

Robot Arms, Hands:

With slides from

What a robot arm and hand can do

• Martin 1992-'97 PhD work

What a robot arm and hand can do

Camilo 2011-? PhD work

Robotics field

- 6 Million mobile robots
 - From \$100 roomba to \$millions Mars rovers
- 1 million robot arms
 - Usually \$20,000-100,000, some \$millions (Canadaarm)
- Value of industrial robotics sector: \$25 billion
 - Roomba: \$142M in sales
 - Industrial arms \$17.5billion in sales
- Arms crucial for these industries:
 - Automotive (Welding, painting, some assembly)
 - Electronics (Placing tiny components on PCB) youtube.com/watch?v=DG6A1Bsi-Ig
 - General: Pack boxes, move parts from conveyor to machines

Robots in everyday use and popular culture

Japan		350,000
Germany	112,700	
lorth America	112,000	
Italy	50,000	
France	26,000	
Spain	18,000	
UK	14.000	

 Chances are, something you eat, wear, or use was made by a robot

http://www.robotuprising.com/

Common applications

- Industrial
 - Robotic assembly
- Commercial
 - Household chores -
- Military _____
- Medical
 - Robot-assisted surgery

Picture of Roomba

Common applications

- Planetary Exploration
 - Fast, Cheap, and Out of Control
 - Mars rover
- Undersea exploration

JHUROV; Johns Hopkins

Industrial robots

- High precision and repetitive tasks
 - Pick and place, painting, etc
- Hazardous environments

Emerging Robotics Applications

Space - in-orbit, repair and maintenance, planetary exploration anthropomorphic design facilitates collaboration with humans

Basic Science - computational models of cognitive systems, task learning, human interfaces

Health - clinical applications, "aging-inplace," physical and cognitive prosthetics in assisted-living facilities

Military or Hazardous - supply chain and logistics support, re-

fueling, bomb disposal, toxic/radioactive cleanup

No or few robots currently operate reliably in these areas!

Representations

- For the majority of this class, we will consider robotic manipulators as open or closed chains of links and joints
 - Two types of joints: revolute (θ) and prismatic (d)

Definitions

- End-effector/Tool
 - Device that is in direct contact with the environment. Usually very taskspecific
- Configuration
 - Complete specification of every point on a manipulator
 - set of all possible configurations is the *configuration space*
 - For rigid links, it is sufficient to specify the configuration space by the joint angles $q = [q_1 \quad q_2 \quad \dots \quad q_n]^T$
- State space
 - Current configuration (joint positions q) and velocities \dot{q}
- Work space
 - The reachable space the tool can achieve
 - Reachable workspace
 - Dextrous workspace

Common configurations: wrists

• Many manipulators will be a sequential chain of links and joints forming the 'arm' with multiple DOFs concentrated at the 'wrist'

Example end-effector: Grippers

- Anthropomorphic or task-specific
 - Force control v. position control

Utah MIT hand

An classic arm - The PUMA 560

The PUMA 560 has SIX revolute joints A revolute joint has ONE degree of freedom (1 DOF) that is defined by its angle An modern arm - The Barrett WAM

- D5 P2 P3
- The WAM has **SEVEN** revolute joints.
- Similar motion (Kinematics) to human

UA Robotics Lab platform 2 arm mobile manipulator

- 2 WAM arms, steel cable transmission and drive
- Segway mobile platform
- 2x Quad core computer platform.
- Battery powered, 4h run time.

Robotics challenges

Navigation '05

Manipulation '11-14

Humanoids '12-

Build or buy?

