
Robot Arms, Hands:
Kinematics

With slides from Renata Melamud



Kinematics studies the motion  of bodies



What a robot arm and hand can do

• Martin 1992-’97 PhD work



What a robot arm and hand can do

• Camilo 2011-? PhD work



Robotics field  . .

• 6 Million mobile robots
– From $100 roomba to $millions Mars rovers

• 1 million robot arms
– Usually $20,000-100,000, some millions

• Value of industrial robotics: $25 billion

• Arms crucial for these industries:
– Automotive (Welding, painting, some assembly)

– Electronics (Placing tiny components on PCB)

– General: Pack boxes, move parts from conveyor to 
machines

http://www.youtube.com/watch?v=DG6A1Bsi-lg



An classic arm  - The PUMA 560

The PUMA 560 hasSIX revolute joints
A revolute joint has ONE degree of freedom ( 1 DOF) that is    
defined by its angle

1

2
3

4

There are two more 
joints on the end 
effector (the gripper)



An modern arm  - The Barrett WAM 

• The WAM has SEVENrevolute joints. 

• Similar motion (Kinematics) to human



UA Robotics Lab platform
2 arm mobile manipulator

• 2 WAM arms, steel cable transmission and drive
• Segway mobile platform
• 2x Quad core computer platform.
• Battery powered, 4h run time.



Robotics challenges

•

Navigation ‘05
Manipulation ‘11-14

Humanoids ’12-



Build or buy?

• Off the shelf kits:

• Build your own:

Lego Lynxmotion



Mathematical modeling

Strategy: 

1. Model each joint separately

2. Combine joints and linkage lengths

Robot
Abstract model

http://www.societyofrobots.com/robot_arm_tutorial.shtml



Other basic joints

Spherical Joint
3 DOF ( Variables -Υ1, Υ2, Υ3)

Revolute Joint
1 DOF ( Variable -Υ)

Prismatic Joint
1 DOF (linear) (Variables - d) 



Example
Matlab robot

Successive 
translation and 
rotation

% robocop  Simulates a 3 joint robot

function Jpos = 
robocop(theta1,theta2,theta3,L1,L2,L3,P0)

Rxy1 = [cos(theta1) sin(theta1) 0
-sin(theta1) cos(theta1) 0
0 0      1];

Rxz2 = [cos(theta2) 0 sin(theta2)
0 1    0
-sin(theta2) 0 cos(theta2)];

Rxz3 = [cos(theta3) 0 sin(theta3)
0 1    0
-sin(theta3) 0 cos(theta3)];

P1 = P0 + Rxy1*[L1 0 0]';

P2 = P1 + Rxy1*Rxz2*[L2 0 0]';

P3 = P2 + Rxy1*Rxz2*Rxz3*[L3 0 0]';

Jpos = [P0 P1 P2 P3];



Problem: Lots of coordinate frames 
to calibrate

Robot
– Base frame

– End-effector frame

– Object



Problem: Lots of coordinate frames 
to calibrate

Camera
– Center of projection

– Different models

Robot
– Base frame

– End-effector frame

– Object



We are interested in two kinematics topics

Forward Kinematics (angles to position)
What you are given:  The length of each link

The angle of each joint

What you can find:  The position of any point
(i.e. it’s  (x, y, z) coordinates

Inverse Kinematics (position to angles)
What you are given: The length of each link

The position of some point in the world 
(reachable)

What you can find: The angles of each joint needed to obtain 
that position
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In other words, knowing the coordinates of a point (VN,VO) in some coordinate 
frame (NO) you can find the position of that point relative to your original 
coordinate frame (X0Y0). 

(Note :  Px, Py are relative to the original coordinate frame. Translationfollowed by 
rotationis different than rotationfollowed by translation.) 

