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1 Introduction

In this project I explore the use random projections for a topic of interest
for the course: solving linear systems. This work is of theoretical nature,
and it is not concerned with methods for computing solutions to linear sys-
tems using random projections, but rather with the quality of these solu-
tions, and the asymptotic cost of computing them.

(Linear) random projections are functions f : R? — R* of the form
f(z) = Hz, where H € R**? is a random projection matrix. Definitions
1.1, 1.2 and 1.3 contain three examples of random projection matrices.

Definition 1.1 (Rademacher random projection matrix, [Achlioptas, 2003]).
Let Hr € R¥*d be such that (s.t.) each (Hg);; is an i.id. observation of a
Rademacher random variable - R, whichiss.t. P(R =1) =P (R = —1) = 5.

Definition 1.2 (“Sparse” random projection matrix, [Achlioptas, 2003]).
Let Hs € R¥*? be s.t. each (Hg);; is an i.i.d. observation of random variable
\/iES, whichisst. P (S =—V3) =4P(S=0)=P (S =—V3) L.

Definition 1.3 (Gaussian projection matrix, [Dasgupta and Gupta, 2003]).
Let Hy € R**? be such that its rows are (transposed) i.i.d. observations of =7,

where Z ~ N (04, 15).



The useful property of random projections is that distances between
vectors are nearly preserved after projection, as it is made explicit in the
Johnson-Lindenstrauss Theorem (JL-Theorem), which will be the corner-
stone of all results in this text and is given as the following lemma.

Lemma 1.4 (Theorem 1.1 in [Achlioptas, 2003]). Fix a set V of n points in R
Forany 0 < d,e < 1, let k be a positive integer such that
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Then with probability (w.p.) at least 1 — 6, for all u,v € V
(1= &)llu—vll5 < [[H(u =03 < (1 +2)u—vls,
where H is Hp or Hs.

Dasgupta and Gupta [2003] show a similar result to Lemma 1.4 when
the random projection matrix is generated using normal random variables,
as in Definition 1.3.

Why is the result of Lemma 1.4 useful to us? Since we know from
[Heath, 2002] that the quality of solutions Z of linear systems of the form
Az = b can suffer significantly from ill-conditioning of A, there are two
ways we can use random projections to our benefit:

e to bound the condition number of A € R** in terms of the condition
number of HA;

e to solve the linear system HAH "z = Hb.

Of course, the scenario of interest is when d is too large for us to be able
to perform computations that take much more than O (d?) time (e.g. a LU
decomposition of A, which would take O (d®)). The idea is that if we can
pick k£ small enough without having ¢ too large, we may be able to mean-
ingfully upper-bound the condition number of A in terms of the condition
number of HA. Similarly, we may be able to find approximate solutions
to Az = b by solving HAH "z = Hb. Doing so will be advantageous if the
computational gain offsets the error introduced by using random projec-
tions instead of the actual matrices in computing the condition number or
solving the linear system.



Theorem 1.5. Consider a full-rank A € R*?. Then for 0 < § < 1 and any k
and any 0 < e < 1s.t.

and s.t. H is Hr or Hs, we have, for any x € RY, w.p. at least 1 — 6,
(1—o)||Az|; < [[HAz|3 < (1+¢)||Ax]3 (1)

Proof of Theorem 1.5. 1t suffices to choose a set of d orthonormal vectors
spanning R? and apply Lemma 1.4, by noting that if k, ¢ satisfy the condi-
tion in the theorem, i.e., if they are s.t.
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then they satisfy the condition in Lemma 1.4, i.e.,
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The remainder of this text is as follows. In the next section, I will in-
vestigate how to use random projections to estimate, for a full-rank matrix
A € R%4, its condition number x(A). In Section 3, I investigate the errors
in solutions of linear systems of the form HAH "z = Hb, and in Section
4 T discuss computational aspects of using random projections to estimate
bounds on the condition number of A and to solve linear systems. Finally,
in Sections 4.1 and 5, I point out some related work and some conclusions
for the project.
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2 Condition number bounds

This section contains bounds on the condition number of a full-rank ma-
trix A € R%? in terms of the condition number of a matrix in R¥*¢, These
bounds are derived from the JL-theorem.



Proposition 2.1. Forany H € R**% and full-rank A € R¥? s.t. Inequalities (3)
hold for all = € R?, we have k(A) < |/ T==k(HA).

Proof of Proposition 2.1. If Inequalities (3) hold for any x € R, it hold for
the first and last right-eigenvectors of A, and so there exist u,v € R? s.t.

(14 &) A min(A) = (1 + )| Av]3
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and

(1= &)X ax(A) = (1 = &) Au]3
< || Aull3
< Aax(HA),
so that the conditioning number « of A is bounded by

1+e
1—¢

k(A) < k(HA).