Lego

• Off the shelf kits:

• Build your own:

Mathematical modeling

Robot

Strategy:

- 1. Model each joint separately
- 2. Combine joints and linkage lengths

http://www.societyofrobots.com/robot_arm_tutorial.shtml

Common configurations: elbow manipulator

- Anthropomorphic arm: ABB IRB1400
- Very similar to the lab arm (RRR)

Workspace: elbow manipulator

Common configurations: Stanford arm (RRP)

• Spherical manipulator (workspace forms a set of concentric spheres)

Common configurations: SCARA (RRP)

Adept Cobra Smart600 SCARA robot

Common configurations: cylindrical robot (RPP)

• workspace forms a cylinder

Seiko RT3300 Robot

Common configurations: Cartesian robot (PPP)

- Increased structural rigidity, higher precision
 - Pick and place operations

Workspace comparison

(a) spherical(b) SCARA(c) cylindrical(d) Cartesian

Linkage configuration

- Motors serially in arm
- Each motor carries the weight of previous
- Heavy

- Motors at base
- Lightweight and faster
- More complex transmission

Parallel manipulators

- some of the links will form a closed chain with ground
- Advantages:
 - Motors can be proximal: less powerful, higher bandwidth, easier to control
- Disadvantages:
 - Generally less motion, kinematics can be challenging

6DOF Stewart platform

ABB IRB940 Tricept

How to build your Lego robot

• Minimize loading of motors from weight of other motors.

Solutions:

• SCARA

• Parallelogram linkage (Similar to a Phantom 1)

Mathematical modeling

Robot

Strategy:

- 1. Model each joint separately
- 2. Combine joints and linkage lengths
- A simple example follows here.

More general treatment of next lecture

http://www.societyofrobots.com/robot_arm_tutorial.shtml

Simple example: Modeling of a 2DOF planar manipulator

• Move from 'home' position and follow the path AB with a constant contact force *F* all using visual feedback

Coordinate frames & forward kinematics

• Three coordinate frames:
$$012$$

• Positions: $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} a_1 \cos(\theta_1) \\ a_1 \sin(\theta_1) \end{bmatrix}$ $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2) \\ a_1 \sin(\theta_1) + a_2 \sin(\theta_1 + \theta_2) \end{bmatrix} \equiv \begin{bmatrix} x \\ y \end{bmatrix}_t$

• Orientation of the tool frame:

$$\hat{x}_{0} = \begin{bmatrix} 1\\0 \end{bmatrix}, \hat{y}_{0} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$\hat{x}_{2} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2})\\\sin(\theta_{1} + \theta_{2}) \end{bmatrix}, \hat{y}_{2} = \begin{bmatrix} -\sin(\theta_{1} + \theta_{2})\\\cos(\theta_{1} + \theta_{2}) \end{bmatrix}$$

$$R_{2}^{0} = \begin{bmatrix} \hat{x}_{2} \cdot \hat{x}_{0} & \hat{y}_{2} \cdot \hat{x}_{0}\\\hat{x}_{2} \cdot \hat{y}_{0} & \hat{y}_{2} \cdot \hat{y}_{0} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2})\\\sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) \end{bmatrix}$$

Inverse kinematics

- Find the joint angles for a desired tool position $\cos(\theta_2) = \frac{x_t^2 + y_t^2 - a_1^2 - a_2^2}{2a_1a_2} \equiv D \Rightarrow \sin(\theta_2) = \pm\sqrt{1 - D^2}$ $\theta_2 = \tan^{-1}\left(\pm\frac{\sqrt{1 - D^2}}{D}\right) \quad \theta_1 = \tan^{-1}\left(\frac{y}{x}\right) - \tan^{-1}\left(\frac{a_2\sin(\theta_2)}{a_1 + a_2\cos(\theta_2)}\right)$
 - Two solutions!: elbow up and elbow down

Velocity kinematics: the Jacobian

State space includes velocity

$$\begin{bmatrix} \dot{x}_2 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} -a_1 \sin(\theta_1)\dot{\theta}_1 - a_2 \sin(\theta_1 + \theta_2)(\dot{\theta}_1 + \dot{\theta}_2) \\ a_1 \cos(\theta_1)\dot{\theta}_1 + a_2 \cos(\theta_1 + \theta_2)(\dot{\theta}_1 + \dot{\theta}_2) \end{bmatrix}$$
$$= \begin{bmatrix} -a_1 \sin(\theta_1) - a_2 \sin(\theta_1 + \theta_2) & -a_2 \sin(\theta_1 + \theta_2) \\ a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2) & a_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$
$$= J\dot{\vec{q}}$$

