CMPUT 340
Modeling Kinematics
for
robots
humans

With slides from Renata Melamud




What a robot arm and hand can do




What a robot arm and hand can do




Robotics field 5.5

e 6 Million mobile robots

— From $100 roomba to $millions Mars rovers

] million robot arms
— Usually $20,000-100,000, some millions

e Value of industrial robotics: $25 billion

* Arms crucial for these industries:
— Automotive (Welding, painting, some assembly)
— Electronics (Placing tiny components on PCB)

— General: Pack boxes, move parts from conveyor to
machines


http://www.youtube.com/watch?v=DG6A1Bsi-lg

An classic arm - The PUMA 560

There are two more
joints on the end
effector (the gripper)

The PUMA 560 has SIX revolute joints
A revolute joint has ONE degree of freedom ( 1 DOF) that 1s
defined by its angle



An modern arm - The Barrett WAM

 The WAM has SEVEN revolute joints.

« Similar motion (Kinematics) to human



UA Robotics Lab platform
arm mobile manipulator

2 WAM arms, steel cable transmission and drive
* Segway mobile platform

* 2x Quad core computer platform.

 Battery powered, 4h run time.



Robotics challenges

L Manipulation ‘11-14
Navigation “05 Humanoids ’12-



Build or buy?

o Off the shelf kits:




Mathematical modeling

Robot

Abstract model
Strategy:

1. Model each joint separately
2. Combine joints and linkage lengths

http://www.societyofrobots.com/robot arm_tutorial.shtml



Other basic joints

Y“u\ Mg Y, Revolute Joint
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S ‘ﬂ 1 DOF ( Variable - Y)
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Example
Matlab robot

Successive
translation and
rotation

B




Mathematical modeling

Robot

Abstract model
Strategy:

1. Model each joint separately

2.  Combine joints and linkage lengths
A simple example follows here.

More general treatment of next lecture

http://www.societyofrobots.com/robot arm_tutorial.shtml



Simple example: Modeling of a 2DOF planar
manipulator

Move from ‘home’ position and follow the path AB with a constant contact
force F all using visual feedback

g Camera
A




Coordinate frames & forward

| kinematics
Three coordinate frames: (0) (1) (2)
Positions:
%] [a cos( )
Mgheal

x| _[a cosE §+ a, cos(6, + ))} _ {xl

'y, | | asin(@,)+a,sin(@, +06 y

. rientation of the tool frame:
e ©
o= g Yo = 1

2, cos(6; + 92)} g = {— sin(é, + 6, )} TR TR

sin(6,+6,) | "% | cos(6,+6,)

Ro__iz-io 92-20}_{003(91+92) —sin(6?1+(92)}
XY, Y,Yo!| |Sin@,+6,) cos(b,+06,)




Inverse kinematics

» Find the joint angles for a desired tool position )
2 2 2 2

cos(6,) = +y2t —4 7% _p = sin(g,) = +v1-D? &
a,a,

/ 2 .
sztan1(+ 1BDJ 01=tan1(lj—tan1( 2, In(6,) j

X a, +a, cos(6,)

and elbow down g{

 Two solutions!: elbow

Elbow Up

e Elbow Down

S



Velocity kinematics: the Jacobian

« State space includes velocity "
)

X, | [-a,sin(8,)6,-a,sin(6,+6,)(6,+6,)
Y. | |acos(6,)é,+a,cos(d,+6,) 6 +86,)

_[-asin(6)-a,sin(6,+6,) -a,sin(6,+86,)] 6,
| a,cos(8,) +a,cos(6, +6,) a,cos(6,+86,) |6,

=Jq

» Inverse of Jacobian gives the joint velocities:

g=J"Xx

B 1 a, cos(6, + 6,) a, sin(@, + 6,) X
a,a,sin(d,)| —a,cos(d,)—a,cos(d,+6,) —a,sin(6,)-a,sin(@,+6,)|y

* This inverse does not exist when 6, =0 or z, called singular
configuration or singularity



Problem: Lots of coordinate frames
to calibrate

Robot

— Base frame

— End-effector frame
— Object




Problem: Lots of coordinate frames
to calibrate

Robot Camera

— Center of projection
— Base frame Pro]

— Different models

— End-effector frame
— Object

Simplify with homogenous coordinates!



We are interested in two kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(i.e. 1it’s (X, y, z) coordinates

Inverse Kinematics (position to angles)

What you are given: The length of each link
The position of some point on the robot

What you can find: The angles of each joint needed to obtain
that position



Change Coordinate Frame

1
o 4
(VN,VO)
0
AY
VNO N
VXY
Y
P » <
......................... Translation along P followed by rotation by 0
....... > o

VY v* _ P, N cos® —sin@| VvV
VY P, sin® cos® ||V©°

(Note : P, P are relative to the original coordinate frame. Translation followed by
rotation 1s different than rotation followed by translation.)

