Integration

For f:R — R, definite integral over interval
a, b],
b
1) = [ f(2)da,

a
defined by limit of Riemann sums

Bo=3 (w41 — 1) F(&)

=1

Riemann integral exists provided integrand f is
bounded and continuous almost everywhere

Absolute condition number of integration with
respect to perturbations in integrand is b — a

Integration inherently well-conditioned because
of smoothing effect



Numerical Quadrature

Quadrature rule is weighted sum of finite num-
ber of sample values of integrand function

Main issues:

e How to choose sample points

e How to weight their contributions

to obtain desired level of accuracy at low cost

Computational work measured by number of
evaluations of integrand function required



Quadrature Rules

An n-point quadrature rule has form

n
Qn(f) = ) w; f(z;)
i=1
e points x; called nodes or abscissas
e Mmultipliers w; called weights

Quadrature rule open if a < x1 and x, < b,
closed if a =x1 and x, = b



Quadrature Rules, continued

Quadrature rules based on polynomial interpo-
lation:

e Integrand function f sampled at finite set
of points

e Polynomial interpolant at those points is
determined

e Integral of interpolant taken as estimate
for integral of original function

In practice, interpolating polynomial not deter-
mined explicitly but used to determine weights
corresponding to nodes

If Lagrange interpolation used, then weights
given by

b
wi=/€i(a:), i=1,...,n
a



Method of Undetermined Coefficients

Alternative derivation of quadrature rule uses
method of undetermined coefficients

To derive n-point rule on interval [a,b], take
nodes xzq1,...,xn as given and consider weights
w1, ...,Wwn as coefficients to be determined

Force quadrature rule to integrate first n poly-
nomial basis functions exactly, and by linearity,
it will integrate any polynomial of degree n—1
exactly

Thus obtain system of moment equations that
determines weights for quadrature rule



Example: Undetermined Coefficients

Derive three-point rule

Q3(f) = wif(x1) +waf(x2) + waf(z3)

on interval [a,b] using monomial basis

As nodes, take 1 = a, o = (a + b)/2, and
x3 = b, first three monomials are 1, z, and 2

Resulting system of moment equations is
w1-1+w2-1—|—w3-1Z/Clbldx=x|g=b—a,
wi-a+ws-(a+b)/2+w3z-b=
[zde = @212l = 17— a?)/2,
wy - a® 4wy - ((a+b)/2)% 4+ w3 - b° =

[#de = @3l = (1* —a?)/3



Example Continued

In matrix form,

1 1 1 w1 b—a
a (a+0b)/2 b wo | = | (b2 —a?)/2
a? ((a+b)/2)2 b2] lws (b3 —a3)/3

Solving system by Gaussian elimination, obtain
weights

b—a 2(b—a) b—a
wq — wo = w3 =

6 Y 3 ) 6 Y

which is known as Simpson’s rule



Method of Undetermined Coefficients

More generally, Vandermonde system

1 1 1 w1 b—a
X1 5 e Tn wo | (b2 — a?)/2
eyt e L] L@ —am)/n]

determines weights w; for any n and choice of
nodes x;



Accuracy of Quadrature Rules

Quadrature rule is of degree d if it is exact for
every polynomial of degree d, but not exact for
some polynomial of degree d + 1

By construction, n-point interpolatory quadra-
ture rule is of degree at least n — 1

Rough error bound

1
() = Qu(N] < Z AT oo,

where h = max{z;41 —z;: 1 = 1,...,n — 1},
shows that

Qn(f) — I1(f)

as n — oo, provided f(”) remains well behaved

Can obtain higher accuracy by increasing n or
decreasing h

10



Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced
nodes in interval [a, b]

Examples:

e Midpoint rule:

a—zl—b)

M) =G-a)f
e [rapezoid rule:
b—a
2

T(f) = (f(a) + f(b))

e Simpson’s rule:

(@ +ar (U1

2

S(f) = )+ 1)

—a
6

13



Example: Newton-Cotes Quadrature

Approximate integral
I(f) = /1 exp(—z2) dr ~ 0.746824
0
M(f)=(1—-0)exp(—1/4) = 0.778801
T(f) = (1/2)[exp(0) + exp(—1)] ~ 0.683940

S(f) = (1/6)[exp(0) +4exp(—1/4) +exp(—1)]

~ 0.747130

0.0 0.5 1.0

14



Error Estimation

Expanding integrand f in Taylor series about
midpoint m = (a + b)/2 of interval [a,b],

f(m) 2
5 (x —m)

f(z) = f(m) + f'(m)(z —m) +

"(m (1) (m
PG oyt 4 L)

