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What isComuter Vision?

Corrupted Image Filtered Irmage

e Three Related fields

— Image Processing: Changes 2D images into
other 2D images

— Computer Graphics: Takes 3D models,
renders 2D images

— Computer vision: Extracts scene information g
from 2D images and video

— e.0. Geometry, “Where” something is in 3D,
— Objects “What” something is”

« What information is in a 2D image?

 \What information do we need for 3D analysis?




Machine Vision

«3D Camera vision in f/ !

general environments hard

e Machine vision:
— Use engineered environment
— Use 2D when possible
— Special markers/LED
— Can buy working system!

*Photogrammetry:

— Qutdoors
— 3D surveying using cameras
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. Limited vision: Machines, Robots, “Al” l—>

What is the most basic useful information we

can get from a camera?
1. Location of a dot (LED/Marker) [u,v] = f(l)
2. Segmentation of object pixels
All of these are 2D image plane measurements!

What iIs the best camera location?
Usually overhead pointing straight down

Adjust cam position so pixel [u,v] =S
Pixel coordinates are scaled world coord




Tracking LED special markers

 Put camera overhead pointing straight
down on worktable.

— Adjust cam position so pixel [u,v] =s
Pixel coordinates are scaled world coord
— Lower brightness so LED brighterest

e Put LED on robot end-effector Camera

e Detection algorithm:
— Threshold brightest pixels 1(u,v)>200
— Find centroid [u,v] of max pixels

e \ariations:

— Blinking LED can enhance detection in
ambient light.

— Different color LED’s can be detected
separately from R,G,B color video.




Commercial tracking systems

Polaris Vicra infra-red system MicronTracker visible light system
(Northern Digitial Inc.) (Claron Technology Inc.)



Commercial tracking system

Images acquired by the Polaris Vicra infra-red stereo system:

left image right image



IMAGE SEGMENTATION

How many “objects” are there in the image below?

*Assuming the answer is “4”, what exactly defines an
object?

m y
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GRAY LEVEL THRESHOLDING

2

(Z) Eermer Irffmations & traiterant
Set threshold
here
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BINARY IMAGE

__
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CONNECTED COMPONENT LABELING:

FIRST PASS
AlA EQUIVALENCE:
AlA|A B=C
BB clc
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CONNECTED COMPONENT LABELING:
SECOND PASS

AlA TWO OBJECTS!
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IMAGE SEGMENTATION — CONNECTED
COMPONENT LABELING

4 Neighbor Connectivity 8 Neighbor Connectivity
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What are some examples of form parameters
that would be useful in identifying the objects
iIn the image below?
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OBJECT RECOGNITION — BLOB ANALYSIS

Examples of form parameters that are invariant with
respect to position, orientation, and scale:

Number of holes in the object
«Compactness or Complexity: (Perimeter)?/Area
Moment invariants

All of these parameters can be evaluated during
contour following.
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GENERALIZED MOMENTS

*Shape features or form parameters provide a high
level description of objects or regions in an image

*For a digital image of size n by m pixels :

n
\ \

Mjj = 1Xiyjf(X’Y)

X=1 y=

*For binary images the function f(x,y) takes a value of 1
for pixels belonging to class “object” and “0” for class
“background”.
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GENERALIZED MOMENTS
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SOME USEFUL MOMENTS

*The center of mass of a region can be defined in
terms of generalized moments as follows:

MlO V:Mm
I\/Ioo Moo

X =
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SOME USEFUL MOMENTS

*The moments of inertia relative to the center of mass
can be determined by applying the general form of
the parallel axis theorem:

— Mg |~ M
Mo =M, L Mxo=M,, ——=
|\/IOO MOO
— M,,M
Mu =M, S
M o6
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SOME USEFUL MOMENTS

*The principal axis of an object is the axis passing
through the center of mass which yields the minimum
moment of inertia.

*This axis forms an angle 6 with respect to the X axis.

*The principal axis is useful in robotics for determining
the orientation of randomly placed objects.

