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Abstract. It is a challenging task to develop effective and efficient ap-
pearance models for robust object tracking due to factors such as pose
variation, illumination change, occlusion, and motion blur. Existing on-
line tracking algorithms often update models with samples from obser-
vations in recent frames. While much success has been demonstrated,
numerous issues remain to be addressed. First, while these adaptive
appearance models are data-dependent, there does not exist sufficient
amount of data for online algorithms to learn at the outset. Second,
online tracking algorithms often encounter the drift problems. As a re-
sult of self-taught learning, these mis-aligned samples are likely to be
added and degrade the appearance models. In this paper, we propose a
simple yet effective and efficient tracking algorithm with an appearance
model based on features extracted from the multi-scale image feature
space with data-independent basis. Our appearance model employs non-
adaptive random projections that preserve the structure of the image
feature space of objects. A very sparse measurement matrix is adopted
to efficiently extract the features for the appearance model. We com-
press samples of foreground targets and the background using the same
sparse measurement matrix. The tracking task is formulated as a binary
classification via a naive Bayes classifier with online update in the com-
pressed domain. The proposed compressive tracking algorithm runs in
real-time and performs favorably against state-of-the-art algorithms on
challenging sequences in terms of efficiency, accuracy and robustness.

1 Introduction

Despite that numerous algorithms have been proposed in the literature, object
tracking remains a challenging problem due to appearance change caused by
pose, illumination, occlusion, and motion, among others. An effective appearance
model is of prime importance for the success of a tracking algorithm that has
been attracting much attention in recent years [1–10]. Tracking algorithms can
be generally categorized as either generative [1, 2, 6, 10, 9] or discriminative [3–
5, 7, 8] based on their appearance models.

Generative tracking algorithms typically learn a model to represent the target
object and then use it to search for the image region with minimal reconstruction
error. Black et al. [1] learn an off-line subspace model to represent the object of
interest for tracking. The IVT method [6] utilizes an incremental subspace model
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to adapt appearance changes. Recently, sparse representation has been used in
the �1-tracker where an object is modeled by a sparse linear combination of target
and trivial templates [10]. However, the computational complexity of this tracker
is rather high, thereby limiting its applications in real-time scenarios. Li et al. [9]
further extend the �1-tracker by using the orthogonal matching pursuit algorithm
for solving the optimization problems efficiently. Despite much demonstrated
success of these online generative tracking algorithms, several problems remain
to be solved. First, numerous training samples cropped from consecutive frames
are required in order to learn an appearance model online. Since there are only
a few samples at the outset, most tracking algorithms often assume that the
target appearance does not change much during this period. However, if the
appearance of the target changes significantly at the beginning, the drift problem
is likely to occur. Second, when multiple samples are drawn at the current target
location, it is likely to cause drift as the appearance model needs to adapt to
these potentially mis-aligned examples [8]. Third, these generative algorithms do
not use the background information which is likely to improve tracking stability
and accuracy.

Discriminative algorithms pose the tracking problem as a binary classification
task in order to find the decision boundary for separating the target object from
the background. Avidan [3] extends the optical flow approach with a support
vector machine classifier for object tracking. Collins et al. [4] demonstrate that
the most discriminative features can be learned online to separate the target
object from the background. Grabner et al. [5] propose an online boosting algo-
rithm to select features for tracking. However, these trackers [3–5] only use one
positive sample (i.e., the current tracker location) and a few negative samples
when updating the classifier. As the appearance model is updated with noisy and
potentially misaligned examples, this often leads to the tracking drift problem.
Grabner et al. [7] propose an online semi-supervised boosting method to allevi-
ate the drift problem in which only the samples in the first frame are labeled
and all the other samples are unlabeled. Babenko et al. [8] introduce multiple
instance learning into online tracking where samples are considered within posi-
tive and negative bags or sets. Recently, a semi-supervised learning approach [11]
is developed in which positive and negative samples are selected via an online
classifier with structural constraints.

