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Robot Arms, Hands:

With slides from Renata Melamud




Kinematics studies the motion of bodies




What a robot arm and hand can do

e Martin 1992-'97 PhD work



What a robot arm and hand can do

e Camilo 2011-? PhD work
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« 6 Million mobile robots ,
— From $100 roomba to $millions Mars rovers

1 million robot arms
— Usually $20,000-100,000, some millions

e Value of industrial robotics: $25 billion

 Arms crucial for these industries:
— Automotive (Welding, painting, some assembly)
— Electronics (Placing tiny components on PCB)

— General: Pack boxes, move parts from conveyor to
machines




An classic arm - The PUMA 560

There are two more
joints on the end
effector (the gripper)

The PUMA 560 ha$IX revolute joints
A revolute joint has ONE degree of freedom ( 1 D@ia} is
defined by its angle



An modern arm - The Barrett WAM

« The WAM hasSEVENTrevolute joints.
o Similar motion (Kinematics) to human



UA Robotics Lab platform
arm mobile manipulator

« 2 WAM arms, steel cable transmission and drive
e Segway mobile platform

» 2X Quad core computer platform.

 Battery powered, 4h run time.



Robotics challenges

L Manipulation ‘11-14
Navigation ‘05 Humanoids '12-



Build or buy?
- Leg

Lynxmotion

e Off the shelf kits

 Build your own:




Mathematical modeling

Robot

Strategy:
1. Model each joint separately
2. Combine joints and linkage lengths

Abstract model

http://www.soclietyofrobots.com/robot_arm_tutorial.shtml



Other basic joints

i Wi " Revolute Joint
0 1 DOF ( Variable Y)

Prismatic Joint
1 DOF (linear) (Variables - ¢

Spherical Joint
3 DOF ( Variables Y, Y,, Y5)




Example
Matlab robot

Successive
translation and
rotation

g




Problem: Lots of coordinate frames

to calibrate
Robot
— Base frame
— End-effector frame
— Object




Problem: Lots of coordinate frames
to calibrate

Robot Camera o
— Center of projection

— Base frame - o
— End-effector frame — Difterent moaels
— Object
%[5
X °x, a l\‘ Z;'ow
; ) x O /\Yw




We are interested invo kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(i.e. it's (X, Y, z) coordinates

Inverse Kinematics (position to angles)

What you are given: The length of each link
The position of some point in the world
(reachable)

What you can find: The angles of each joint needexbtain
that position



Change Coordinate Fre%[ne

O
(VN,VO)
AYO
\/NO N
VXY
Y > w1
...... 14 > X
S
......................... Translation along P followed by rotation @y

<
%
I

V> | Py ,|cos8  —sin® A
A P,| [sin@ cos® ||V°

(Note : R, R, are relative to the original coordinate frameanslatiorfollowed by
rotationis different thamrotationfollowed bytranslation)

In other words, knowing the coordinates of a p{uit,V©) in some coordinate
frame (NO) you can find the position of that pawlative to your original
coordinate frame (X 9).



[ cosO

sSing
0

HOMOGENEOUS REPRESENTATION

Putting it all into a Matrix

P, cosO -sind || v What we found by doing a
= T o translation and a rotation
P, sin® cose ||V
o . N
P, cos sin® OV Padding with O’'s and 1's
=|P, |+|sin@ cos6 O|V°
1] | 0 0o 11
cos® -sing P, V"]
=|sin® cosO Py Vv © Simplifying into a matrix form
0 0 1] 1
-sin@ P,
cosb P, Homogenous Matrix for a Translation in
0 1 XY plane, followed by a Rotation around

the z-axis



Rotation Matrices in 3D — OKlets return from
homaogenous repn

cos® -sin® O]
sin@ cos0 O
0 0 1
" cos®O O sind
0 1 0
_;—shwﬂ O cosO
1 0 0
O cosO -singQ |-

0 sSinod

Cc0s0 |

Rotation around the Z-Axis

Rotation around the Y-Axis

Rotation around the X-Axis



Homogeneous Matrices in 3D

H is a 4x4 matrix that can describe a translatiotation, or both in one matrix

A O _ _
1 00 P,
Y
t O 1 0P
P e >N H — y
.................................... 00 1 Pz
............................. N X
” o . O 0 0 1
Translation without rotation — —
y n. o a O
0 = n, o, a 0
N
n, o, a, O
. olo 0 1
Rotation part:
Z Rotation without translation Could be rotation around z-axis,
A X-axis, y-axis or a combination of

the three.



