
Integration/Quadrature
Aims Of This Section

� brie�y look at symbolic integration

� examine standard numerical integration techniques

� Classical Formulas

� Gauss Integration

� Cubic Interpolation

� discuss open and closed formulae

� examine accuracy of results

� brie�y look at adaptive methods
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Symbolic Integration

� A number of packages are available which perform sym-
bolic integration, that is, they perform the algebraic manip-
ulations to put a given function into an integrable form, then
perform the integration analytically.

� These packages include Lex, Maple and Mathematica.

� For example, given the inde�nite integral

> int(x�3*cos(x), x);

Maple will respond with

3 2

x sin(x) + 3 x cos(x) - 6 cos(x) - 6 x sin(x)

That is,

Z
x3cos(x) dx = x3+3x2cos(x)� 6cos(x)� 6xsin(x)
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� Maple is able to obtain this result by using integration by
parts (3 times), exploring various paths until simple (known)
integrals are obtained, then backtracking to collect up the
total result.

(�rst u = x3; v = sin(x) then u = x2; v = cos(x) then u =

x; v = sin(x))

� standard (known) results are stored in a database, and new
results may be added.

� De�nite integrals and numeric integration may also be per-
formed by Maple.
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Numerical Integration

� In this section we consider numerical approximations of the
de�nite integral

I =

Z
b

a

f(x) dx

where f is a real-valued function

� The value of the integral may be interpreted as the area
bounded by the curve y = f(x) where a � x � b

� In many cases, the integral may be evaluated analytically,
for example:

Z
b

a

x2 dx =

�
x3

3

�b
a

=
1

3
(b3 � a3)

Standard techniques may be used, such as

substitutions (x = sin(u))

integration by parts (
R
u dv = uv �

R
v du)
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� But in many cases analytic integration is not possible, ei-
ther because the function is only known at a discrete set
of points (intensional form), or because its known (exten-
sional) form is too complex.

� In either case, numerical integration is required.

� The two cases are slightly different, however.

� if the extensional (formula) form is known, appropriate
function points may be calculated for any value of x

� however, when the value of the function is known only
at certain predetermined points, then these valuesmust
be used, and a form of interpolation is required to ap-
proximate the function at any intermediate x values

� One method used to obtain the integral is to approximate f
by a function that is able to be analytically integrated (say a
polynomial), and then perform the integration analytically to
�nd the appropriate value.

� This method forms the basis of a number of standard meth-
ods. Done with care, this method can produce good results,
but if done without thought may lead to serious errors.
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� If we approximate f(x) on the interval [a; b] with a function
g(x) where

g(x) =

nX
i=1

ai�i(x)

then

I(f) ' I(g) =

nX
i=1

ai

Z
b

a

�i(x) dx

� For example, if g(x) is a cubic spline approximation to f
then I(g) usually approximates I(f) very well.

� Another method is to divide the interval [a; b] into a number
of columns (strips) whose areas can be approximated and
summed.

� Most methods use a combination of these techniques.

� Any formula that approximates I(f) is called a numeric
integration or quadrature rule.
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Classical Formulas

� First discuss several increasingly accurate methods. These
early methods approximate the integral by dividing the in-
terval [a; b] into n strips each of width h

b = a+ nh

� The larger n is (ie. the smaller h is), the more accurate the
result � up to a point.

� The accuracy and ef�ciency of the various methods can
be compared by determining how the error term (which in-
cludes both truncation and representation error) depends
on h.
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Rectangular Rule:

� The simplest method to evaluate the area under a curve is to treat it as
a sum of adjacent narrow rectangles.

� Since there is no reason to give one side of the rectangle more impor-
tance than the other, de�neZ

t+h

t

f(x)dx � hf(t + h=2)

� In fact, by taking the height of each rectangle at the mid-point of each
interval, the errors tend to cancel.

� The integral may then be estimated by the formula

R(h) =

Z
b

a

f(x)dx = h[f(a+ h=2) + f(a+3h=2) + : : :

: : : + f(b� h=2)]
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� Note: programming tips

� when programming, better to use i � h in calculations than to add

h repeatedly within a loop. This reduces the chance of represen-

tation errors.

� if shape of function can be drawn, can then decide the order in

which terms should be added. Sum smaller areas �rst to achieve

greater accuracy.
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Trapezoidal Rule:

� An apparently more accurate rule estimates the area of each strip by
the area of a trapezium, in which the function f(x) is replaced by a
straight line passing through f(a) and f(b).

� In this case,

Z
b

a

f(x) dx '

(b� a)

2
(f(a)+ f(b))

� Applying this rule for a number of strips gives the Extended Trapezoidal
Rule. Noting

Z
t+h

t

f(x)dx �
h

2
[f(t) + f(t+ h)]

the integral may then be estimated by:

T (h) =

Z
b

a

f(x)dx=
h

2
[f(a) + 2f(a+ h) + : : :

: : : + 2f(b� h) + f(b)]
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Simpson's Rule:

� A slightly more complex rule with a much better accuracy
can be derived by approximating adjacent parts of the curve
f by quadratic functions rather than linear ones.

� Let the curve through x, x+h and x+2h satisfy the equa-
tion

f(x) = ax2 + bx + c

for unknown coef�cients a, b, c.

Z
t+2h

t

f(x)dx =
�
ax3=3 + bx2=2 + cx

�t+2h
t

=
h

3
[f(t) + 4f(t+ h) + f(t+2h)]

� The entire integral over multiple strips is then:

S(h) =

Z
b

a

f(x)dx

=
h

3
[f(a) + 4f(a+ h) + 2f(a+ 2h) + : : :

: : : + 4f(b� h) + f(b)]
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