TAN26 = —2Mu_
M 20 —M o2
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Example

N Principal Axis

/ Center of Mass
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3D MACHINE VISION SYSTEM

XY Table

Laser Projector

Digital Cameraj

Eane of Laser Light o Granite Surface Plag
P(x.y.2)
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3D MACHINE VISION SYSTEM

e e L |

3/29/2016 Introduction to Machine Vision



3D MACHINE VISION SYSTEM
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Morphological processing

Erosion
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processing

Erosion

Morphological
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Dilation
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Opening
erosion followed by dilation, denoted

AoB=(AGB)®B

eeliminates protrusions
epreaks necks
eSmMoothes contour
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AsB  A-B
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Opening - [N
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Opening

abcd

FIGURE 9.8 (a) Structuring element B “rolling”™ along the inner boundary of A (the dot
indicates the origin of B). (¢) The heavy line is the outer boundary of the opening.
(d) Complete opening (shaded).

AoB=(AOB)® B
A-B=A(B),|(B), c A}



Closing

dilation followed by erosion, denoted e

AeB=(A®B)oB

esmooth contour

fuse narrow breaks and long thin gulfs
eeliminate small holes

*fill gaps in the contour
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Closing

A

abec

FIGURE 9.9 (a) Structuring element B “rolling™ on the outer boundary of set A. (b) Heavy
line is the outer boundary of the closing. (¢) Complete closing (shaded).

AeB=(A®B)oB
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Image Processing

Corrupted Image Filtered Image

Image Maise Type: Moize Remosval Filter:

Salt & Pepper Meslan =

Filtering: Noise suppresion Edge detection



Image filtering

TTfarm y+y)h(x'.y')

Mean filter

- T
* BEEEE =
oo

Input image f Filter h Output image ¢



Animation of Convolution

To accomplish convolution of the

v e e e e e whole image, we just Slide the mask

P21 P22 | P23 | P24 | P25 | P26

p3,6
.
I

m3,1m3,2m3,3
Ps.1 | P62 | P6,3 | P6,4 | P6,5 | P6,6
Original Image Mask

Image after convolution



Gaussian filter

1l —(=2%+y2)
I Golay) = e

Compute empirically

Filter h
Input image f Output image ¢



Convolution for Noise Elimination

. --Noise Elimination
The noise is eliminated but the operation causes loss of

sharp edge definition.

In other words, the image becomes blurred



Convolution with a non-linear mask
Median filtering

There are many masks used in Noise Elimination
Median Mask is a typical one

The principle of Median Mask Is to mask some sub-image,
use the median of the values of the sub-image as its value In
new image

J=1 2 3

=| 23 | 65 | 64 Rank: 23, 47, 64, 65, 72, 90, 120, 187, 209
,1 120187 | 90 T

47 209 | 72 median
3

Masked Original Image



Median Filtering

Urniginal Image

A fter Median filtenng

Moy Imase

Dencis ed=




Edge detection using the Sobel operator

In practice, it is common to use:

1{0]1 1[-2|-1
go = [2]0]2 gy =|0]0]0
1001 121
Magnitude:
9:\/9§+9§

Orientation:
O = tan~! (g_y>
Gx



Sobel operator
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Effects of noise on edge detection /
derivatives

 Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

.................................................
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Where is the edge?



Solution: smooth first

hx f

D (hx f)

Convolution Kornel Signal

Differentiation

Sigma = 50

.................................................................................................
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. : d
Where is the edge? Look for peaks in %(h * f)



Vision-Based Control (Visual

*

Initial Image

Desired Image

User



Vision-Based Control (Visual

B : Current Image Features
@ : Desired Image Features




Vision-Based Control (Visual

_Servoing) i
b, LI

B : Current Image Features
@ : Desired Image Features




Vision-Based Control (Visual
Servoing)

B : Current Image Features
@ : Desired Image Features




Vision-Based Control (Visual
Servoing)

B : Current Image Features
@ : Desired Image Features




Vision-Based Control (Visual
Servoing)

B : Current Image Features
@ : Desired Image Features




u,v Image-Space Error
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B : Current Image Features
@ : Desired Image Features

E=[0 — u]
One point .
E=ly,~y"
Pixel coord .
E: u | Yu
-1

Many points

Y1 Y1
E = : — |
Yie Yie | o




Other (easler) solution:
Image-based motion control

Note: What follows will work for one or two (or 3..n) cameras.
Either fixed (eye-in-hand) or on the robot.