— 4 “ o o
c Sq (@ —m)T+

_|_

Integrating from a to b, odd-order terms drop
out, vielding

f"(m) (b — a)3

1) = fm)G-a)+1]

£ (m)
T 1920

= M(f)+E(f) + F() + -,

where E(f) and F(f) represent first two terms
in error expansion for midpoint rule

(b—a)>+ -

15



Error Estimation, continued

If we substitute * = a and x = b into Taylor
series, add two series together, observe once
again that odd-order terms drop out, solve for
f(m), and substitute into midpoint formula, we
obtain

I(f) = T(f) ~ 2B(f) — 4F(f) — -

Thus, provided length of interval is sufficiently
small and f(4) is well behaved, midpoint rule
IS about twice as accurate as trapezoid rule

Halving length of interval decreases error in ei-
ther rule by factor of about 1/8

16



Error Estimation, continued

Difference between midpoint and trapezoid rules
provides estimate for error in either of them:

T(f) —M(f) =3E(f) +5F(f)+---,

SO

T(f) — M(f)
3

E(f) ~

Weighted combination of midpoint and trape-
zoid rules eliminates E(f) term from error ex-
pansion:

1

I(f) = %M(f)+§T(f) —%F(f) 4+ ..

=5(f) = SF(H) + -+,

which gives alternate derivation for Simpson's
rule and estimate for its error

17



Example: Error Estimation

We illustrate error estimation by computing
approximate value for integral fol x? dx

M(f) = (1-0)(1/2)% = 1/4,

T(f) =" (02 +1%) =1/2,

E(f) = (T(f) —M(f))/3=(1/4)/3=1/12

So error in M(f) is about 1/12, and error in
T(f) is about —1/6

Also,
S(f) = (2/3)M(f) + (1/3)T(f)
= (2/3)(1/4) + (1/3)(1/2) = 1/3,

which is exact for this integral, as expected

18



Accuracy of Newton-Cotes Quadrature

Since n-point Newton-Cotes rule is based on
polynomial interpolant of degree n — 1, we ex-
pect rule to have degree n — 1

Thus, we expect midpoint rule to have degree
zero, trapezoid rule degree one, Simpson’s rule
degree two, and so on

From Taylor series expansion, error for mid-
point rule depends on second and higher deriva-
tives of integrand, which vanish for linear as
well as constant polynomials

So midpoint rule integrates linear polynomials
exactly, and its degree is one rather than zero

Similarly, error for Simpson’s rule depends on
fourth and higher derivatives, which vanish for
cubics as well as quadratic polynomials, so Simp-
son’s rule is of degree three

19



Accuracy of Newton-Cotes Quadrature

In general, odd-order Newton-Cotes rule gains
extra degree beyond that of polynomial inter-
polant on which it is based

n-point Newton-Cotes rule is of degree n— 1 if
n is even, but of degree n if n is odd

This phenomenon is due to cancellation of pos-
itive and negative errors:

20



Drawbacks of Newton-Cotes Rules

Newton-Cotes quadrature rules are simple and
often effective, but they have drawbacks:

e Using large number of equally spaced nodes
may incur erratic behavior associated with
high-degree polynomial interpolation (e.qg.,
weights may be negative)

e Indeed, every n-point Newton-Cotes rule
with n > 11 has at least one negative weight,
and > 4 |lw;| — oo @as n — oo, sO Newton-

Cotes rules become arbitrarily ill-conditioned

e Newton-Cotes rules are not of highest de-
gree possible for number of nodes used

21



Gaussian Quadrature

Gaussian rules are based on polynomial inter-
polation, but nodes as well as weights are cho-
sen to maximize degree of resulting rule

With 2n parameters, we can obtain degree of
2n — 1

Gaussian quadrature rules can be derived by
method of undetermined coefficients, but re-
sulting system of moment equations that de-
termines nodes and weights is nonlinear

Also, nodes are usually irrational, even if end-
points of interval are rational

Although inconvenient for hand computation,
nodes and weights are tabulated in advance
and stored in subroutine for use on computer

23



Example: Gaussian Quadrature Rule

Derive two-point Gaussian rule on [—1, 1]:

Go(f) = w1 f(x1) +waf(z2),

where nodes x; and weights w; are chosen to
maximize degree of resulting rule

We use method of undetermined coefficients,
but now nodes as well as weights are unknown
parameters to be determined

Four parameters are to be determined, so we
expect to be able to integrate cubic polyno-
mials exactly, since cubics depend on four pa-
rameters