• Inverse of Jacobian gives the joint velocities: $\dot{\vec{q}} = J^{-1} \dot{\vec{x}}$

$$=\frac{1}{a_1a_2\sin(\theta_2)}\begin{bmatrix}a_2\cos(\theta_1+\theta_2) & a_2\sin(\theta_1+\theta_2)\\-a_1\cos(\theta_1)-a_2\cos(\theta_1+\theta_2) & -a_1\sin(\theta_1)-a_1\sin(\theta_1+\theta_2)\end{bmatrix}\begin{bmatrix}\dot{x}\\\dot{y}\end{bmatrix}$$

• This inverse does not exist when $\theta_2 = 0$ or π , called singular configuration or singularity

Path planning

- In general, move tool from position A to position B while avoiding singularities and collisions
 - This generates a path in the work space which can be used to solve for joint angles as a function of time (usually polynomials)
 - Many methods: e.g. potential fields

• Can apply to mobile agents or a manipulator configuration

Joint control

- Once a path is generated, we can create a desired tool path/velocity
 - Use inverse kinematics and Jacobian to create desired joint trajectories

Other control methods

- Force control or impedance control (or a hybrid of both)
 - Requires force/torque sensor on the end-effector
- Visual servoing
 - Using visual cues to attain local or global pose information
- Common controller architectures:
 - PID
 - Adaptive
 - Repetitive
- Challenges:
 - Underactuation
 - Nonholonomy (mobile agents)
 - nonlinearity

General multivariable control overview

Sensors and actuators

• sensors

- Motor encoders (internal)
- Inertial Measurement Units
- Vision (external)
- Contact and force sensors
- motors/actuators
 - Electromagnetic
 - Pneumatic/hydraulic
 - electroactive
 - Electrostatic
 - Piezoelectric

Basic quantities for both:

- Bandwidth
- Dynamic range
- sensitivity

Computer Vision

- Simplest form: estimating the position and orientation of yourself or object in your environment using visual cues
 - Usually a statistical process
 - Ex: finding lines using the Hough space

- More complex: guessing what the object in your environment are
- Biomimetic computer vision: how do animals accomplish these tasks:
 - Obstacle avoidance
 - Optical flow?
 - Object recognition
 - Template matching?

MEMS and Microrobotics

- Difficult definition(s):
 - Robotic systems with feature sizes < 1mm
 - Robotic systems dominated by micro-scale physics
- MEMS: Micro ElectroMechanical Systems
 - Modified IC processes to use 'silicon as a mechanical material'

Fearing; Berkeley

Donald; Dartmouth

Pister; Berkeley

Surgical robotics

- Minimally invasive surgery
 - Minimize trauma to the patient
 - Potentially increase surgeon's capabilities
 - Force feedback necessary, tactile feedback desirable

Humanoid robots

• For robots to efficiently interact with humans, should they be anthropomorphic?

QRIO Sony

Honda (video from Siegwart?)

Winning IROS 2000-2012 work

Next class...

• Homogeneous transforms as the basis for forward and inverse kinematics

Consider reading:

Craig, J.J., *Introduction to Robotics, Mechanics, and Control* Chapter 3 (and 2 if math/geometry review needed) Book available in library, bookstore or on-line

Other texts:

M. Spong, S. Hutchinson, and M. Vidyasagar, "Robot Modeling and Control", Wiley (In UA library)

Grad level:

Li, Murray, Sastry, "A Mathematical Introduction to Robotic Manipulation", CRC Press (Downloadable PDF on-line@Caltech)