In this paper, we propose an effective and efficient tracking algorithm with
an appearance model based on features extracted in the compressed domain.
The main components of our compressive tracking algorithm are shown by Fig-
ure 1. Our appearance model is generative as the object can be well represented
based on the features extracted in the compressive domain. It is also discrimi-
native because we use these features to separate the target from the surround-
ing background via a naive Bayes classifier. In our appearance model, features
are selected by an information-preserving and non-adaptive dimensionality re-
duction from the multi-scale image feature space based on compressive sensing
theories [12, 13]. It has been demonstrated that a small number of randomly
generated linear measurements can preserve most of the salient information and
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Fig. 1. Main components of our compressive tracking algorithm

allow almost perfect reconstruction of the signal if the signal is compressible such
as natural images or audio [12–14]. We use a very sparse measurement matrix
that satisfies the restricted isometry property (RIP) [15], thereby facilitating ef-
ficient projection from the image feature space to a low-dimensional compressed
subspace. For tracking, the positive and negative samples are projected (i.e.,
compressed) with the same sparse measurement matrix and discriminated by
a simple naive Bayes classifier learned online. The proposed compressive track-
ing algorithm runs at real-time and performs favorably against state-of-the-art
trackers on challenging sequences in terms of efficiency, accuracy and robustness.

2 Preliminaries

We present some preliminaries of compressive sensing which are used in the
proposed tracking algorithm.

2.1 Random Projection

A random matrix R ∈ R
n×m whose rows have unit length projects data from

the high-dimensional image space x ∈ R
m to a lower-dimensional space v ∈ R

n

v = Rx, (1)

where n � m. Ideally, we expect R provides a stable embedding that approxi-
mately preserves the distance between all pairs of original signals. The Johnson-
Lindenstrauss lemma [16] states that with high probability the distances be-
tween the points in a vector space are preserved if they are projected onto a
randomly selected subspace with suitably high dimensions. Baraniuk et al. [17]
proved that the random matrix satisfying the Johnson-Lindenstrauss lemma also
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holds true for the restricted isometry property in compressive sensing. There-
fore, if the random matrix R in (1) satisfies the Johnson-Lindenstrauss lemma,
we can reconstruct x with minimum error from v with high probability if x is
compressive such as audio or image. We can ensure that v preserves almost all
the information in x. This very strong theoretical support motivates us to ana-
lyze the high-dimensional signals via its low-dimensional random projections. In
the proposed algorithm, we use a very sparse matrix that not only satisfies the
Johnson-Lindenstrauss lemma, but also can be efficiently computed for real-time
tracking.

2.2 Random Measurement Matrix

A typical measurement matrix satisfying the restricted isometry property is the
random Gaussian matrix R ∈ R

n×m where rij ∼ N(0, 1), as used in numerous
works recently [14, 9, 18]. However, as the matrix is dense, the memory and
computational loads are still large when m is large. In this paper, we adopt a
very sparse random measurement matrix with entries defined as

rij =
√
s×

⎧
⎨

⎩

1 with probability 1
2s

0 with probability 1− 1
s−1 with probability 1

2s .
(2)

Achlioptas [16] proved that this type of matrix with s = 2 or 3 satisfies the
Johnson-Lindenstrauss lemma. This matrix is very easy to compute which re-
quires only a uniform random generator. More importantly, when s = 3, it is
very sparse where two thirds of the computation can be avoided. In addition, Li
et al. [19] showed that for s = O(m) (x ∈ R

m), this matrix is asymptotically
normal. Even when s = m/ log(m), the random projections are almost as accu-
rate as the conventional random projections where rij ∼ N(0, 1). In this work,
we set s = m/4 which makes a very sparse random matrix. For each row of R,
only about c, c ≤ 4, entries need to be computed. Therefore, the computational
complexity is only O(cn) which is very low. Furthermore, we only need to store
the nonzero entries of R which makes the memory requirement also very light.

3 Proposed Algorithm

In this section, we present our tracking algorithm in details. The tracking prob-
lem is formulated as a detection task and our algorithm is shown in Figure 1.
We assume that the tracking window in the first frame has been determined. At
each frame, we sample some positive samples near the current target location
and negative samples far away from the object center to update the classifier. To
predict the object location in the next frame, we draw some samples around the
current target location and determine the one with the maximal classification
score.
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Fig. 2. Graphical representation of compressing a high-dimensional vector x to a low-
dimensional vector v. In the matrix R, dark, gray and white rectangles represent neg-
ative, positive, and zero entries, respectively. The blue arrows illustrate that one of
nonzero entries of one row of R sensing an element in x is equivalent to a rectangle
filter convolving the intensity at a fixed position of an input image.