In other words, knowing the coordinates of a point (VN,V©) in some coordinate
frame (NO) you can find the position of that point relative to your original
coordinate frame (X°Y?).



cos 0

sin 0
0

HOMOGENEOUS REPRESENTATION

Putting it all into a Matrix

P cos® —sin0@ || VYN What we found by doing a
= +| . translation and a rotation
P, sin® cos® | V©
L ] o NT
P, cos§ —sin® 0,V Padding with 0’s and 1’s
=| P, |+|sin®@ cos® 0|V
1| | 0 0 1) 1
(cos® —sin®@ P | VY
— | sin O cos 0 Py AVAY Simplifying into a matrix form
0 0 1 1
—sin® P_|
cos 0 Py Homogenous Matrix for a Translation in
0 1 XY plane, followed by a Rotation around
_ the z-axis



Rotation Matrices in 3D — OK,lets return from
homogenous repn

(cos® —sin® 0
=|sin® cosO® O
i 0 0 1_
- cos® 0 sin@
= 0 1 0
- sin® 0 cos O_
g 0 -
=10 cosO —sin0
_0 sin 0 cos 0 |

<

Rotation around the Z-Axis

Rotation around the Y-Axis

Rotation around the X-Axis



Homogeneous Matrices in 3D

H is a 4x4 matrix that can describe a translation, rotation, or both in one matrix

O

>N

Translation without rotation

» =<

»X

Z Rotation without translation

1 0 0 P
0 1 0
H= Y
0 0 1 P
0 0 0 1]
n, o, a_ 0]
H - n, o a 0
n, o a, 0
0fo0o o 1
Rotation part: B

Could be rotation around z-axis,
X-axis, y-axis or a combination of
the three.



Homogeneous Continued....

N
\%
VO The (n,0,a) position of a point relative to the
VXY = H current coordinate frame you are in.
A
A\

nX OX aX PX_ VN
vy |y 0y ay P |V° V¥=n V" +0 V®+a V*+P,
n o a P |V*
0 o0\o A1

The rotation and translation part can be combined into a single homogeneous
matrix IF and ONLY IF both are relative to the same coordinate frame.



Finding the Homogeneous Matrix

EX.
WI
Y W
WK
........... '-—
T ............................................ wx
.......................... P ‘ w°
------------ X wH
WX’ W WY
y | Point relative to the w’ Point relative to the WO Point relative to the
W xv-7 frame [-J-K frame N-O-A frame
W* w* w*
WI _P 7] _n. 0 a._ WN W ni Oi ai Pi W
1 1 1 1 J O
W' =P |+|n, o, a, |W° W n; o; a; P |W
K A
we| [P | |n, o a WA W | [M O & B)W
S N 1 0 0 0 1] 1




-
s o xd O

Substituting for | W’



WX WN lx Jx kx Tx ni Oi al Pi
Y (0]
w = H W —__ H-= L, Jy ky Ty n.i OJ aJ Pj
\\ w4 N k T P
lz Jz z z nk Ok ak k
1] [ 1] 0 0 0 1)0 0 0 1|

» Product of the two matrices

1 0 0 T_|i, j k, 0|1 0 0 P,|n, o a O
H- 010 T, (i, j, k, 0j0 1 0 P, |n, o, a, 0
O 01 T,|i, j, k, 0jo 0 1 P n_ o, a O
0o 00 10 0 O 10 0 0 10 0 0 1]

H = (Translation relative to the XYZ frame) * (Rotation relative to the XYZ frame)
* (Translation relative to the IJK frame) * (Rotation relative to the IJK frame)



The Homogeneous Matrix is a concatenation of numerous
translations and rotations

One more variation on finding H:

H= (Rotate so that the X-axis is aligned with T)
* ( Translate along the new t-axis by || T || (magnitude of T))
* ( Rotate so that the t-axis 1s aligned with P)
* ( Translate along the p-axis by || P || )
* ( Rotate so that the p-axis is aligned with the O-axis)

This method might seem a bit confusing, but it’s actually an easier way to
solve our problem given the information we have. Here 1s an example...



Forward Kinematics



Ay The Situation:

You have a robotic arm that
starts out aligned with the x_-axis.
You tell the first link to move by Y,
and the second link to move by Y.

N, |
— 3 - The Quest: N
0 Xo What 1s the position of the

Z end of the robotic arm?

