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Juld you say captures the general trend of the
data better? Obviously, this is a subjective ques-
tion, and its answer depends on both the nature
of the given data (e.g., the uncertainty of the data
Values) and the purpose of the fit. Explain your

‘assumptions in answering.
B

for your computer by timing a known compu-
tation, such as matrix multiplication. You can
then use this information to determine the com-
plexity of LU factorization, based on the polyno-
mial fit to the execution times. After converting
to floating-point operations, how does the domi. ‘
Y A ominon problem in surveying is to deter- 1Rant term compare with the theoretically expected |
mine the altitudes of a series of points with respect Value of 3 n® (counting both additions and multi-
10 some reference point. The measurements are Plications)? Try to explain any discr epancy. If
subject to €ITor, so more observations are taken YOU Use a system that provides operation counts ]
than are strictly necessary to determine the alti- automatically, such as MATLAB or some supercom-
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tudes, and the resulting overdetermined system is PUters, try this same experiment fitting the oper-
o Olved in the least squares sense to smooth out &tion counts directly.

i €rrors. Suppose that there are four points whose
f" alt] udes z;, z,, T3, T4 are to be determined. In

3.4. (a) Solve the following least squares prob-

3 lem using any method you like: f
-p_. iddition to direct measurements of each z; with
, Tespect to the reference point, measurements are 0.16 0.10 T4 0.26 | |
4 also taken of each point with respect to all of the 0.17 0.11 [ zz] =10281. |
| others. The resulting measurements are: 2.02 1.29 3.31 |
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z1 = 2.95, T2 = 1.74, (b) Now solve the same least squares problem
N . o p : ¥
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P the corresponding least squares system
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OWn design, to solve it for the best values of the Y°U ®XP lain this difference

titudes. How do your computed values compare 3.5. A planet follows an elliptical orbit, which
fith the direct measurements? can be represented in a Cartesian (z,y) coordi-

3.3. (a) For a series of matrices A of order n, "ate system by the equation
_x-.", the execution times for a library routine to ay® £ b 4 iy g
ompute the LU factorization of A. Using a linear

"'squares routine, or one of your own design, (a) Use a library routine, or one of your own de-
“ cubic polynomial to the execution times as

| sign, for linear least squares to determine the or-
function of n. To obtain reliable results, use a

B . bital parameters a, b, ¢, d, e, given the following
) J’{jde range of values for n, say, in increments observations of the planet’s position:
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) Speed and available memory of the com% P fiad aitod, 80" DAL . V.67
uter you use. You may obtain more accurate Y d 2 eei2 07 0,22 018
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sed to predict the execution time for other val-
L n not tried, such as very large values for n.
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order 10,0007
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In addition to printing the values for the orbital

parameters, plot the resulting orbit and the given
data points in the (z,y) plane.

(b) This least squares problem is nearly rank-
deficient. To see what effect this has on the SO- |

lution, perturb the input data slightly by adding

S
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to each coordinate of each data point a ran-
dom number uniformly distributed on the inter-

val [—0.005, 0.005] (see Section 13.5) and solve the

least squares problem with the perturbed data.
Compare the new values for the parameters with
those previously computed. What effect does this

difference have on the plot of the orbit? Can you
explain this behavior?

(¢) Solve the same least squares problem again, for
both the original and the perturbed data, this time
using a library routine (or one of your own design)
specifically designed to deal with rank deficiency
(by using column pivoting, for example). Such a
routine usually includes as an input parameter a
tolerance to be used in determining the numeri-
cal rank of the matrix. Experiment with various
values for the tolerance, say, 107%, k =  PIESES . S
What is the resulting rank of the matrix for each
value of the tolerance? Compare the behavior of
the two solutions (for the original and the per-
turbed data) with each other as the tolerance and
the resulting rank change. How well do the result-
ing orbits fit the data points as the tolerance and
rank vary? Which solution would you regard as
better: one that fits the data more closely, or one

that is less sensitive to small perturbations in the
data? Why?

(d) Use a library routine to compute the singu-

lar value decomposition of the 10 x 5 least squares
matrix.

(e) Use the singular value decomposition to com-
pute the solution to the least squares problem.
With the singular values in order of decreasing
magnitude, compute the solutions using the first
k singular values, k = 1, ....5. For each of the five
solutions obtained, print the values for the orbital
parameters and also plot the resulting orbits along
with the given data points in the (z,y) plane.

(f) Perturb the input data slightly by adding
to each coordinate of each data point a ran-
dom number uniformly distributed on the inter-
val [—0.005,0.005] (see Section 13.5). Compute
the singular value decomposition of the new least
squares matrix, and solve the least squares prob-
lem with the perturbed data as in part e. Compare
the new values for the parameters with those pre-
viously 'computed for each value of k. What effect
does this difference have on the plot of the orbits?
Can you explain this behavior? Which solution

would you regard as better: one that fits the data
more closely, or one that is less sensitive to small
perturbations in the data? Why?

(9) For simplicity, we have used ordinary least
squares 1n this problem, but in fact all of the data
are equally subject to observational errors (indeed,
T appears on both sides of the equation), which
makes the applicability of ordinary least squares
questionable. Reformulate this problem as a total
least squares problem and solve the latter using

the singular value decomposition as described in
Section 3.6.1.

3.6. Write a routine for computing the pseudoin-
verse of an arbitrary m xn matrix. You may call a
library routine to compute the singular value de-
composition, then use its output to compute the
pseudoinverse (see Section 3.6.1). Consider the
use of a tolerance for declaring relatively small sin-
gular values to be zero. Test your routine on both
singular and n'onsingular matrices. In the latter
case, of course, your results should agree with
those of standard matrix inversion. What hap-
pens when the matrix is nonsingular, but severely
ill-conditioned (e.g., a Hilbert matrix)?

3.7. Write a routine for solving an arbitrary,
possibly rank-deficient, linear least squares prob-
lem Az = b using the singular value decomposi-
tion. You may call a library routine to compute
the SVD, then use its output to compute the least
squares solution (see Section 3.6.1). The input to
your routine should include the matrix A, right-
hand-side vector b, and a tolerance for determin-
Ing the numerical rank of A. Test your routine on
some of the linear least squares problems in the
other computer problems for this chapter.

3.8. To demonstrate how results from the nor-
mal equations method and QR factorization can
differ numerically, we need a least squares problem
that is ill-conditioned and also has a small resid-
ual. We can generate such a problem as follows.
We will fit a polynomial of degree n — 1,

Pn-1(t) = 21 + Zot + z3t* + - -+ + 2ot

to m data points (¢;,%:;), m > n. We choose
ti = (t—1)/(m —1), i = 1,...,m, so that the
data points are equally spaced on the interval
0,1]. We will generate the corresponding values
yi by first choosing values for the z;, say, X4 =

R i ' -
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