Homogeneous Continued....

VN
VAR The (n,0,a) position of a point relative to the
v =H ) current coordinate frame you are in.
VA
L 1 —
_ PN
r]X OX a'X PX V
n P, | V° V*=nV"+0o V°+a V" +P
VY =Y y ay y X X X X
r]Z Y4 a'Z PZ VA
0 0\O A 1

The rotation and translation part can be combinéula single homogeneous
matrix IF and ONLY IF both are relative to the sameerdinate frame.



Finding the Homogeneous Matrix

EX.
WI
WJ
Y W
L g
............................ P ‘ WO
......... X WA
VA L L
WX W' | . wh | |
Point relative to the ; | Pointrelative to the o | Pointrelative to the
WY |« V.7 frame W™ 13K frame W™ N-O-A frame
wX WA
W* ] | i |
- .
1T 1P T TN n, o a P
W' P n. O a wh WJ ! ! ' ' Wo
W’ |=|P [+/n o a |W° Woi_|m 9 8 BW
K A
w“| [P | |n, o a |W" W N, o & R |W
R R 1|0 0 0 1] 1
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Substituting for

.....
ceo®
.....
oo
aeo®
.o

.or
.....
.o

jx kx
jy ky
jz kz
0O O

T
.......
ceuy
cee
ces
cee
cees
......

_IX jX
Iy jy
IZ jZ

0 0
0 a
OJ aj
Ok a'k
0 0

>

N

o

— .U _TU _U

T w!
Ty W
T, || W*
1__ 1




WX WN _ix jx kx Tx__ni Oi ai I:)i_
Y o) : .

WZ - H WA =l k, T,|n, o & P

W W iz jz kz Tz nk Ok ak I:)k

1 L1 00 0 1/0 0O 0 1

» Product of the two matrices

Notice that H can also be written as:

1 0 0 T ]i, j, k, 01 0 0O P|n o a&a O
H:010Ty i, J, k, 0)0 1 0 P |n o a O
oo0o1T,|i, j, k, 00 0O 1 P |n, o a O
000 1] 0O 10 0 0 1|0 O O 1]

H = (Translation relative to the XYZ frame) * (Ratat relative to the XYZ frame)
* (Translation relative to the I1JK frame) * (Rotaui relative to the 1JK frame)



The Homogeneous Matrix is a concatenation of numeus
translations and rotations

One more variation on finding H:

H= (Rotate so that the X-axis is aligned with T)
* ( Translate along the new t-axis by || tmHgnitude of T)
* ( Rotate so that the t-axis is aligned with P)
* ( Translate along the p-axis by || P (| )
* ( Rotate so that the p-axis is aligned with th@xis)

This method might seem a bit confusing, but itRialty an easier way to
solve our problem given the information we haveteHs an example...



Forward Kinematics



A The Situation:

You have a robotic arm that
starts out aligned with theqaxis.
You tell the first link to move by,
and the second link to move Wy.

39' The Quest:
d )x: What is the position of the
. end of the robotic arm?

Solution:
1. Geometric Approach

This might be the easiest solution for the simpleasion. However,
notice that the angles are measured relative tditketion of the previous
link. (The first link is the exception. The angtemeasured relative to it’s
initial position.) For robots with more links andhase arm extends into 3
dimensions the geometry gets much more tedious.

2. Algebraic Approach
Involves coordinate transformations.



Example Problem:

You are have a three link arm that starts out align the x-axis.
Each link has lengths, I, |15, respectively. You tell the first one to move\qy
, and so on as the diagram suggests. Find the Homaoge matrix to get the
position of the yellow dot in theX?° frame.