Solution:
1. Geometric Approach

This might be the easiest solution for the simple situation. However,
notice that the angles are measured relative to the direction of the previous
link. (The first link 1s the exception. The angle is measured relative to it’s
initial position.) For robots with more links and whose arm extends into 3
dimensions the geometry gets much more tedious.

2. Algebraic Approach
Involves coordinate transformations.



Example Problem:

You are have a three link arm that starts out aligned in the x-axis.
Each link has lengths |, |,, I;, respectively. You tell the first one to move by
Y, , and so on as the diagram suggests. Find the Homogeneous matrix to get
the position of the yellow dot in the X°Y? frame.

Y3

H=R,(Y,) * Tyj(I) * R(Y,) * Typ(ly) * R(Y;)

i.e. Rotating by Y, will put you in the X'Y! frame.
Translate in the along the X! axis by |,.
Rotating by Y, will put you in the X?Y? frame.
and so on until you are in the X*Y? frame.

The position of the yellow dot relative to the X3Y? frame is
(I;, 0). Multiplying H by that position vector will give you the
coordinates of the yellow point relative the the X°Y? frame.



Slight variation on the last solution:
Make the yellow dot the origin of a new coordinate X*Y* frame

Y3

X4
H = Rz(Yl ) * Txl(ll) * Rz(YZ) * TxZ(IZ) * Rz(Y3) * Tx3(|3)
This takes you from the XY? frame to the X*Y* frame.

The position of the yellow dot relative to the X*Y* frame
1s (0,0).

Notice that multiplying by the (0,0,0,1) vector will
equal the last column of the H matrix.

-«




Inverse Kinematics

From Position to Angles



A Simple Example

Revolute and

Prismatic Joints Finding Y:
Combined 0 = arctan (Z)
X
/ More Specifically:

(x,y)

arctan2() specifies that it’s in the
first quadrant

0 = arctan 2(1)
X

Finding S:

S=4(+y")




Inverse Kinematics of a Two Link Manipulator

(X,Y)

Given: I, 1,,x,y

Find: Y, Y,

Redundancy:

A unique solution to this problem
does not exist. Notice, that using the
“givens” two solutions are possible.
Sometimes no solution is possible.




The Geometric Solution
(x,y)

[T

Using the Law of Cosines:
sinB  sinC
b ¢
sinf,  sin(180—0,)  sin(0,)

Using the Law of Cosines:

¢’ =a’+b’-2abcosC

(x> +y*)=1°+1,°=2L1,cos(180-6,)
cos(180—-0,) =—cos(0,)

x> +y? =17 -1

cos(0,) = o
1°2

2 2 2 2
X“+y -1 -l
0, = arccos Y —h 7h
211,

Redundant since 0, could be in the
first or fourth quadrant.

Iz ) \/X2+y2 _w/Xz—l—y2
0,+a

o = arctan 2(Xj
X

Redundancy caused since 6, has two possible
values

0, = arcsin[ , Sn(®, )J + arctan 2(Z

J




The Algebraic Solution

c, = cos 0,

C,,, =cos(0,+0),)
() x=1lc+l,¢c,
2)y=1Ils+1,sin
3)6=0,+0,

[TTTT7777
()" +(2)° =x"+y" =
2 2 2 2 2 2, :
= (Il ¢, +1,7(cp,,)" + 21, CI(C1+2))+ (Il s, +1,7(siny,,)" + 211, Sl(sml+2))

= |12 -+ |22 + 2|1|2(Cl(cl+2) + Sl(Sin1+2)) \

=1°+1,% + 2,1, ¢, «——Only Unknown Note:
<2+ y2 I IR cos@'b) = (cosa)(cosh); (sina)(sinb)
.0, = arccos L2 L . .
211, sin(@'b) = (cosa)(sinb)_ (cosb)(sina)



)

The Numeric solution

Y3

We model forward kinginatics as
H = Ry(rl ) * Txl(ll) * Rz(rZ) * TxZ(IZ) * Rz(r3) * Tx3(|3)

X 0

= f(r)=H(r,I)

Y 0
Z 0

Now given desired Cartesian position [X,Y,Z] solve

numerically for the corresponding joint angles [r,r,r;] :
X

0 = ~ f(r)

— N =




Y

The Numeric solution: How to solve?
Newton’s Metod

X4

Function:
W* = f(r)=H(r, DI

Jacobian J = matrix of partial derivatives:

Je {afxr)}
Or;

T Newton’s method:

Guess 1nitial joint angles r

Iterate
J*dr=W-f(1)
r=r+dr

If guess 1s close enough r converges to solution.
Otherwise may diverge.