]

For example, if we take ¢ = ; and apply Theorem 1.5 with Proposi-
tion 2.1, we have k = 961n ¢ and r(A) < v/3k(HA) with high probability
(w.h.p.). This is a large constant, but as we will see in Section 4, the worst
problem if this approach is the cost of computing H A, more than moder-
ately large constant factors on the size of the small space.

3 Solving linear systems

Proposition 3.1. Consider a full-rank A € R™?, and b € RY. Forany H €
R*>4 kand 0 < §,¢ < 1 satisfying Inequalities (3), we have

[H'& -2 _1te ,
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Proof of Proposition 3.1. We have
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Inequalities ensure that

IACH 2 —27) |3 < (1 +e)|HAH '@ — Hb|J3,
1Hb])3 > (1 = e) || Hb|3,

and the result follows. O

Consider a computed solution ' of the larger system Az = b. Then
2"~ |13 2 A\ A2 —0[3
en < (A e : ;
backward error of solving the smaller system is larger than that of solving
|HAHT2—Hb||3 1
[EEEF

, and we see from Proposition 3.1 that the squared

the original system by a factor of only (1 + ¢)
|HAHT 2—Hb||?
t ——
[AZ—0[3
tem lies mostly in a k-dimensional subspace of A that is well-conditioned,
and if HAH" can be shown to also lie in this subspace w.h.p.. How-
ever, if the random projection discards meaningful “directions” of A, then
the residual will grow and the quality of the solution, evidently, dete-
riorates. We might also expect the random projection to provide poor
solutions when A is well-conditioned, since we will lose a lot by ignor-
ing/discarding meaningful subspaces of A with the projection.

We might expec to be small when the solution to the sys-

4 Computational issues

In this section, I will discuss the computational costs of the operations
needed in order to use random projections for condition estimation and for
solving linear systems. Unless otherwise noted, the computational com-
plexities mentioned here can be easily derived from the results in [Heath,
2002].

The choice of H plays a really important role in the complexity of per-
forming the operations we are interested in. Suppose that / has m non-
zero elements. Then the cost of performing H A is O (dm). This is O (d?k)

! Although I have no proof that the residual ||[HAH "% — Hb||3 is often smaller than
| A2’ — b||3, intuitively this seems to be the case, so I conjecture that the factor introduced
by the random projections is not big.



for Hy, Hr and Hg, but because Hgs is % sparse, there is some gain of
a constant factor. The cost of this multiplication is prohibitive for using
random projections to estimate an upper-bound x(A), since one can com-
pute the largest and smallest eigenvalues of A using the power iteration
method [Heath, 2002].? Since the number of iterations required for this
method to approximately converge is logarithmic on the ratio between the
largest and second-largest eigenvalues, I would expect the power iteration
method on A to take O (d?) time to run.

Is this cost also prohibitive for solving linear systems? The cost of com-
puting HAH " is again O (d*k), but now the cost of factorizing HAH " is
only O (k*), whereas that of factorizing A is O (d®). After factorization, the
cost of solving the small linear system is O (k* + kd) (since Hb must be
computed), which is much lower than the O (d?)-cost of solving the larger
system. Therefore, the use of random projections can be advantageous for
solving linear systems, but the cost of projecting A still dominates the costs
of the other operations. Can we reduce it?

From the way the JL-Theorem works and uses concentration inequal-
ities, to find H that has sparsity of higher order than a factor of dk is not
a trivial task. Ailon and Liberty [2008] have investigated computing ran-
dom projections in O (d*In k) time, which allows choosing k < d even so

that O (Ink) isin O (In d). This means that we can choose k in O (dg > , enjoy

tighter theoretical guarantees about the quality of the solution to the sys-
tem, and perform O (d? Ind) computation, which asymptotically as much
as we might need to perform using Hy, Hr or Hs.

The other question that may arise is whether we can improve the com-
putational cost of solving linear systems (or estimating the condition num-
ber of A) when A is sparse. Dasgupta et al. [2010] have developed random
projections based on hashing that exploit sparsity in the projected vectors
in order to reduce the computational cost of the projection. They show the
following theorem.

Theorem 4.1 (Theorem 1 in [Dasgupta et al., 2010]). Let k = [% In 2] and
c=[BIn2e 28] Let f: {1,...,cd} — {1,...,k} be a hashing function
chosen uniformly at random and let Q € {0, +1}*“* be s.t. Q;; = L rin B

To compute the smallest eigenvalue, simply shift A by minus its trace, and then the
method converges to largest eigenvalue in absolute value, which is the smallest eigen-
value of A.



where each R; is an independent, identically distributed (i.i.d.) Rademacher ran-
dom variable (r.v.). Let P € {0, +£1}** be s.t. Py = %H{(j_l)cﬂgigjc}, and let
Hp = QP. Fix a set V of n vectors in R%. Then for any v € V, w.p. at least
1-46,

(L =9)vl3 < [ Hpvll3 < (1 +e)|vl3,
and Hpv can be computed in O (c||v||o) time.

