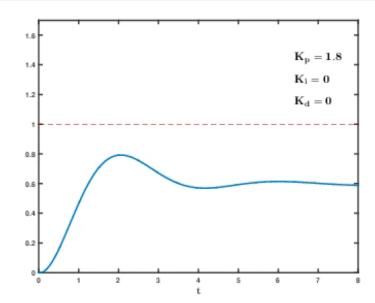


Proportional + Integral + Derivative Control

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \dot{e}(t)$$

Effects of increasing a parameter independently^{[20][21]}

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small



[wikipedia: PID control]

PID: digital implementation

• Discrete integral
$$\int_0^t e(\tau) d\tau = \sum_{i=1}^k e(t_i) \Delta T$$

 $\dot{e}(t) = \frac{e_{t_k} - e_{t_{k-1}}}{\Delta T}$ Derivative (backward finite difference)

Pseudocode

```
previous error = 0
integral = 0
loop:
 error = setpoint - measured value
  integral = integral + error*dt
 derivative = (error - previous error)/dt
 output = Kp*error + Ki*integral + Kd*derivative
 previous error = error
 wait(dt)
 goto loop
```

PID gain tuning

- Start will all gains at zero: K_p=K_d=K_i=0
- Increase K_p until system roughly meets desirable state
 - Overshoot & oscillation are acceptable
- Increase K_d until system is stable
- Increase K_i until system consistently reaches x_d
- Refine gains to improve performance

Will test this in lab 2, for Lego actuators

Tracking Control

What if we want to track a trajectory, i.e. x_d is changing with time: $x_d(t)$

$$x_d(t)$$
; $\dot{x}_d(t)$; and $\ddot{x}_d(t)$

$$m\ddot{x} = f \Rightarrow \ddot{x} = \frac{f}{m} = f'$$

$$f' = \ddot{x}_d - k_v(\dot{x} - \dot{x}_d) - k_p(x - x_d)$$

Control:
$$f' = \ddot{x}_d - k'_v(\dot{x} - \dot{x}_d) - k'_p(x - x_d)$$

Closed-loop System:

$$(\ddot{x} - \ddot{x}_d) + k'_v(\dot{x} - \dot{x}_d) + k'_p(x - x_d) = 0$$
with $e \equiv x - x_d$

$$\ddot{e} + k'_v \dot{e} + k'_p e = 0$$

Motivation

Control >> Design how your mechatronic system behave.

LEGO Mindstorms EV3Bike Powered by leJOS & Java

Control of Nonlinear Systems

Non Linearities

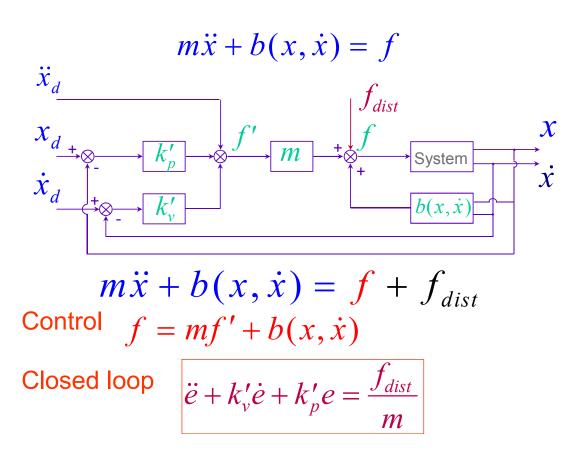
$$m\ddot{x} + b(x, \dot{x}) = f$$
Control Partitioning
$$f = \alpha f' + \beta$$
with
$$\alpha = \hat{m}$$

$$\beta = \hat{b}(x, \dot{x})$$

$$m\ddot{x} + b(x, \dot{x}) = \hat{m}f' + \hat{b}(x, \dot{x})$$

$$\rightarrow 1. \ddot{x} = f'$$
Unit mass system
$$(x, \dot{x})$$
Unit mass system

Disturbance Rejection



Steady-State Error

$$\ddot{e} + k_v'\dot{e} + k_p'e = \frac{f_{dist}}{m}$$

The steady-state $(\dot{e} = \ddot{e} = 0)$:

$$k'_{p}e = \frac{f_{dist}}{m}$$

$$e = \frac{f_{dist}}{mk'_{p}} = \frac{f_{dist}}{k_{p}}$$

Closed loop position gain (stiffness)

Practical issues for choosing Controller Gains

Performance

High Gains better disturbance rejection

Gains are limited by

structural flexibilities time delays (actuator-sensing) sampling rate

$$\omega_n \le \frac{\omega_{res}}{2}$$
 lowest structural flexibility

$$\omega_n \leq \frac{\omega_{sampling-rate}}{5}$$

Tacoma Narrows Bridge (1940)

Rule of thumb:

$$ω = (3 \text{ to } 10 \text{ Hz})*2π$$
 $ζ = 1$