3.1 Efficient Dimensionality Reduction

For each sample z ∈ R
w×h, to deal with the scale problem, we represent it by

convolving z with a set of rectangle filters at multiple scales {h1,1, . . . , hw,h}
defined as

hi,j(x, y) =

{
1, 1≤ x ≤ i, 1≤ y ≤ j
0, otherwise

(3)

where i and j are the width and height of a rectangle filter, respectively. Then,
we represent each filtered image as a column vector in R

wh and then concatenate
these vectors as a very high-dimensional multi-scale image feature vector x =
(x1, ..., xm)� ∈ R

m where m = (wh)2. The dimensionality m is typically in the
order of 106 to 1010. We adopt a sparse random matrix R in (2) with s = m/4
to project x onto a vector v ∈ R

n in a low-dimensional space. The random
matrix R needs to be computed only once off-line and remains fixed throughout
the tracking process. For the sparse matrix R in (2), the computational load is
very light. As shown by Figure 2, we only need to store the nonzero entries in
R and the positions of rectangle filters in an input image corresponding to the
nonzero entries in each row of R. Then, v can be efficiently computed by using R
to sparsely measure the rectangular features which can be efficiently computed
using the integral image method [20].

3.2 Analysis of Low-Dimensional Compressive Features

As shown in Figure 2, each element vi in the low-dimensional feature v ∈ R
n

is a linear combination of spatially distributed rectangle features at different
scales. As the coefficients in the measurement matrix can be positive or negative
(via (2)), the compressive features compute the relative intensity difference in
a way similar to the generalized Haar-like features [8] (See also Figure 2). The
Haar-like features have been widely used for object detection with demonstrated
success [20, 21, 8]. The basic types of these Haar-like features are typically de-
signed for different tasks [20, 21]. There often exist a very large number of
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Fig. 3. Probability distributions of three different features in a low-dimensional space.
The red stair represents the histogram of positive samples while the blue one represents
the histogram of negative samples. The red and blue lines denote the corresponding
estimated distributions by our incremental update method.

Haar-like features which make the computational load very heavy. This problem
is alleviated by boosting algorithms for selecting important features [20, 21]. Re-
cently, Babenko et al. [8] adopted the generalized Haar-like features where each
one is a linear combination of randomly generated rectangle features, and use
online boosting to select a small set of them for object tracking. In our work,
the large set of Haar-like features are compressively sensed with a very sparse
measurement matrix. The compressive sensing theories ensure that the extracted
features of our algorithm preserve almost all the information of the original im-
age. Therefore, we can classify the projected features in the compressed domain
efficiently without curse of dimensionality.

3.3 Classifier Construction and Update

For each sample z ∈ R
m, its low-dimensional representation is v = (v1, . . . , vn)

�

∈ R
n with m � n. We assume all elements in v are independently distributed

and model them with a naive Bayes classifier [22],

H(v) = log

(∏n
i=1 p(vi|y = 1)p(y = 1)

∏n
i=1 p(vi|y = 0)p(y = 0)

)

=

n∑

i=1

log

(
p(vi|y = 1)

p(vi|y = 0)

)

, (4)

where we assume uniform prior, p(y = 1) = p(y = 0), and y ∈ {0, 1} is a binary
variable which represents the sample label.

Diaconis and Freedman [23] showed that the random projections of high di-
mensional random vectors are almost always Gaussian. Thus, the conditional
distributions p(vi|y = 1) and p(vi|y = 0) in the classifier H(v) are assumed to
be Gaussian distributed with four parameters (μ1

i , σ
1
i , μ

0
i , σ

0
i ) where

p(vi|y = 1) ∼ N(μ1
i , σ

1
i ), p(vi|y = 0) ∼ N(μ0

i , σ
0
i ). (5)

The scalar parameters in (5) are incrementally updated

μ1
i ← λμ1

i + (1− λ)μ1

σ1
i ←

√

λ(σ1
i )

2 + (1 − λ)(σ1)2 + λ(1 − λ)(μ1
i − μ1)2, (6)
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where λ > 0 is a learning parameter, σ1 =
√

1
n

∑n−1
k=0|y=1(vi(k)− μ1)2 and

μ1 = 1
n

∑n−1
k=0|y=1 vi(k). The above equations can be easily derived by maximal

likelihood estimation. Figure 3 shows the probability distributions for three dif-
ferent features of the positive and negative samples cropped from a few frames of
a sequence for clarity of presentation. It shows that a Gaussian distribution with
online update using (6) is a good approximation of the features in the projected
space. The main steps of our algorithm are summarized in Algorithm 1.