Translation along P followed by rotation by θ

Change Coordinate Frame
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HOMOGENEOUS REPRESENTATION
Putting it all into a Matrix
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What we found by doing a 
translation and a rotation

Padding with 0’s and 1’s

Simplifying into a matrix form
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Homogenous Matrix for a Translation in 
XY plane, followed by a  Rotation around 
the z-axis



Rotation Matrices in 3D – OK,lets return from 
homogenous repn
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Rotation around the Y-Axis

Rotation around the X-Axis
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Homogeneous Matrices in 3D

H is a 4x4 matrix that can describe a translation, rotation, or both in one matrix

Translation without rotation
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Rotation without translation

Rotation part:
Could be rotation around z-axis, 

x-axis, y-axis or a combination of 
the three.
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Homogeneous Continued….

The (n,o,a) position of a point relative to the 
current coordinate frame you are in.

The rotation and translation part can be combined into a single homogeneous 
matrix IF and ONLY IF both are relative to the same coordinate frame.
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Finding the Homogeneous Matrix
EX.
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Notice that H can also be written as:
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H =  (Translation relative to the XYZ frame) * (Rotation relative to the XYZ frame)  
* (Translation relative to the IJK frame) * (Rotation relative to the IJK frame)



The Homogeneous Matrix is a concatenation of numerous 
translations and rotations
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One more variation on finding H:

H = (Rotate so that the X-axis is aligned with T)

* ( Translate along the new t-axis by || T || (magnitude of T))

* ( Rotate so that the  t-axis is aligned with P)

* ( Translate along the p-axis by || P || )

* ( Rotate so that the p-axis is aligned with the O-axis)  

This method might seem a bit confusing, but it’s actually an easier way to 
solve our problem given the information we have. Here is an example… 



F o r w a r d   K i n e m a t i c s  



The Situation:
You have a robotic arm that 

starts out aligned with the xo-axis.
You tell the first link to move by Υ1

and the second link to move by Υ2.

The Quest:
What is the position of the 

end of the robotic arm?  

Solution:
1.  Geometric Approach

This might be the easiest solution for the simple situation. However, 
notice that the angles are measured relative to the direction of the previous 
link. (The first link is the exception. The angle is measured relative to it’s 
initial position.) For robots with more links and whose arm extends into 3 
dimensions the geometry gets much more tedious. 

2. Algebraic Approach 
Involves coordinate transformations.
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Example Problem: 
You are have a three link arm that starts out aligned in the x-axis. 

Each link has lengths l1, l2, l3, respectively. You tell the first one to move by Υ1

, and so on as the diagram suggests. Find the Homogeneous matrix to  get the 
position of the yellow dot in the X0Y0 frame.

H = Rz(ΥΥΥΥ1 ) * T x1(l1) * Rz(ΥΥΥΥ2 ) * T x2(l2) * Rz(ΥΥΥΥ3 )

i.e.  Rotating by Υ1 will put you in the X1Y1 frame.
Translate in the along the X1 axis by l1.
Rotating by Υ2 will put you in the X2Y2 frame.
and so on until you are in the X3Y3 frame.

The position of the yellow dot relative to the X3Y3 frame is
(l3, 0).  Multiplying H by that position vector will give you the 
coordinates of the yellow point relative the the X0Y0 frame. 
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Slight variation on the last solution:
Make the yellow dot the origin of a new coordinate X4Y4 frame 
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H = Rz(ΥΥΥΥ1 ) * T x1(l1) * Rz(ΥΥΥΥ2 ) * T x2(l2) * Rz(ΥΥΥΥ3 ) * T x3(l3)

This takes you from the X0Y0 frame to the X4Y4 frame.

The position of the yellow dot relative to the X4Y4 frame 
is (0,0).  
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Notice that multiplying by the (0,0,0,1) vector will  
equal the last column of the H matrix.



More on Forward Kinematics…

Denavit - Hartenberg Parameters



Denavit-Hartenberg Notation
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IDEA:  Each joint is assigned a coordinate frame. Using the Denavit-
Hartenberg notation, you need 4 parameters to describe how a frame (i) 
relates to a previous frame ( i -1 ).  