Y3

H=R,(Y.) * Tyaall) * RAY;) * Tyallo) * Ry(Ys)

l.e. Rotating byr, will put you in the XY!frame.
Translate in the along the'dxis byl,.
Rotating byy, will put you in the XY?frame.
and so on until you are in theXe frame.

Y1

The position of the yellow dot relative to thé¥X frame is
(I3, 0). Multiplying H by that position vector willige you the
coordinates of the yellow point relative the th&yXframe.



Y1

Slight variation on the last solution:
Make the yellow dot the origin of a new coordinAt&'4 frame

Y3

X4

H= Rz(Yl) * Txl(ll) * RZ(YZ) * Tx2(|2) * RZ(Y3) * Tx3(|3)

This takes you from theX © frame to the XY*frame.

LU N The position of the yellow dot relative to thé¥X frame
| ] is (0,0).

Notice that multiplying by the (0,0,0,1) vector will
equal the last column of the H matrix.




More on Forward Kinematics...

Denavit - Hartenberg Parameters



Denavit-Hartenberg Notation

I 4
§
il

IDEA: Each joint is assigned a coordinate framging the Denavit-
Hartenberg notation, you need 4 parameters to ibedocow a framei)
relates to a previous frame {1 ).

THE PARAMETERS/VARIABLES: O, A, d, Y



The Parameters

You can
align the
two axis
just using
the 4
parameters

I 4
5

1) a1

Technical Definition: @, is thelength of the perpendiculetween the joint
axes. The joint axes is the axes around which utool takes place which are the
Ziq and Z; axes. These two axes can be viewed as lines iespae common
perpendicular is the shortest line between theaxs-lines and is perpendicular

to both axis-lines.




a(i-l) cont...
Visual Approach - “A way to visualize the link parai®ieg;; ;) Is to Imagine an

expanding cylinder whose axis is thg,axis - when the cylinder just touches the
joint axisi the radius of the cylinder is equaldg,)” (Manipulator Kinematics)

It's Usually on the Diagram Approach - If the diagralready specifies the
various coordinate frames, then the common perpafatiis usually the x;,
axis. Saoa 1y Is just the displacement along thg Xto move from thgi-1) frame
to thei frame.

If the link Is prismatic, theq,; ,,
IS a variable, not a parameter.




2) Oi.q)

Technical Definition: Amount of rotation around tb@mmon perpendicular so that
the joint axes are parallel.

l.e. How much you have to rotate around thgéxis so that the £, is pointing
In the same direction as theakis. Positive rotation follows the right hand rule.

3) d(i-1)

Technical Definition: The displacement
along the Zaxis needed to align tfeg ,,
common perpendicular to tecommon
perpendicular.

In other words, displacement along the
Z; to align the J;_qy and X axes.

& Yo
X
4)Y;

Amount of rotation around the @xis needed to align the;Xy axis with the X
axis.



The Denavit-Hartenberg Matrix

co9. —Sing. 0 &)
sin@,cosn; ;, cod,cosr;_,, -—Sine;, —sina;,d
sinG;sina,;_;, codP;sina;_,, €O,  COSw;_y0,

0 0 0 1

Just like the Homogeneous Matrix, the Denavit-Hdvexg Matrix is a
transformation matrix from one coordinate framé® next. Using a series of
D-H Matrix multiplications and the D-H Parameteblg the final result is a
transformation matrix from some frame tc -,




3 Revolute Joints

Z, Z

rYZ

S

% ]

Notice that the table has two uses:

1) To describe the robot with its
variables and parameters.

2) To describe some state of the
robot by having a numerical values
for the variables.

Denavit-Hartenberg Link

Parameter Table

a-1) | 8-1) di 0
0 o) 0 09
0 & 0 0

-90 a d, 0,




I | agy | &y | G 0

Z, Z,
Q: 0 0 0 0 6o
: n 1| o] a| o e
2 | 90| a | & | 6
; C) &
_V X,
Yo — 0 1
V XoYo0lo — T v T _(OT)( 1T)( 2T)
VA
1 Note: T is the D-H matrix witlii-1) = 0 andi = 1.




i O | &1 d 6 _COSBO —sinﬂo 0 O_
sing, co¥, O O
0| 0| 0| O | & ;T =
0 0 10
1] 0| a| 0 6 0 0O 01

This is just a rotation around thg &xis

co®, -sind, 0 a,| ' co®, -sin@, 0 a |

0T = sing, co¥, O O 1T = 0 0 1 d,
1t 21 .