Algorithm 1. Compressive Tracking

Input: t-th video frame

1. Sample a set of image patches, Dγ = {z|||l(z) − lt−1|| < γ} where lt−1 is the
tracking location at the (t-1)-th frame, and extract the features with low dimen-
sionality.

2. Use classifier H in (4) to each feature vector v(z) and find the tracking location
lt with the maximal classifier response.

3. Sample two sets of image patches Dα = {z|||l(z) − lt|| < α} and Dζ,β = {z|ζ <
||l(z)− lt|| < β} with α < ζ < β.

4. Extract the features with these two sets of samples and update the classifier
parameters according to (6).

Output: Tracking location lt and classifier parameters

3.4 Discussion

We note that simplicity is the prime characteristic of our algorithm in which the
proposed sparse measurement matrix R is independent of any training samples,
thereby resulting in a very efficient method. In addition, our algorithm achieves
robust performance as discussed below.

Difference with Related Work. It should be noted that our algorithm is
different from the recently proposed �1-tracker [10] and compressive sensing
tracker [9]. First, both algorithms are generative models that encode an ob-
ject sample by sparse representation of templates using �1-minimization. Thus
the training samples cropped from the previous frames are stored and updated,
but this is not required in our algorithm due to the use of a data-independent
measurement matrix. Second, our algorithm extracts a linear combination of gen-
eralized Haar-like features but these trackers [10][9] use the holistic templates
for sparse representation which are less robust as demonstrated in our experi-
ments. In [9], an orthogonal matching pursuit algorithm is applied to solve the
�1-minimization problems. Third, both of these tracking algorithms [10][9] need
to solve numerous time-consuming �1-minimization problems but our algorithm
is efficient as only matrix multiplications are required.

Random Projection vs. Principal Component Analysis. For visual track-
ing, dimensionality reduction algorithms such as principal component analysis
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Fig. 4. Illustration of robustness of our algorithm to ambiguity in detection. Top row:
three positive samples. The sample in red rectangle is the most “correct” positive sam-
ple while other two in yellow rectangles are less “correct” positive samples. Bottom
row: the probability distributions for a feature extracted from positive and negative
samples. The red markers denote the feature extracted from the most “correct” pos-
itive sample while the yellow markers denote the feature extracted from the two less
“correct” positive samples. The red and blue stairs as well as lines denote the estimated
distributions of positive and negative samples as shown in Figure 3.

and its variations have been widely used in generative tracking methods [1, 6].
These methods need to update the appearance models frequently for robust
tracking. However, these methods are sensitive to occlusion due to the holis-
tic representation schemes. Furthermore, it is not clear whether the appearance
models can be updated correctly with new observations (e.g., without alignment
errors to avoid tracking drift). In contrast, our algorithm does not suffer from the
problems with online self-taught learning approaches [24] as the proposed model
with the measurement matrix is data-independent. It has been shown that for
image and text applications, favorable results can be achieved by methods with
random projection than principal component analysis [25].

Robustness to Ambiguity in Detection. The tracking-by-detection methods
often encounter the inherent ambiguity problems as shown in Figure 4. Recently
Babenko et al. [8] introduced multiple instance learning schemes to alleviate the
tracking ambiguity problem. Our algorithm is robust to the ambiguity problem
as illustrated in Figure 4. While the target appearance changes over time, the
most “correct” positive samples (e.g., the sample in the red rectangle in Figure
4) are similar in most frames. However, the less “correct” positive samples (e.g.,
samples in yellow rectangles of Figure 4) are much more different as they involve
some background information which vary much more than those within the tar-
get object. Thus, the distributions for the features extracted from the most
“correct” positive samples are more concentrated than those from the less “cor-
rect” positive samples. This in turn makes the features from the most “correct”
positive samples much more stable than those from the less “correct” positive
samples (e.g., bottom row in Figure 4, the features denoted by red markers are
more stable than those denoted by yellow markers). Thus, our algorithm is able
to select the most “correct” positive sample because its probability is larger than
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those of the less “correct” positive samples (See the markers in Figure 4). In ad-
dition, our measurement matrix is data-independent and no noise is introduced
by mis-aligned samples.