THE PARAMETERS/VARIABLES:       αααα,  a , d, ΥΥΥΥ



The Parameters
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You can 
align the 
two axis 
just using 
the 4 
parameters

1) a(i-1)
Technical Definition: a(i-1) is the length of the perpendicularbetween the joint 
axes. The joint axes is the axes around which revolution takes place which are the 
Z(i-1)  and Z(i) axes. These two axes can be viewed as lines in space. The common 
perpendicular is the shortest line between the two axis-lines and is perpendicular 
to both axis-lines.



a(i-1) cont...
Visual Approach - “A way to visualize the link parameter a(i-1) is to imagine an 
expanding cylinder whose axis is the Z(i-1) axis - when the cylinder just touches the 
joint axis i the radius of the cylinder is equal to a(i-1).” (Manipulator Kinematics)

It’s Usually on the Diagram Approach - If the diagram already specifies the 
various coordinate frames, then the common perpendicular is usually the X(i-1)

axis. So a(i-1) is just the displacement along the X(i-1) to move from the (i-1) frame 
to the i frame.

If the link is prismatic, then a(i-1)

is a variable, not a parameter.
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Y(i -1)

αααα( i - 1)

a(i - 1 )

Z i 
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X i a i 
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2) αααα(i-1)

Technical Definition: Amount of rotation around the common perpendicular so that 
the joint axes are parallel.

i.e. How much you have to rotate around the X(i-1) axis so that the Z(i-1) is pointing 
in the same direction as the Zi axis. Positive rotation follows the right hand rule.

3) d(i-1)
Technical Definition: The displacement 
along the Zi axis needed to align the a(i-1)

common perpendicular to the ai common
perpendicular.

In other words,  displacement along the 
Zi to align the X(i-1) and Xi axes.

4) ΥΥΥΥi 
Amount of rotation around the Zi axis needed to align the X(i-1) axis with the Xi
axis.
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The Denavit-Hartenberg Matrix
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Just like the Homogeneous Matrix, the Denavit-Hartenberg Matrix is a 
transformation matrix from one coordinate frame to the next. Using a series of 
D-H Matrix multiplications and the D-H Parameter table, the final result is a 
transformation matrix from some frame to your initial frame.
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Put the transformation here 



3 Revolute Joints

i αααα (i-1 ) a (i-1 ) d i θθθθ i  

0  0  0 0  θ 0 

1  0  a0 0  θ 1 

2  -90  a1 d2 θ 2 

 

 

Z0

X0

Y0

Z1

X2

Y1

X1

Y2

d2

a0 a1

Denavit-Hartenberg Link 
Parameter Table

Notice that the table has two uses:

1) To describe the robot with its 
variables and parameters.

2) To describe some state of the 
robot by having a numerical values 
for the variables.



Z0

X0

Y0

Z1

X2

Y1

X1

Y2

d2

a0 a1

i αααα(i-1) a(i-1) di θθθθi 

0 0 0 0 θ0 

1 0 a0 0 θ1 

2 -90 a1 d2 θ2 
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

















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1

V

V

V

TV
2

2

2

000

Z

Y

X

ZYX T)T)(T)((T 1
2

0
10=

Note: T is the D-H matrix with (i-1) = 0 and i = 1.



















 −

=

1000

0100

00cosθsinθ

00sinθcosθ

T 00

00

0

i αααα(i-1) a(i-1) di θθθθi 

0 0 0 0 θ0 

1 0 a0 0 θ1 

2 -90 a1 d2 θ2 

 

 

This is just a rotation around the Z0 axis

















 −

=

1000

0000

00cosθsinθ

a0sinθcosθ

T 11

011

0
1



















−−

−

=

1000

00cosθsinθ

d100

a0sinθcosθ

T
22

2

122

1
2

This is a translation by a0 followed by a 
rotation around the Z1 axis

This is a translation by a1 and then d2
followed by a rotation around the X2 and
Z2 axis

T)T)(T)((T 1
2

0
10=



I n v e r s e   K i n e m a t i c s

From Position to Angles



A Simple Example

ΥΥΥΥ1

X

Y

S

Revolute and 
Prismatic Joints 
Combined

(x , y)

Finding ΥΥΥΥ:

)
x

y
arctan(θ =

More Specifically:

)
x

y
(2arctanθ = arctan2() specifies that it’s in the 

first quadrant

Finding S:

)y(xS 22+=



ΥΥΥΥ2

ΥΥΥΥ1

(x , y)

l2

l1

Inverse Kinematics of a Two Link Manipulator

Given: l1, l2 , x , y

Find: ΥΥΥΥ1, ΥΥΥΥ2

Redundancy:
A unique solution to this problem 

does not exist. Notice, that using the 
“givens” two solutions are possible. 
Sometimes no solution is possible.