0 0 0 O -sin@, -codY, 0 O

0 0 0 1] 0 0 0 1

This is a translation by,and then g
followed by a rotation around the, Znd
Z, axis

T =(NENED

This is a translation by,&ollowed by a
rotation around the ,Zaxis



lnverse Kinematics

From Position to Angles



A Simple Example

Revolute and

Prismatic Joints FindingY:

Combined 0= arctanz)
X

More Specifically
copgf Moo Speccaty

_ Y arctan2() specifies that it's in the
6= arctaer(;) first quadrant

FindingS

S=,/(xX°+Yy?)




Inverse Kinematics of a Two Link Manipulator

(X, y)

Given:l,l,,x,y

Find: Y, Y,

Redundancy:

A unigue solution to this problem
does not exist. Notice, that using the
“givens” two solutions are possible.
Sometimes no solution is possible.




The Geometric Solution
(X,Y)

[10 777777

Using the Law of Cosines:
sinB _ sinC

b ¢
sind, _ sin(180-0,) _ sin(@®,)

Using the Law of Cosines:

¢’ =a’+b”-2abcosC

(x> +y?) =17+, -2l|,cos(80-6,)
cos(80-6,) =-cos@,)

2 2
X +y’ -1 -1,

cos@,) =
0,) o
2 L2 2|2
0, =arcco Xty -l -l
2.1,

Redundant sinc@, could be in the
first or fourth quadrant.

l, X+ Y? _,/x2+y2
04

0, =0,+

o= arctarﬂ(xj
X

values

0, = arcsi{|2 Sm(eZ)j i arctanz(x

/x2+y2 X

Redundancy caused singghas two possible

J




The Algebraic Solution

C, = co0s0,

Ci4p = COS(6,+6,)
(1) x =l,c,+1l, ¢y,
2)y=ls+l;sn,
(3)6=0,+0,

Iy

<

[T
(1) +(2) =x*+y? =
= 1267412007 + 20, € () J+ (1287 +1,7(sin,.,) + 211, 5, (sin,,,)

=12 +1,2+ 21, (c,(c,.,) +5,(sin,.,)) —

2 2
— «0Only Unknown .

X2+ y2 - |12 _ |22 cos&’b) = (co)(cod); (sina)(sinb)
211, j sin@'b) = (cos)(sinb)* (cod)(sina)

0o, = arccoE




Y1

The Numeric solution

Y3

We model forward kinématics as
H= Ry(rl) * Txl(ll) * Rz(rz) * Tx2(|2) * Rz(r3) * Tx3(|3)

X 0

Y = f(r):H(r,I)o

Z 0
| 1 | 1]

Now given desired Cartesian position [X,Y,Z] solve

numerically for the corresponding joint angles ;] :
X

0 = - f(r)

Y
Z
_1_



Y1

The Numeric solution: How to solve?
Newton’s Metod

X4

Function:
W* = f(r) =H(r,1)I

Jacobian J = matrix of partial derivatives:

] {afi (r)}
or,

o Newton’s method:

Guess initial joint angles r
lterate
J*dr = WH( 1)
r=r+dr
If guess is close enough r converges to solution.
Otherwise may diverge.



Newton’s Metod: Convergence Issues

Use a start position with known W and r
(e.g. Wi=[0]|,+l,+1;,0, 1]*T forr = 0)

Let next WK close to this initial.
Use r0 as initial guess for rl
lterate

J*dr = Wk-f(r)

r=r+dr
I guess is close so r converges to solution.



Newton’s Metod: Convergence Issues

X To make a large movement, divide the total
‘I distance from (known) initial Wi to the new
v —r final Wf into small steps Wk
2 e.g.on aline
3 o

*Try this in lab!