Robustness to Occlusion. Each feature in our algorithm is spatially localized
(Figure 2) which is less sensitive to occlusion than holistic representations. Simi-
lar representations, e.g., local binary patterns [26] and generalized Haar-like fea-
tures [8], have been shown to be more effective in handling occlusion. Moreover,
features are randomly sampled at multiple scales by our algorithm in a way similar
to [27, 8] which have demonstrated robust results for dealing with occlusion.

Dimensionality of Projected Space. Assume there exist d input points in
R

m. Given 0 < ε < 1 as well as β > 0, and let R ∈ R
n×m be a random

matrix projecting data from R
m to R

n, the theoretical bound for the dimension

n that satisfies the Johnson-Lindenstrauss lemma is n ≥
(

4+2β
ε2/2−ε3/3

)
ln(d) [16].

In practice, Bingham and Mannila [25] pointed out that this bound is much
higher than that suffices to achieve good results on image and text data. In their
applications, the lower bound for n when ε = 0.2 is 1600 but n = 50 is sufficient
to generate good results. In our experiments, with 100 samples (i.e., d = 100),
ε = 0.2 and β = 1, the lower bound for n is approximately 1600. Another bound
derived from the restricted isometry property in compressive sensing [15] is much
tighter than that from Johnson-Lindenstrauss lemma, where n ≥ κβ log(m/β)
and κ and β are constants. For m = 106, κ = 1, and β = 10, it is expected
that n ≥ 50. We find that good results can be obtained when n = 50 in our
experiments.

4 Experiments

We evaluate our tracking algorithm with 7 state-or-the-art methods on 20 chal-
lenging sequences among which 16 are publicly available and 4 are our own.
The Animal, Shaking and Soccer sequences are provided in [28] and the Box
and Jumping are from [29]. The 7 trackers we compare with are the fragment
tracker (Frag) [30], the online AdaBoost method (OAB) [5], the Semi-supervised
tracker (SemiB) [7], the MILTrack algorithm [8], the �1-tracker [10], the TLD
tracker [11], and the Struck method [31]. We note that the source code of [9]
is not available for evaluation and the implementation requires some technical
details and parameters not discussed therein. It is worth noticing that we use
the most challenging sequences from the existing works. For fair comparison, we
use the source or binary codes provided by the authors with tuned parameters
for best performance. For our compared trackers, we either use the tuned pa-
rameters from the source codes or empirically set them for best results. Since
all of the trackers except for Frag involve randomness, we run them 10 times
and report the average result for each video clip. Our tracker is implemented in
MATLAB, which runs at 35 frames per second (FPS) on a Pentium Dual-Core
2.80 GHz CPU with 4 GB RAM. The source codes and datasets are available at
http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm.

http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
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Table 1. Success rate (SR)(%). Bold fonts indicate the best performance while the
italic fonts indicate the second best ones. The total number of evaluated frames is 8270.

Sequence CT MILTrack OAB SemiB Frag �1-track TLD Struck

Animal 76 73 15 47 3 5 75 97

Bolt 79 83 1 16 39 2 1 10

Biker 75 21 42 62 26 31 42 35

Box 89 65 13 38 16 5 92 92

Coupon book 100 99 98 37 27 100 16 99

Cliff bar 89 65 23 65 22 38 67 70

David indoor 89 68 31 46 8 41 98 98

Girl 78 50 71 50 68 90 57 99

Jumping 100 99 86 84 36 9 99 18

Kitesurf 68 90 31 67 10 31 65 40

Occluded face 2 100 99 47 40 52 84 46 78

Panda 81 75 69 67 7 56 29 13

Sylvester 75 80 70 68 34 46 94 87

Skiing 70 42 69 69 7 10 59 80

Shaking 92 85 40 31 28 10 16 1

Soccer 78 17 8 9 27 13 10 14

Twinings 89 72 98 23 69 83 46 98

Tiger 1 78 39 24 28 19 13 65 73

Tiger 2 60 45 37 17 13 12 41 22

Walking person 89 32 86 81 32 98 55 100

Average SR 84 69 52 48 31 46 49 64

4.1 Experimental Setup

Given a target location at the current frame, the search radius for drawing
positive samples is set to α = 4 which generates 45 positive samples. The inner
and outer radii for the set Xζ,β that generates negative samples are set to ζ = 8
and β = 30, respectively. We randomly select 50 negative samples from set Xζ,β.
The search radius for set Dγ to detect the object location is set to γ = 20 and
about 1100 samples are generated. The dimensionality of projected space is set
to n = 50, and the learning parameter λ is set to 0.85.