(x , y)



The Geometric Solution

l1

l2ΥΥΥΥ2

ΥΥΥΥ1

αααα

(x , y) Using the Law of Cosines:










 −−+=

−−+=

−=−
−−+=+

−+=

21

2
2

2
1

22

21

2
2

2
1

22

21
2

2
2

1
22

222

2
arccosθ

2
)cos(θ

)cos(θ)θ180cos(

)θ180cos(2)(

cos2

ll

llyx

ll

llyx

llllyx

Cabbac

2

2

22

2

Using the Law of Cosines:








=

+=

+
=

+
−=

=

x

y
2arctanα

αθθ

yx

)sin(θ

yx

)θsin(180θsin

sinsin

11

22

2

22

2

2

1

l

c

C

b

B








+














+
=

x

y
2arctan

yx

)sin(θ
arcsinθ

22

22
1

l

Redundant since θ2 could be in the 
first or  fourth quadrant.

Redundancy caused  since θ2 has two possible 
values
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The Algebraic Solution

l1

l2ΥΥΥΥ2

ΥΥΥΥ1

ΥΥΥΥ(x , y)

21

21211

21211

1221

11

θθθ(3)

sinsy(2)

ccx(1)

)θcos( θc

cosθc

+=
+=
+=

+=
=

+

+

+

ll

ll

Only Unknown

))(sin(cos))(sin(cos)sin(

))(sin(sin))(cos(cos)cos(

:

abbaba

bababa

Note

+
−

+
−

−
+

+
−

=

=



X2

X3Y2

Y3

r1

r2

r3

1

2 3

X0

Y0

X4

Y4

We model forward kinematics as
H = Ry(r1 ) * T x1(l1) * Rz(r2 ) * T x2(l2) * Rz(r3 ) * T x3(l3)

Now given desired Cartesian position [X,Y,Z] solve 
numerically for the corresponding joint angles [r1 r2 r3] :



















==



















1

0

0

0

H

1

Z

Y

X

),()( lrrf

)(0 rf−



















=

1

Z

Y

X

The Numeric solution 



X2

X3Y2

Y3

r1

r2

r3

1

2 3

X0

Y0

X4

Y4

Function:

Jacobian J = matrix of partial derivatives:

Newton’s method:
Guess initial joint angles r
Iterate

J*dr = W-f( r )
r = r+dr

If guess is close enough r converges to solution.
Otherwise may diverge.

IlrrfW ),()(4 H==

The Numeric solution: How to solve?
Newton’s Metod  













∂
∂=

j

i

r

rf )(
J



r1

1

r2

2

r3

3

X   

Y

Use a start position with known  W and r
(e.g. Wi = [0, l1 +l2 + l3 , 0, 1]^T for r = 0)

Let next Wk close to this initial.
Use r0 as initial guess for r1
Iterate

J*dr = Wk-f( r )
r = r+dr

r guess is close so r converges to solution.

Newton’s Metod: Convergence issues  

r1

1

r2

2

r3

3

X   

Y



r1

1

r2

2

r3

3

X   

Y

To make a large movement, divide the total 
distance from (known) initial Wi to the new 
final Wf into small steps    Wk 
e.g. on a line

•Try this in lab! 

Newton’s Metod: Convergence issues  

X
3

r3

1

2 3

X
4

Y
4

IlrrfW ),()(4 H==













∂
∂=

j

i

r

rf )(
J



Resolved rate control

• Here instead of computing an inverse kinematics 
solution then move the robot to that point, we 
actually move the robot dr for every iteration in 
newtons method.

