Robot vision review

Martin Jagersand

What is Computer Vision?

- Three Related fields
 - Image Processing: Changes 2D images into other 2D images
 - Computer Graphics: Takes 3D models, renders 2D images
 - Computer vision: Extracts scene information from 2D images and video
 - e.g. Geometry, "Where" something is in 3D,
 - Objects "What" something is"
- What information is in a 2D image?
- What information do we need for 3D analysis?

hard. Only special cases can be solved.

Machine Vision

•3D Camera vision in general environments hard

•Machine vision:

- Use engineered environment
- Use 2D when possible
- Special markers/LED
- Can buy working system!

• Photogrammetry:

- Outdoors
- 3D surveying using cameras

Vision

- Full: Human vision
 - We don't know how it works in detail
- Limited vision: Machines, Robots, "Al
- What is the most basic useful information we can get from a camera?
 - 1. Location of a dot (LED/Marker) [u,v] = f(I)
 - 2. Segmentation of object pixels
 - All of these are 2D image plane measurements!

What is the best camera location?

Usually overhead pointing straight down Adjust cam position so pixel [u,v] = s[X,Y]. Pixel coordinates are scaled world coord

Tracking LED special markers

- Put camera overhead pointing straight down on worktable.
 - Adjust cam position so pixel [u,v] = s[X,Y].
 Pixel coordinates are scaled world coord
 - Lower brightness so LED brighterest
- Put LED on robot end-effector
- Detection algorithm:
 - Threshold brightest pixels I(u,v)>200
 - Find centroid [u,v] of max pixels
- Variations:
 - Blinking LED can enhance detection in ambient light.
 - Different color LED's can be detected separately from R,G,B color video.

Commercial tracking systems

Polaris Vicra infra-red system (Northern Digitial Inc.)

MicronTracker visible light system (Claron Technology Inc.)

Commercial tracking system

Images acquired by the Polaris Vicra infra-red stereo system:

left image

right image

IMAGE SEGMENTATION

•How many "objects" are there in the image below?

•Assuming the answer is "4", what exactly defines an object?

8 BIT GRAYSCALE IMAGE

GRAY LEVEL THRESHOLDING

BINARY IMAGE

.

CONNECTED COMPONENT LABELING: FIRST PASS

EQUIVALENCE:

B=C

CONNECTED COMPONENT LABELING: SECOND PASS

TWO OBJECTS!

IMAGE SEGMENTATION – CONNECTED COMPONENT LABELING

4 Neighbor Connectivity **P**_{i,j}

8 Neighbor ConnectivityImage: Second stressImage: Second

What are some examples of form parameters that would be useful in identifying the objects in the image below?

OBJECT RECOGNITION – BLOB ANALYSIS

•Examples of form parameters that are invariant with respect to position, orientation, and scale:

- •Number of holes in the object
- •Compactness or Complexity: (Perimeter)²/Area

•Moment invariants

•All of these parameters can be evaluated during contour following.

GENERALIZED MOMENTS

•Shape features or form parameters provide a high level description of objects or regions in an image

•For a digital image of size **n** by **m** pixels :

$$M_{ij} = \sum_{x=1}^{n} \sum_{y=1}^{m} x^{i} y^{j} f(x, y)$$

•For binary images the function f(x,y) takes a value of 1 for pixels belonging to class "object" and "0" for class "background".

3/29/2016

3/29/2016

SOME USEFUL MOMENTS

•The center of mass of a region can be defined in terms of generalized moments as follows:

SOME USEFUL MOMENTS

•The moments of inertia relative to the center of mass can be determined by applying the general form of the parallel axis theorem:

$$\overline{M}_{02} = M_{02} - \frac{M_{01}^2}{M_{00}} \qquad \overline{M}_{20} = M_{20} - \frac{M_{10}^2}{M_{00}}$$
$$- \frac{M_{10}}{M_{00}} = M_{10} - \frac{M_{10}^2}{M_{10}}$$

$$\overline{M}_{11} = M_{11} - \frac{M_{10}M_{01}}{M_{00}}$$

3/29/2016

SOME USEFUL MOMENTS

- •The principal axis of an object is the axis passing through the center of mass which yields the minimum moment of inertia.
- •This axis forms an angle θ with respect to the X axis.
- •The principal axis is useful in robotics for determining the orientation of randomly placed objects.

$$TAN2\theta = \frac{2\overline{M}_{11}}{\overline{M}_{20} - \overline{M}_{02}}$$

3D MACHINE VISION SYSTEM

3/29/2016

3D MACHINE VISION SYSTEM

3D MACHINE VISION SYSTEM

3/29/2016

Morphological processing Erosion

SE=

Morphological processing Erosion

SE=

Dilation

erosion followed by dilation, denoted

$A \circ B = (A \ominus B) \oplus B$

- •eliminates protrusions
- •breaks necks
- smoothes contour

A⊖B A∘B

A⊖B A∘B

31

abcd

FIGURE 9.8 (a) Structuring element B "rolling" along the inner boundary of A (the dot indicates the origin of B). (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded).