Here we will use two cam

Refinal
projections

N fmages R %
,71':.::{:5.&' feaiures ¥

. ) Achieving 3d tasks
Motor-Visual function: y=f(x) via
2d image control

Motor mofions X



Vision-Based Control




Vision-Based Control




Vision-Based Control




Vision-Based Control




Vision-Based Control




Image-based Visual Servoing

e Observed features:

y=1[Y1 Y2 --- YUnm
* Motor joint angles: X =21 @9.. m,]"
eLocal linear model: Ay = JAx

*Visual servoing steps: 1 Solve:

2 Update:
T

ofer mofions X

y —yr=JAx

X1 = X + AX




Find J Method 1:
Test movements along basis

Remember: J Is unknown m by n matrix

o .. oh
8@1 0% n
J : ( : . | | )
O i | |
da1 Iz Ax; = [1,0,...,0]"
e ASSume movements Ax, =[0,1,...,0]"
«Finite difference: Ax, = [0,0,...1]T




Find J Method 2:
Secant Constraints

e Constraint along a line:

« Defines m equations Ay = JAx
Collect n arbitrary, but different measures y
Solve for J

o AyT o o AxT

\ [ A;g )\ AxT )




Find J Method 3:
Recursive Secant Constraints

Based on initial J and one measure pair

AdeSt Js.t. Ay, Ax

Rank 1 update: Ay = Jp1AX

(Ay — :]].CAX)AXT
AxTAx A

Consider rotated coordinates: .
— Update same as finite difference for n orthogonal moves

:]k:+1 = Jp+




Achieving visual goals:
Uncalibrated Visual Servoing

Rerinal
projections
- Images '%i':';f:_:; - f.
—] Tracked fearur'esl y
Moror motions x
1. Solve for motion: y —vy,]=JAx

/ev'f2 Move robot joints: Xpi1 = X+ Ax

< \ 3. Read actual visual move Ay
% v s e o s e



Visually guided
motion control

|ssues:

1. What tasks can be performed?
— Camera models, geometry, visual encodings

2. How to do vision guided movement?

— H-E transform estimation, feedback, feedforward motion
control

3. How to plan, decompose and perform whole
tasks?



How to specify a visual task?




Task and Image
Specifications

Task function T(x) =0 Image encoding E(y) =0
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Visual specifications

ePoint to Point task “error”:

2~ Yo

Y16 Y16 |
Why 16 elements?




Visual specifications 2

ePoint to Line

1,
] E Z(Y7l) — |:Yl :|
Line: yr- L
Y3

|

1, = |:y3 X y1:|
Ya X Y2

Note: y homogeneous coord.



Parallel
Composition example

Yo- Y5
_ Yp-Y
Ewrench (y) 1 Y (yl >Z y2)

L Ys® (V3% Va)

(plus e.p. checks)



Visual Specifications

Additional examples:
eLine to line

ePoint to conic

Identify conic C from 5 pts on rim
Error function yCy’

e|mage moments on segmented Images

e Any Image feature vector that encodes pose.
EfC.



Achieving visual goals:
Uncalibrated Visual Servoing

Rerinal
projections
- Images '%i':';f:_:; - f.
—] Tracked fearur'esl y
Moror motions x
1. Solve for motion: y —vy,]=JAx

/ev'f2 Move robot joints: Xpi1 = X+ Ax

< \ 3. Read actual visual move Ay
% v s e o s e
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