In Theorem 4.1, ||z||p denotes the number of non-zero elements of z,
and [ is the indicator function. Computing HpA when A that has m non-

zero elements can be done in O <m\/E In d) time. This is sub-optimal for
dense matrices, but quite good an alternative for matrices of density in
@) (d%> as we can choose k£ € O (d§> as in the case of the projections used

by [Ailon and Liberty, 2008]. This will allow error bounds of the same
order as if we were using the results of Ailon and Liberty [2008], and as A
gets sparser (e.g., m € O (d)) the guarantees get significantly tighter.

4.1 Related work

Random projections have been widely studied. Some of the works, e.g.
[Achlioptas, 2003, Ailon and Liberty, 2008, Andoni and Indyk, 2006, Das-
gupta et al., 2010], are concerned with comparing points in the projected
space, so their aim is to construct fast random projections. In our case
it is also important to have a low computational cost for the projection,
as it can often dominate the cost of calculating a bound on the condition
number or the cost of solving the linear system in the smaller space.

One can wonder how the conditioning of the covariance of a set of
points in R? will behave after projection into R*. Dasgupta [1999, 2000]
present the following result.

Lemma 4.2 ([Dasgupta, 1999, 2000]). Consider any Gaussian in R? with co-
variance . Suppose this Gaussian is projected into a randomly chosen subspace
of dimension k. There is a universal constant C' s.t. for any 0 < d,e < 1, if the
original dimension satisfies d > C*EC (Int 4 k1n %), then wap. at least 1 — 6
over the choice of the random projection, the condition number of the covariance
matrix of the projected points will be at most 1 + €. In particular, if k(X) is at



1
most nzC~ (Int + kInk) "2, then wp. at least 1 — & the projected Gaussian
will have condition number at most two.

The bound in Lemma 4.2 says that if the original data are not too far
from spherical, then the projected data will be close to spherical. This is
a nice evidence toward the idea that the HAH " should have better condi-
tioning than A w.h.p..

The solutions of linear systems using random projections (or, more
generally, linear least-squares) has been studied, e.g., by Maillard and Munos
[2012]. If we take a step further and start to look for the solution of overde-
termined systems, we see that much work has been done in finding sparse
solutions to these systems. For example, Candes and Tao [2007] show how
to nearly recover sparse solutions from certain overdetermined systems.
Curiously, the matrices A for which it is possible recover k-sparse solu-
tions (provided that these sparse solutions exist) are those that satisfy, for
all ¢ € R* and all k-sized subsets T of its columns,?

(L =&)llell < lAzell3 < (L +e)llell3

for some 0 < ¢ < 1, and the quality of the recovery depends on who
small ¢ is. This condition can be seen as having groups of columns of
A behaving as random projection matrices, and in fact because Hys is a
projection matrix, it can be shown that “Gaussian data” allows recovering
sparse solutions to linear systems (again, if they exist, and if they are not
too sparse: recall that & has to be Q2(In d) for Lemma 1.4 to hold).

Finally, there are other approaches to bounding the condition number
of large matrices. Tao and Vu [2009] explore one that is based on a pertur-
bation analysis of the matrix norms. They study the condition number of a
fixed matrix M that is perturbed with a random matrix N. The motivation
is that in practice whereas we would start with an input matrix contain-
ing measurements of certain quantities, e.g., 2.493, what we would in fact
have would be a matrix containing slightly noisy numbers, e.g. 2.49293587
instead of 2.493. The technique they use is called smoothed analysis, and
it was proposed so as to analyze the “conditioning” of problems whose
pathological cases are so unlikely in the presence of noise that they are
well-conditioned w.h.p. even though the conditioning for arbitrary input
is bad.

3That is, for a set of indices T, A7 denotes the d x |T'| matrix containing the columns
of Aindexed by T'.




5 Future work and conclusion

Random projections are an interesting dimensionality reduction tool. As
exposed in this text, they are not so interesting for estimating a bound on
the condition number of large square matrices, but they can be useful for
finding approximate solutions to linear systems.

There have been recent progresses in computing random projections
that allow us to compute random projections fast, so that solving large lin-
ear systems via random projection is feasible even when solving the origi-
nal system is not, at least from an asymptotic cost perspective. Because we
wish to solve large linear systems, what we need to to is to look at the cost
analysis in more detail, at least to verify if the constants are not too large
that the bounds only hold when m, the number of non-zero elements in A,
is also too large.

Another issue that needs to be investigated is the magnitude of || HAH "2 —
Hb||3 compared to | A%’ —b||3, i.e., verify the hypothesis that the latter is not
much smaller than the former. A second hypothesis that should be empir-
ically investigated is whether the random projection can project A onto a
well-conditioned subspace of it (w.h.p.).
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