• Let dr � 0, then we can view this as velocity 
control:

wtrr &&
1))(( −= J

n velovitytranslatioCartesian == vw&



Conclusion
• Forward kinematics can be tedious for multilink arms

• Inverse kinematics can be solved algebraically or 
numerically. The latter is more common for complex arms 
or vision-guided control (later)

• Limitations: We avoided details of the various angular representations (Euler, 
quarternion or exponentials) and their detailed use in Kinematics. (this typically takes 
several weeks of course time in engineering courses) 



Quick Math Review
Dot Product:

Geometric Representation:

A

B
θ

cos θBABA =•

Unit Vector
Vector in the direction of a chosen vector but whose magnitude is 1.

B
B

uB =










y

x

a

a










y

x

b

b

Matrix Representation:

yyxx
y

x

y

x baba
b

b

a

a
BA +=








•







=•

B

Bu



Quick Matrix Review

Matrix Multiplication:

An (m x n) matrix A  and an (n x p) matrix B, can be multiplied since 
the number of columns of A is equal to the number of rows of B.

Non-Commutative Multiplication
AB  is NOT equal to BA

( ) ( )
( ) ( )







++
++

=







∗








dhcfdgce

bhafbgae

hg

fe

dc

ba

Matrix Addition:

( ) ( )
( ) ( )







++
++

=







+








hdgc

fbea

hg

fe

dc

ba



Basic Transformations
Moving Between Coordinate Frames

Translation Along the X-Axis

N

O

X

Y

Px

VN

VO

Px = distance between the XY and NO coordinate planes









=

Y

X
XY

V

V
V 








=

O

N
NO

V

V
V 








=

0

P
P x

P

(VN,VO)

Notation:



N
X

P
VN

VO

Y O

Υ

NO
O

N
XXY VP
V

VP
V +=







 +
=

Writing         in terms of XYV NOV



X

N
VN

VO

O

Y

Translation along the X-Axis and Y-Axis










+
+

=+=
O

Y

N
XNOXY

VP

VP
VPV









=

Y

xXY

P

P
P












•
•

=














−
=













=







=

oV

nV

θ)cos(90V

cosθV

sinθV

cosθV

V

V
V

NO

NO

NO

NO

NO

NO

O

N
NO

NOV

o

n Unit vector along the N-Axis 

Unit vector along the N-Axis 

Magnitude of the VNO vector 

Using Basis Vectors
Basis vectors are unit vectors that point along a coordinate axis

NVN

VO

O

n

o



Rotation (around the Z-Axis)
X

Y

Z

X

Y

Υ

V

VX

VY









=

Y

X
XY

V

V
V 








=

O

N
NO

V

V
V

Υ = Angle of rotation between the XY and NO coordinate axis



X

Y

Υ

V

VX

VY

α

Unit vector along X-Axis

xVcos αVcos αVV NONOXYX •===

NOXY VV =

Can be considered with respect to 
the XY coordinates or NO coordinates

x)oVn(VV ONX •∗+∗= (Substituting for VNO using the N and O 
components of the vector)

)oxVnxVV ONX •+•= ()(

))

)

(sin θV(cosθV

90))(cos(θV(cosθV
ON

ON

−=
++=



Similarly….

yVα)cos(90Vsin αVV NONONOY •=−==

y)oVn(VV ONY •∗+∗=

)oy(V)ny(VV ONY •+•=

))

)

(cosθV(sin θV

(cosθVθ))(cos(90V
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+=
+−=

So….

)) (cosθV(sin θVV ONY +=
)) (sin θV(cosθVV ONX −= 








=

Y

X
XY

V

V
V

Written in Matrix Form
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Y

X
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V

V
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sinθcosθ

V

V
V

Rotation Matrix about the z-axis
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We know what θ2 is from the previous 
slide. We need to solve for θ1 . Now 
we have two equations and two 
unknowns (sin θ1 and cos θ1 )
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Substituting for c1 and simplifying 
many times

Notice this is the law of cosines 
and can be replaced by x2+ y2
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