W* = f(r)=H(r,I)I

] {afi (r)}
or,




Resolved rate control

 Here instead of computing an inverse kinematics
solution then move the robot to that point, we
actually move the robot dr for every iteration in
newtons method.

e Letdr-> 0, then we can view this as velocity
control:

F=J(r(t)) " w

W =v = Cartesiartranslatio velovity




Conclusion

Forward kinematics can be tedious for multilink arms

Inverse kinematics can be solved algebraically or
numerically. The latter is more common for complex arms
or vision-guided control (later)

Limitations: we avoided details of the various angular repregiems (Euler,
guarternion or exponentials) and their detaileding@nematics. (this typically takes




Quick Math Review

Dot Product:
Geometric Representation:

A+ B = A coso

Matrix Representation:
— - |a, b, _
Ae*B = 2 1"l =a,b,+a,b,

Unit Vector
Vector in the direction of a chosen vector but vehomgnitude is 1.

_ B

U, = —

Ug



Quick Matrix Review

Matrix Multiplication:

An (m x n) matrix A and an (n x p) matrix B, caa imultiplied since
the number of columns of A is equal to the numidepws of B.

Non-Commutative Multiplication
AB is NOT equal to BA

2 ols e e

Matrix Addition:

2 S B




Basic Transformations
Moving Between Coordinate Frames

Translation Along the X-Axis
Y o)

A A

(VM,VO)

VO

_ X _ N — | P
Notation: VZAS— v v NO = v P=| *
VY V© 0



Writing v* in terms of/™°

VO




o)
Translation along the X-Axis and Y-Axis N

VO




Using Basis Vectors

Basis vectors are unit vectors that point alongadinate axis

Q

N Unit vector along the N-Axis

O  Unit vector along the N-Axis

HVNOH Magnitude of the YOvector
O

_ {V N } VCllco® HV NO Hcosﬂ

(VA sind _HV NOHCOS(9O- 0)




Y
Rotation (around the Z-Axis) |
X

Y
Q) A

> X




£ Unit vector along X-Axis

A Can be considered with respect to
the XY coordinates or NO coordinates

v = v

VX = HVXY Hcosa = HVNO Hcosa =V N9 «x

X _ N ——= O —— — (Substituting for W¥© using the N and O
V7© o= (V Ln+V DO) ° X components of the vector)

V*=VY¥Xen)+V°(Xe0)
=V " (cos@) + V ° (cos(0 + 90))
=V " (cos0) -V °(sin 0)



Similarly....
VY o= HVNO Hsin o = HVNO Hcos(90 —a) =V" ey
V' =" On+VvV°0Oo)ey
Vi=Vvi(y.m+V°(y+0)

=V " (cos(90 - 0)) + V °(cos0)

=V " (sin®) +V °(cos0)

So....

X
V* =V "(cos®) -V °(sin0) VA :{VY}
VY =V"(sing)+V°(cose) v

Written in Matrix Form

VXY = \VEs 3 co®d -sin@| vN Rotation Matrix about the z-axis
\VAS sind co®P || Vv°



X = |1C1+|201+2
=1,c,+1l,cc,—-1,s;S,
= Cy(lp +1,¢;5) = s.(l38,;)
y=lsitl;sing,,
=1l,s,+1l,s,c,+1,s,C
=c,(I,8,) +s,(I, +1,¢,)

_ X+ s(l,s;)
. (I +1,¢5)
X+ s.(l,S
y:( +l|(2 22)) (I28,) +s.(ly +1;,¢5)
1 2
= Xl,s, +5s,(l
(|1+|2C2)( 55 + 5,00,
S _ylp+lc,) —xl;s,
L=

X+y

Note:
cos@’b) = (cox)(cod) (sina)(sinb)
sin@'b) = (cos)(sinb)* (cod)(sina)

2+2m2cg)
*

0, = arcsin [

We know whab, is from the previous
slide. We need to solve fé; . Now
we have two equations and two
unknowns (sir®, and co9, )

Substituting for ¢and simplifying
many times

Notice this is the law of cosines
and can be replaced byxy?

y(ly +15 Cz)_X|252j
2 2
X°+y