Newton’s Metod: Convergence 1ssues

Use a start position with known W andr
(e.g. Wi=[0, I, +l,+1;,0, 1]*T for r = 0)

Let next WKk close to this initial.
Use 10 as initial guess for rl

Iterate
J*dr = Wk-{(r)
r=r+dr

r guess 1s close so r converges to solution.



Newton’s Metod: Convergence 1ssues

X To make a large movement, divide the total
j distance from (known) initial W1 to the new
v —~ final Wt into small steps -« Wk
R €.g. on a line
3 N
N *Try this in lab!

W* = f(r)=H(r, I

;. {8fi (r)}
or;




Resolved rate control

* Here instead of computing an inverse kinematics
solution then move the robot to that point, we
actually move the robot dr for every iteration in
newtons method.

* Letdr = 0, then we can view this as velocity
control:

r=J(r(t)"'w

W =V = Cartesian translation velovity



Conclusion

 Forward kinematics can be tedious for multilink arms

« Inverse kinematics can be solved algebraically or
numerically. The latter is more common for complex arms
or vision-guided control (later)

o Limitations: We avoided details of the various angular representations (Euler,
quarternion or exponentials) and their detailed use in Kinematics. (this typically takes

{# 84|



[ecture 2:
Review Kinematics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(1.e. 1t’s (X, y, z) coordinates

Inverse Kinematics (position to angles)

What you are given: The length of each link
The position of some point on the robot

What you can find: The angles of each joint needed to obtain
that position



Numerical Inverse Kinematics

Cartesian Location y=[z,y,2]" = f(x)
Motor joint angles: X=[x1, To,... Ty
Local linear model: Ay = J(X)Ax

Numerical steps: 1 Solve:  yiay, = JAx
2 Update:

Xpy1 = Xg + AX



Cartesian Traj ectory Mot108,srent

Cartesian
position

s ¢
F 4
I L N
" g Tk
¥
o yO
o3
i




Cartesian Trajectory Motion

Line with
sub goals Y




Cartesian Trajectory Motion

Move the robot
to each subgoal
In sequence




Cartesian Trajectory Motion

Move the robot
to each subgoal
In sequence




Cartesian Trajectory Motion

Move the robot
to each subgoal
In sequence




Cartesian Trajectory Motion

¥ Tterate until
convergence at
final goal




Numerical Inverse Kinematics

T
Cartesian Location y=lz,y2" = fx)
Motor joint angles: X=[z1, T2... xn]
Local linear model: Ay = J(X)AxX

Visual servoing steps: 1 Solve: )
a X —
2 Update: Y Y& = JAX
Xipr1 = Xi + AX

How do we find the Jacobian J(X)?




Find J Method 1:
Test movements along basis

 Remember: J 1s unknown m by n matrix

— For position only: 3x3, position and orientation 6x6 or

mx6 /of, i::  Of
oo a8 o
J = .
of,, of T T
%1 axn AXl_ 21707.. ’O:T
AXZ — _07 17 <. ‘70_
e Do test movements Ax, = 1[0,0,..., 1]

 Finite difference: 7  : 1 -]
Jt ( Ayl Ayz ad4a Ay )




Find J Method 2:
Secant Constraints

Constraint along a line:

Defines m equations

Ay = JAX

Collect n arbitrary, but different measures y

Solve for J

( 244 Ay1
ELE Ay2

\ [484 Ay7

44
44]

144] )

( 244 Ax1
ELE Ax2

\ [48d AXT

44
44 ]

144] /



Find J Method 3:
Recursive Secant Constraints

Broydens method

Based on 1nitial J and one measure pair Ay, AX

AdjustJst.  AY = Jp 1 AX
Rank 1 update:

. - (Ay a J,Ax)AXT
Jpr1 = Ji + AXTAX N
Consider rotated coordinates:

— Update same as finite difference for n orthog
moves

AX



Numerical Inverse Kinematics

p= 1. Solve for motion: y ay,] = JAX
< / 2. Move robot joints: X1 = X + AX
% 3. Read actual Cartesian move Ay
4. Update Jacobian: . A Ay & J,AX)AXT
F Jr1 = Jp + (2y & JiaX)

AXTAX

Move the robot
to each subgoal
in sequence Y

[terate until
convergence at
Goal final goal




Singularities

J singular <> cannot solve eqs y ay] = JAX

Definition: we say that any configuration in which
the rank of J 1s less than 1ts maximum 1is a singular
configuration
— 1.e. any configuration that causes J to lose rank is a
singular configuration
Characteristics of singularities:

— At a singularity, motion in some directions will not be
possible

— At and near singularities, bounded end effector velocities
would require unbounded joint velocities

— At and near singularities, bounded joint torques may
produce unbounded end effector forces and torques

— Singularities often occur along the workspace boundary
(1.e. when the arm is fully extended)



Singularities

 How do we determine singularities?