$A \circ B = (A \ominus B) \oplus B$ $A \circ B = \bigcup \{ (B)_z \mid (B)_z \subseteq A \}$

32

Closing

dilation followed by erosion, denoted •

$A \bullet B = (A \oplus B) \ominus B$

- smooth contour
- •fuse narrow breaks and long thin gulfs
- •eliminate small holes
- •fill gaps in the contour

Closing

a b c

FIGURE 9.9 (a) Structuring element *B* "rolling" on the outer boundary of set *A*. (b) Heavy line is the outer boundary of the closing. (c) Complete closing (shaded).

$A \bullet B = (A \oplus B) \ominus B$

Image Processing

Edge detection

Filtering: Noise suppresion

Image filtering

$$g(x,y) = \sum_{x'} \sum_{y'} f(x+x',y+y')h(x',y')$$

0	0	0	0	0	0
0	0	0	0	0	0
0	0	200	0	0	0
0	0	0	0	0	0
0	0	0	100	0	0
0	0	0	0	0	0

Input image f

0	0	0	0	0	0
0	22	22	22	0	0
0	22	22	22	0	0
0	22	33	33	11	0
0	0	11	11	11	0
0	0	11	11	11	0

Output image g

Filter *h*
Animation of Convolution

p _{1,1}	p _{1,2}	P _{1,3}	p _{1,4}	P 1,5	P 1,6	
p _{2,1}	p _{2,2}	p _{2,3}	p _{2,4}	p _{2,5}	P 2,6	
р _{3,1}	p _{3,2}	р _{3,3}	p _{3,4}	p _{3,5}	$p_{_{3,6}}$	
p _{4,1}	p _{4,2}		p _{4,4}	p _{4,5}	P 4,6	
p _{5,1}	p _{5,2}	р _{5,3}	p _{5,4}	p _{5,5}	p 5,6	
P 6,1	p _{6,2}	P 6,3	p _{6,4}	P 6,5	P 6,6	
Original Image						

To accomplish convolution of the whole image, we just *Slide the mask*

m1,1	m1,2	m1,3
m2,1	m2,2	m2,3
m3,1	m3,2	m3,3

Mask

Image after convolution

Gaussian filter

Convolution for Noise Elimination

--*Noise Elimination* The noise is eliminated but the operation causes loss of sharp edge definition.

In other words, the image becomes *blurred*

Convolution with a non-linear mask Median filtering

There are many masks used in Noise Elimination

Median Mask is a typical one

The principle of Median Mask is to mask some sub-image, use the median of the values of the sub-image as its value in new image

	J=1	2	3	
I=1	23	65	64	
2	120	187	90	
3	47	209	72	

Masked Original Image

Median Filtering

Original Image

Noisy Image

After Median filtering

Edge detection using the Sobel operator

In practice, it is common to use:

$$g_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \qquad g_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Magnitude:
$$g = \sqrt{g_x^2 + g_y^2}$$

Orientation:

$$\Theta = \tan^{-1}\left(\frac{g_y}{g_x}\right)$$

Sobel operator

Original

Magnitude

Orientation

Effects of noise on edge detection / derivatives

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Current Image Features
 Desired Image Features

: Current Image Features

: Desired Image Features

: Current Image Features

: Desired Image Features

Current Image Features
 Desired Image Features

Current Image Features
 Desired Image Features

u,v Image-Space Error

► U : Current Image Features : Desired Image Features $\mathbf{E} = [\circ - \bullet]$ **Pixel coord** $\mathbf{E} = \begin{bmatrix} y_u \\ y_v \end{bmatrix} - \begin{bmatrix} y_u \\ y_v \end{bmatrix}^*$ Many points $\mathbf{E} = \begin{bmatrix} y_1 \\ \vdots \\ y_{1c} \end{bmatrix}^* - \begin{bmatrix} y_1 \\ \vdots \\ y_{1c} \end{bmatrix}$

Other (easier) solution: Image-based motion control

Note: What follows will work for one or two (or 3..n) cameras. Either fixed (eye-in-hand) or on the robot.