24



Example Continued

Requiring rule to integrate first four monomials
exactly gives moment equations:

w1+w2=/_111dx=x|£1 =2,
w1r] + woxy = /_11 vdr = (z%/2)|1; =0,
wiad +wpad = [ a?de = @%/3)L; =2/3
wlx% + ngg = /_11 3 dr = (334/4)|£1 =0

One solution of this system of four nonlinear
equations in four unknowns is given by
1 =-1/V3, 20=1/V3, w1 =1, wy=1,

and other solution is obtained by reversing signs
of £1 and z»

25



Example Continued

Resulting two-point Gaussian rule has form

Go(f) = f(—1/V3) + f(1/V3),

and by construction it has degree three

In general, for each n there is unique n-point
Gaussian rule, and it is of degree 2n — 1

Gaussian quadrature rules can also be derived
using orthogonal polynomials

26



Change of Interval

Gaussian rules are somewhat more difficult to
apply than Newton-Cotes rules because weights
and nodes are usually derived for some specific
interval, such as [—1, 1]

Given interval of integration [a, b] must be trans-
formed into standard interval for which nodes
and weights have been tabulated

To use quadrature rule tabulated on interval

[, B],

n

[ 1@y dem > wif e,

1=1

to approximate integral on interval [a,b],

1) = [ gty

we must change variable from z in [a, 3] tO ¢
in [a,b]
27



Change of Interval, continued

Many transformations are possible, but simple
linear transformation

t=1[(b—a)z+af—ba]/(8— )

has advantage of preserving degree of quadra-
ture rule

28



Gaussian Quadrature

Gaussian quadrature rules have maximal de-
gree and optimal accuracy for number of nodes
used

Weights are always positive and approximate
integral always converges to exact integral as

n —oo

Unfortunately, Gaussian rules of different or-
ders have no nodes in common (except possi-
bly midpoint), so Gaussian rules are not pro-
gressive

Thus, estimating error using Gaussian rules
of different order requires evaluating integrand
function at full set of nodes of both rules

29



Adaptive Quadrature

Composite quadrature rule with error estimate
suggests simple automatic quadrature proce-
dure:

Continue to subdivide all subintervals, say by
half, until overall error estimate falls below de-
sired tolerance

Such uniform subdivision is grossly inefficient
for many integrands

More intelligent approach is adaptive quadra-
ture, in which domain of integration is selec-
tively refined to reflect behavior of particular
integrand function

35



Adaptive Quadrature, continued

Start with pair of quadrature rules whose dif-
ference gives error estimate

Apply both rules on initial interval [a, b]
If difference between rules exceeds error toler-
ance, subdivide interval and apply rules in each

subinterval

Continue subdividing subintervals, as neces-
sary, until tolerance is met on all subintervals

Integrand is sampled densely in regions where

it is difficult to integrate and sparsely in regions
where it is easy

.
.
..........
. . . .
...............................



Numerical Differentiation

Differentiation is inherently sensitive, as small
perturbations in data can cause large changes
in result

Differentiation is inverse of integration, which
IS inherently stable because of smoothing ef-
fect

For example, two functions shown below have
very similar definite integrals but very different
derivatives

46



Numerical Differentiation, continued

To approximate derivative of function whose
values are known only at discrete set of points,
good approach is to fit some smooth function
to given data and then differentiate approxi-
mating function

If given data are sufficiently smooth, then in-
terpolation may be appropriate, but if data are
noisy, then smoothing approximating function,
such as least squares spline, is more appropri-
ate

47



Finite Difference Approximations

Given smooth function f:R — R, we wish to
approximate its first and second derivatives at
point z

Consider Taylor series expansions

ORI UOIN

flaz+h) = f(z)+f (x)h+

and

flz—h) = f(z)—f'(x)h+

HORWUCIEN

Solving for f/(x) in first series, obtain forward
difference formula

oy _ F@ R = f@) @)
HOE Lo B8

_flx+h) - f(z)

~ ; :
which is first-order accurate since dominant
term in remainder of series is O(h)

48



Finite Difference Approximations, cont.

Similarly, from second series derive backward
difference formula

oy f@) — fe—h) | (@)
f(z) = ] +
/(@) ~ f(z—h)
~ Sz =h)

which is also first-order accurate

Subtracting second series from first series gives
centered difference formula

fla+h) —f=h) @),
2h 6

L S@+h) —f@—h)
2h ’
which is second-order accurate

O -
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Finite Difference Approximations, cont.