— Simple: construct the Jacobian and observe when it will
lose rank

« EX: two link manipulator
— Analytic Jacobian J is:
- S —&,S, - a‘2812_
alcl + a'2012 a2C12
0 0

J(g)=

0 0
0 0
1 1

Y

— This loses rank if we can find sogn¢ mrsuelrthat
columns are linearly dependent



Singularities

e This 1s equivalent to the following:
S, +a,S,, = (aZSIZ)
a,C; +a,Cy, = 0((8.2012)

* Thus if s;, =S;, we can always find an « that
will reduce the rank of J

* Thus 6, = 0,7 are two singularitfes

o

2 2

o > Xg

S




Determining Singular
Configurations

* In general, all we need to do 1s observe how the
rank of the Jacobian changes as the configuration
changes

* (Can study analytically

* Or numerically: Singular if eigenvalues of square
matrix 0, or singular values of rectangular matrix
zero. (Compute with SVD), or condition number
tends to infinity.



Quick Math Review
Dot Product:

Geometric Representation:

KB = A ]B cos o

Matrix Representation:
— — |a, b
ay b y

Unit Vector
Vector in the direction of a chosen vector but whose magnitude is 1.

_ B

U, = —




Quick Matrix Review

Matrix Multiplication:

An (m x n) matrix A and an (n X p) matrix B, can be multiplied since
the number of columns of A 1s equal to the number of rows of B.

Non-Commutative Multiplication
AB 1s NOT equal to BA

2 als e

Matrix Addition:

sl HHers @




Basic Transformations
Moving Between Coordinate Frames

Translation Along the X-Axis

Y
A

> O

(VN,V9)

VO

_ X _ N — | P
Notation: v*Y = v VYO — Vv P=| *
\A A% 0



Writing V*¥ in terms of V*°




Translation along the X-Axis and Y-Axis A




Using Basis Vectors
Basis vectors are unit vectors that point along a coordinate axis

g

I Unit vector along the N-Axis

0  Unit vector along the N-Axis

HVNO H Magnitude of the VNOvector 4
0

o _ {VN} V™leoso | | HVNOHCOSO _ {VNO R
V™°|sin® _HVNOHCOS(%—O)_ Vo




Rotation (around the Z-Axis)

» X

VXY _ VX VNO — VN
\'A \'A



X Unit vector along X-Axis

V Can be considered with respect to
the XY coordinates or NO coordinates

N

v X :HVXY HcosaquNO Hcosa:VNO X

X N , — O , — _ — (Substituting for VNO using the N and O
V== (V *n+ V" *o ) °X components of the vector)

V¥=V¥Xen)+V2(Xe0)
= V"Y(cos 0) + V ° (cos( 0 + 90))
= V"(cos ) — V°(sin 0)



Similarly....
VY = HVNO Hsin 0 = HVNO Hcos(90 —0) =V ey
VY=V '+n+V°=x0)ey
VY=V ¥[Fen)+V°(yeo)
= V" (cos(90 —0)) + V°(cos 0)
=VY(sin09)+ V°(cos 0)

So....
X
VX = V™(cos 0) — V°(sin 0) VXY{V }
Y
VY =VYGin0)+ V°(cos 0) v

Written in Matrix Form

VXY _ {VX} B {COSO — Sin@}{VN} Rotation Matrix about the z-axis

vY| |sin@ cos® | V©



x=lc+1,c, Note:
=l c+1l,cc,—1,85, cos@'b) = (cosa)(cosh); (sina)(sinb)
=c, (I, +1,¢,)—s,(l,s,) sin@_’b) = (cosa)(sinb) (cosb)(sina)
y=ls+lsin,, We know what 0, 1s from the previous
=1l s +1,8¢,+1,8,¢, slide. We need to solve for 0, . Now
=c,(I,s,)+s,(I,+1,¢c,) we have two equations and two
unknowns (sin 0, and cos 0, )
_ x+5;(l;s;)
c, =
(i +1,¢5)
x+5s,(l1,s,) Substituting for ¢, and simplifying
y = —2 2y sy) + s, (1 + 1, ¢y) many times
(i +1,¢5)
B 1 ( s 4 12012 20l ) Notice this 1s the law of cosines
S +1,c,) X128, 5, (1 2 172 Ci) and can be replaced by x2+ y?
|
g = y(l, +1,¢,) - x5, 0, = arcsin y(i +1,¢5)—x1;s,
| = =
x24y? x4 y2
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