4.2 Experimental Results

All of the video frames are in gray scale and we use two metrics to evaluate
the proposed algorithm with 7 state-of-the-art trackers. The first metric is the

success rate, score = area(ROIT
⋂

ROIG)
area(ROIT

⋃
ROIG) , where ROIT is the tracking bounding

box and ROIG is the ground truth bounding box. If the score is larger than
0.5 in one frame, the tracking result is considered as a success. The other is
the center location error measured with manually labeled ground truth data.
Table 1 and Table 2 show the quantitative results averaged over 10 times as
described above. We note that although TLD tracker is able to relocate on the
target during tracking, it is easy to lose the target completely for some frames
in most of the test sequences. Thus, we only show the center location errors for
the sequences that TLD can keep track all the time. The proposed compressive
tracking algorithm achieves the best or second best results in most sequences in
terms of both success rate and center location error. Furthermore, our tracker
runs faster than all the other algorithms although they (except for the TLD
method and �1-tracker) are implemented in C or C++ which is intrinsically more
efficient than MATLAB. Figure 5 shows screenshots of some tracking results.
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Table 2. Center location error (CLE)(in pixels) and average frame per second (FPS).
Bold fonts indicate the best performance while the italic fonts indicate the second best
ones. The total number of evaluated frames is 8270.

Sequence CT MILTrack OAB SemiB Frag �1-track TLD Struck

Animal 17 32 62 25 99 155 −− 17

Bolt 8 8 227 101 43 58 −− 157

Biker 11 38 12 13 72 74 −− 14

Box 14 57 74 119 160 196 −− 11

Coupon book 4 6 9 74 63 6 −− 10

Cliff bar 7 14 33 56 34 35 −− 20

David indoor 16 19 57 37 73 42 12 9

Girl 21 25 23 50 26 13 −− 10

Jumping 6 10 11 11 29 99 8 42

Kitesurf 9 5 33 10 55 51 −− 30

Occluded face 2 10 16 36 39 58 19 −− 25

Panda 6 9 10 10 69 10 20 67

Sylvester 9 10 12 14 47 42 7 9

Skiing 10 15 12 11 134 189 −− 166

Shaking 9 12 22 133 41 192 −− 166

Soccer 16 64 96 135 54 189 −− 95

Twinings 9 14 7 70 15 10 15 7

Tiger 1 10 27 42 39 39 48 −− 12

Tiger 2 13 18 22 29 37 57 −− 22

Walking person 5 8 5 7 59 4 6 2

Average CLE 10 19 36 49 56 60 −− 36

Average FPS 35.2 10.5 8.6 6.7 3.8 0.1 9.6 0.01

Scale, Pose and Illumination Change. For the David indoor sequence shown
in Figure 5(a), the illumination and pose of the object both change gradually.
The MILTrack, TLD and Struck methods perform well on this sequence. For
the Shaking sequence shown in Figure 5(b), when the stage light changes dras-
tically and the pose of the subject changes rapidly as he performs, all the other
trackers fail to track the object reliably. The proposed tracker is robust to pose
and illumination changes as object appearance can be modeled well by random
projections (based on the Johnson-Lindenstrauss lemma) and the classifier with
online update is used to separate foreground and background samples. Moreover,
the proposed tracker is a discriminative model with local features that has been
demonstrated to handle pose variation well (e.g., MILTrack [8]). The generative
subspace tracker (e.g., IVT [6]) has been shown to be effective in dealing with
large illumination changes while the discriminative tracking method with local
features (i.e., MILTrack [8]) has been demonstrated to handle pose variation ad-
equately. Furthermore, the features we use are similar to generalized Haar-like
features which have been shown to be robust to scale and orientation change [8]
as illustrated in the David indoor sequence. In addition, our tracker performs
well on the Sylvester and Panda sequences in which the target objects undergo
significant pose changes (See the supplementary material for details).