Adding both series together gives centered dif-
ference formula for second derivative

fl@+h) —2f(x) + f(x —h)

f(z) = 2
FA(x) 5
_Th 4.
_f@+h)-2f(x) + f(x—h)
~ . ,

which is also second-order accurate

Finite difference formulas can also be derived
by polynomial interpolation, which is less cum-
bersome than Taylor series for higher-order ac-
curacy or higher-order derivatives, and is more
easily generalized to unequally spaced points

50



Automatic Differentiation

Computer program expressing function is com-
posed of basic arithmetic operations and ele-
mentary functions, each of whose derivatives
IS easily computed

Derivatives can be propagated through pro-
gram by repeated use of chain rule, computing
derivative of function step by step along with
function itself

Result is true derivative of original function,
subject only to rounding error but suffering no

discretization error

Software packages are available implementing
this automatic differentiation (AD) approach

51



Richardson Extrapolation

In many problems, such as numerical integra-
tion or differentiation, approximate value for
some quantity is computed based on some step
Size

Ideally, we would like to obtain limiting value as
step size approaches zero, but we cannot take
step size arbitrarily small because of excessive
cost or rounding error

Based on values for nonzero step sizes, how-
ever, we may be able to estimate what value
would be for step size of zero

52



Richardson Extrapolation, continued

Let F'(h) denote value obtained with step size
h

If we compute value of F for some nonzero
step sizes, and if we know theoretical behavior
of F'(h) as h — 0, then we can extrapolate from
known values to obtain approximate value for
F(0)

Suppose that
F(h) = ag+ a1h? + O(R")

as h — 0 for some p and r, with » > p

Assume we know values of p and r, but not ag
or aq (indeed, F'(0) = ag is what we seek)

53



Richardson Extrapolation, continued

Suppose we have computed F for two step
sizes, say h and h/q for some positive integer

q
Then we have

F(h) =ag+ a1h? + O(h")
and

ag + a1(h/q)P + O(h")
ap + a1  PhP + O(R")

F(h/q)

This system of two linear equations in two un-
knowns ag and aj is easily solved to obtain

F(h) — F(h/q)
qgP—1

ag — F(h) + _l_ O(hr)

Accuracy of improved value, ag, is O(h")
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Richardson Extrapolation, continued

Extrapolated value, though improved, is still
only approximation, not exact solution, and its
accuracy is still limited by step size and arith-
metic precision used

If I'(h) is known for several values of h, then
extrapolation process can be repeated to pro-
duce still more accurate approximations, up
to limitations imposed by finite-precision arith-
metic

55



Example: Richardson Extrapolation

We use Richardson extrapolation to improve
accuracy of finite difference approximation to
derivative of function sin(x) at z =1

Using first-order accurate forward difference
formula, we have

F(h) = ag + a1h + O(h?),

so p=1 and r = 2 in this instance

Using step sizes of h = 0.5 and h/2 = 0.25
(i.e., g = 2), we obtain

sin(1.5) — sin(1)

F(h) = 0.5

= 0.312048

and
sin(1.25) —sin(1)
0.25

= 0.430055

F(h/2) =

56



Example Continued

Extrapolated value is then given by
F(h) — F(h/2)
(1/2) -1

= 2F(h/2) — F(h) = 0.548061

F(0) = ag = F(h) +

For comparison, correctly rounded result is given
by cos(1) = 0.540302

F
A
1.0

extrapolated value
computed values

0.5.—\‘/\l

| .
0 025 05 "
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Example: Romberg Integration
As another example, we evaluate

/77/2 sin(x) dx
0

If we use composite trapezoid rule, then we
have

F(h) = ag + a1h? + O(r%),

SO p=2 and r = 4 in this instance
With h == /2, F(h) = F(w/2) = 0.785398

With ¢ = 2, F(h/2) = F(x/4) = 0.948059
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Example Continued

Extrapolated value is then given by

F(h) — F(h/2)

F(0) = ag = F(h) + =55

. 4F(h/2) — F(h)
- 3
which is substantially more accurate than val-
ues previously computed (exact answer is 1)

= 1.002280,

F

Lo /extrapolated value

0.5+ computed values

| L
0 n/4 a2

59



Romberg Integration

Continued Richardson extrapolations using com-
posite trapezoid rule with successively halved
step sizes is called Romberg integration

It is capable of producing very high accuracy
(up to limit imposed by arithmetic precision)
for very smooth integrands

It is often implemented in automatic (though
nonadaptive) fashion, with extrapolations con-
tinuing until change in successive values falls
below specified error tolerance
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