Here we will use two cam

Motor-Visual function: y=f(x)

Achieving 3d tasks via 2d image control

Image-based Visual Servoing

- •Observed features:
- •Motor joint angles:
- •Local linear model:
- •Visual servoing steps:

 $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix}^T$ $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \dots & x_n \end{bmatrix}^T$ $\Delta \mathbf{y} = \mathbf{J} \Delta \mathbf{x}$ $1 \text{ Solve:} \qquad \mathbf{y}^* - \mathbf{y}_k = \mathbf{J} \Delta \mathbf{x}$ $2 \text{ Update:} \qquad \mathbf{y}^* - \mathbf{y}_k = \mathbf{J} \Delta \mathbf{x}$

Find J Method 1: Test movements along basis

•Remember: J is unknown m by n matrix

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \\ \frac{\partial f_m}{\partial x_1} & & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

- •Assume movements
- •Finite difference:

$$\Delta \mathbf{x}_1 = [1, 0, \dots, 0]^T$$
$$\Delta \mathbf{x}_2 = [0, 1, \dots, 0]^T$$
$$\vdots$$
$$\Delta \mathbf{x}_n = [0, 0, \dots, 1]^T$$

Find J Method 2: Secant Constraints

- •Constraint along a line:
- •Defines m equations

$$\Delta \mathbf{y} = \mathbf{J} \Delta \mathbf{x}$$

- •Collect n arbitrary, but different measures y
- •Solve for J

$$\begin{pmatrix} \cdots & \Delta \mathbf{y}_1^T & \cdots \\ \begin{bmatrix} \cdots & \Delta \mathbf{y}_2^T & \cdots \end{bmatrix} \\ \vdots & \vdots \\ \begin{bmatrix} \cdots & \Delta \mathbf{y}_n^T & \cdots \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \cdots & \Delta \mathbf{x}_1^T & \cdots \\ \begin{bmatrix} \cdots & \Delta \mathbf{x}_2^T & \cdots \end{bmatrix} \\ \vdots \\ \begin{bmatrix} \cdots & \Delta \mathbf{x}_n^T & \cdots \end{bmatrix} \end{pmatrix} \mathbf{J}^T$$

Find J Method 3: Recursive Secant Constraints

- Based on initial J and one measure pair
- Adjust J s.t. $\Delta y, \Delta x$
- Rank 1 update: $\Delta \mathbf{y} = \mathbf{J}_{k+1} \Delta \mathbf{x}$

$$\hat{J}_{k+1} = \hat{J}_k + \frac{(\Delta \mathbf{y} - \hat{J}_k \Delta \mathbf{x}) \Delta \mathbf{x}^T}{\Delta \mathbf{x}^T \Delta \mathbf{x}}$$

- Consider rotated coordinates:
 - Update same as finite difference for n orthogonal moves

Achieving visual goals: Uncalibrated Visual Servoing

- 1. Solve for motion:
- 2. Move robot joints:

$$[\mathbf{y} - \mathbf{y}_k] = \mathbf{J} \Delta \mathbf{x}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}$$

 $(\Lambda \pi \tau)$

 $(I, \Lambda \mathbf{v}) \Lambda \mathbf{v}^T$

 Δy

3. Read actual visual move

Can we always guarantee when a task is achieved/achievable?

Visually guided motion control

Issues:

- 1. What tasks can be performed?
 - Camera models, geometry, visual encodings
- 2. How to do vision guided movement?
 - H-E transform estimation, feedback, feedforward motion control
- 3. How to plan, decompose and perform whole tasks?

How to specify a visual task?

Task and Image Specifications

Task function T(x) = 0 Image encoding E(y) = 0

Visual specifications

•Point to Point task "error":

$$\mathbf{E} = [\mathbf{y}_2 - \mathbf{y}_0]$$

$$\mathbf{E} = \begin{bmatrix} y_1 \\ \vdots \\ y_{16} \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_{16} \end{bmatrix}_0$$
Why 16 elements?

Visual specifications 2

•Point to Line

Line:

$$\mathbf{E}_{pl}(\mathbf{y}, \mathbf{l}) = \begin{bmatrix} \mathbf{y}_l \cdot \mathbf{l}_l \\ \mathbf{y}_r \cdot \mathbf{l}_r \end{bmatrix}$$

$$\mathbf{y}_l = \begin{bmatrix} y_5 \\ y_6 \end{bmatrix}$$

$$\mathbf{l}_l = \begin{bmatrix} y_3 \times y_1 \\ y_4 \times y_2 \end{bmatrix}$$

Note: y homogeneous coord.

 y_2

 y_1

Г

 y_3

 y_4

Parallel Composition example

Visual Specifications

- Additional examples:
- •Line to line
- •Point to conic
 - Identify conic C from 5 pts on rim Error function yCy'
- •Image moments on segmented images
- •Any image feature vector that encodes pose.
- •Etc.

Achieving visual goals: Uncalibrated Visual Servoing

- 1. Solve for motion:
- 2. Move robot joints:

$$[\mathbf{y} - \mathbf{y}_k] = \mathbf{J} \Delta \mathbf{x}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}$$

 $(\Lambda \pi \tau)$

 $(I, \Lambda \mathbf{v}) \Lambda \mathbf{v}^T$

 Δy

3. Read actual visual move

Can we always guarantee when a task is achieved/achievable?