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1 Visual Servoing

In this project I look at the sensitivity of the Jacobian matrix used during visual
servoing. As it’s main objective visual servoing will minimize an error:

e(t)y=s—s" (1)

Where s and s* are the image features for different tracked points. These can then be
used to set up several types of constrains like point to point, or point to line constraints.
Once the error function has been defined we perform the servoing by performing a simple
linear control based on the image Jacobian:
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Where q is a vector containing the joint angles, and f a vector with the different image
features. One simple way to find an estimate of the Jacobian, J, is to find a Ae by
performing small motions at each joint:

J=||Ae,| ... |Ae,, (3)

Having both (1) and (3) we can use them in a simple control law to minimize the
error:

qg=-\'e (4)

2 Simulation

2.1 Plannar Motion

Using the Robotics Toolbox for Matlab I implemented a simulation environment where
I can test different experimental setups for visual servoing. I first began with a simple
2DOF robot that performed planar motions. This allowed me to test my implemen-
tation of the visual servoing environment, this setup is shown in Figure 1. At first I
used a simple pinhole camera model, and later moved to a projective perspective model
using the intrinsic camera parameters of one of the Grasshopper cameras from the lab.
I found the intrinsic parametrs using the ROS camera calibration package and a 8x6
calibration grid.



Figure 1: Simple 2DOF robot simulation setup
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Figure 2: Error as the visual servoing progresses for the 2DOF setup

Once implemented I was able to perform simple point to point tasks. Where one point
was defined to be the target, and anotherone a point that was tracked at the end
effector of the robot. The error was defined simply as e = s, — 8.y and the system
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quickly converged when updating the pose of the robot by following (4). To visualize
how the error was reduced I tracked the sum of the magnitudes of the errors as shown
in Figure 2.

2.2 Puma Robot Simulation

Using a model for the Puma I also tested different scenarios. First I looked at a point to
point configuration similar to the one performed in the 2 DOF scenario. This setup is
not sufficient to drive the robot towards the target since sevearal joints have no effect on
the image features. This is also reflected in the condition number of the jacobian which
ranged between the 10* to 10° range depending on where the target was placed.

Figure 3: Puma robot simulation using 3 points as a target and as end effector features.

Then I tried two simple configuartions with point to point constrains using 3 and 4
points as the target, and the tracked features of the end effector. The 3-point scenario
is shown in Figure 3.

When performing the simulation it was interesting to see that the 3 point configuration
converged faster than the 4 point configuration. This was done while having the same
start and end poses, the error for this simulation is shown in Figure 4. As part of the
simulation I also looked at the condition number of the Jacobian as the simulation went
on. To do this I found the Jacobian at each pose in which the robot was at throughout
the simulation. Although there is some variation, the system is fairly stable throughout
the whole motion. The plot for this is shown in Figure 5.
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Figure 4: Error as the visual servoing is performed for 3 and 4 point scenarios on the
Puma robot.
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Figure 5: Condition number of J as the robot moves throughout the visual servoing
simulation. Only the initial Jacbian was used during the movement.

2.3 Complex Scenarios

Figure 6: Feature points tracked in wrench task.

After performing the point to point tasks I reproduced two more complex scenarios.
First a point to line task, and then a more interesting task for fitting a wrench to a nut.
The image features defined for the wrench setup are shown in Figure 7. Once tracked,
the error is setup as a point to line constraint between the line formed with the top
wrench points f; fo and the top tip of the wrench f5. A similar constraint is formed
with the bottom points. Point to point constraints are also set with f; and fg, and fy
with fg. The final form of the error function for the wrench example will then stack



the features from each camera:

Jio — fis
Suu — fis
(fn X flz) - Ji5
(fiz X fu) - fir (5)

fT’2 _fTG

fr4_fr8
(frl X fr2) : fr5
_(fr?; X fra) - il

For this setup, when placing the starting position of the robot to be fairly close to the
target, the system converges and the task specification is sufficient to place the wrench
at the desired location. The condition number of the Jacobian however is significantly
larger than the previous scenarios.
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Figure 7: Errors and Condition of the Jacobian as the visual servoing is performed for
the wrench scenario on the Puma robot.

Moving the initial position slightly further away causes the system to diverge if no
updates to the Jacobian are made.
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Figure 8: Error as the visual servoing is performed for the wrench scenario on the Puma
robot.

Interestingly when recalculating the Jacobian at every time step, the task converges in
an unexpected way. The error converges towards 0, but as the servoing moves on, the
wrench actually flips around thus compleating the visual servoing task, but not in the
intended way.
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Figure 9: Error as the wrench constrain causes the Puma robot to flip the end effector

2.4 Camera Pose

After looking at the different task specifications I experimented with different camera
poses. To do this I rotated the camera position around the target point. Looking at
the condition number of the Jacobian specific points showed a very high increase. This
can be seen in Figure 10
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Figure 10: Condition number as the camera is rotated around the target point

Although the plane task specification was for the most part indiferent to the camera
pose, the wrench task was very sensitive. Looking at a pose where the camera is at
around a 180 degre rotation, see Figure 11, we can see the robot pose, and the target
to be almost fully aligned. This seems to be causing the image Jacobian to be much
more sensitive to error.
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Figure 11: Rotated camera placement for wrench task
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