Occlusion and Pose Variation. The target object in Occluded face 2 sequence
in Figure 5(c) undergoes large pose variation and heavy occlusion. Only the MIL-
Track and Struck methods as well as the proposed algorithm perform well on
this sequence. In addition, our tracker achieves the best performance in terms
of success rate, center location error, and frame rate. The target player in Soc-
cer sequence is heavily occluded by others many times when he is holding up
the trophy as shown in Figure 5(d). In some frames, the object is almost fully
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(a) David indoor (b) Shaking
#150 #168 #400 #60 #242 #350

(c) Occluded face 2 (d) Soccer
#470 #720 #780 #70 #120 #300

(e) Kitesurf (f) Animal
#20 #50 #60 #5 #22 #35

(g) Biker (h) Tiger 2
#80 #90 #120 #110 #175 #325

(i) Coupon book (j) Bolt
#50 #140 #230 #20 #140 #200

Frag OAB SemiB MILTrack TLD Struck L1−track CT

Fig. 5. Screenshots of some sampled tracking results

occluded (e.g., #120). Moreover, the object undergoes drastic motion blur and
illumination change (#70, and #300). All the other trackers lose track of the
targets in numerous frames. Due to drastic scene change, it is unlikely that on-
line appearance models are able to adapt fast and correctly. Our tracker can
handle occlusion and pose variations well as its appearance model is discrimi-
natively learned from target and background with a data-independent measure-
ment, thereby alleviating the influence from background (See also Figure 4).
Furthermore, our tracker performs well for objects with non-rigid pose variation
and camera view change in the Bolt sequence (Figure 5(j)) because the appear-
ance model of our tracker is based on local features which are insensitive to
non-rigid shape deformation.

Out of Plane Rotation and Abrupt Motion. The object in the Kitesurf
sequence (Figure 5(e)) undergoes acrobat movements with 360 degrees out of
plane rotation. Only the MILTrack, SemiB and the proposed trackers perform
well on this sequence. Both our tracker and the MILTrack method are designed
to handle object location ambiguity in tracking with classifiers and discrimina-
tive features. The object in the Animal sequence (Figure 5(f)) exhibits abrupt
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motion. Both the Struck and the proposed methods perform well on this se-
quence. However, when the out of plane rotation and abrupt motion both occur
in the Biker and Tiger 2 sequences (Figure 5(g),(h)), all the other algorithms
fail to track the target objects well. Our tracker outperforms the other methods
in all the metrics (accuracy, success rate and speed). The Kitesurf, Skiing, Twin-
ings, Girl and Tiger 1 sequences all contain out of plane rotation while Jumping
and Box sequences include abrupt motion. Similarly, our tracker performs well
in terms of all metrics.

Background Clutters. The object in the Cliff bar sequence changes in scale,
orientation and the surrounding background has similar texture. As the �1-
tracker uses a generative appearance model that does not take background in-
formation into account, it is difficult to keep track of the objects correctly. The
object in the Coupon book sequence undergoes significant appearance change at
the 60-th frame, and then the other coupon book appears. Both the Frag and
SemiB methods are distracted to track the other coupon book (#230 in Fig-
ure 5(i)) while our tracker successfully tracks the correct one. Because the TLD
tracker relies heavily on the visual information in the first frame to re-detect the
object, it also suffers from the same problem. Our algorithm is able to track the
right objects accurately in these two sequences because it extracts discriminative
features for the most “correct” positive sample (i.e., the target object) online
(See Figure 4) with classifier update for foreground/background separation.

5 Concluding Remarks

In this paper, we proposed a simple yet robust tracking algorithm with an ap-
pearance model based on non-adaptive random projections that preserve the
structure of original image space. A very sparse measurement matrix was adopted
to efficiently compress features from the foreground targets and background
ones. The tracking task was formulated as a binary classification problem with
online update in the compressed domain. Our algorithm combines the merits of
generative and discriminative appearance models to account for scene changes.
Numerous experiments with state-of-the-art algorithms on challenging sequences
demonstrated that the proposed algorithm performs well in terms of accuracy,
robustness, and speed.
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