
Analytic PCA Construction for
Theoretical Analysis of Lighting Variability

in Images of a Lambertian Object
Ravi Ramamoorthi

Abstract—We analyze theoretically the subspace best approximating images of a convex Lambertian object taken from the same

viewpoint, but under different distant illumination conditions. Since the lighting is an arbitrary function, the space of all possible images

is formally infinite-dimensional. However, previous empirical work has shown that images of largely diffuse objects actually lie very

close to a five-dimensional subspace. In this paper, we analytically construct the principal component analysis for images of a convex

Lambertian object, explicitly taking attached shadows into account, and find the principal eigenmodes and eigenvalues with respect to

lighting variability. Our analysis makes use of an analytic formula for the irradiance in terms of spherical-harmonic coefficients of the

illumination and shows, under appropriate assumptions, that the principal components or eigenvectors are identical to the spherical

harmonic basis functions evaluated at the surface normal vectors. Our main contribution is in extending these results to the single-

viewpoint case, showing how the principal eigenmodes and eigenvalues are affected when only a limited subset (the upper

hemisphere) of normals is available and the spherical harmonics are no longer orthonormal over the restricted domain. Our results are

very close, both qualitatively and quantitatively, to previous empirical observations and represent the first essentially complete

theoretical explanation of these observations. Our analysis is also likely to be of interest in other areas of computer vision and image-

based rendering. In particular, our results indicate that using complex illumination for photometric problems in computer vision is not

significantly more difficult than using directional sources.

Index Terms—Illumination, radiance, irradiance, Lambertian, recognition, principal component analysis, spherical harmonics.
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1 INTRODUCTION

A robust recognition system must be able to identify an
object across variable lighting conditions. This is often

a challenging task. For instance, it has been shown
empirically by Moses et al. [13] that, in images of a human
face, variability due to illumination changes is greater than
that owing to differences between individual faces.
Furthermore, most supposedly “illumination-invariant”
features, such as edge maps, are, in practice, not robust to
large lighting variations [13]. For this reason, it is important
to come up with a low-dimensional generative model to
explain lighting variability.

A classic approach to constructing such a representation
is to consider the principal components of a set of images
acquired under different conditions. This method is also
sometimes called a Karhunen-Loeve expansion. This so-
called eigenface approach has been described by Kirby and
Sirovich [9], Sirovich and Kirby [20], and Turk and Pentland
[21]. Often, we can achieve a good low-dimensional
representation of the space of possible images by consider-
ing only a few principal components or eigenvectors—the
modes corresponding to the largest eigenvalues.

With respect to lighting variability, however, the space of
possible images is infinite-dimensional. Theoretical work by
Belhumeur and Kriegman [3] has shown that this is true even

for Lambertian objects under distant illumination—a com-
mon assumption made in many computer vision applications
that we will make in this paper. Indeed, to represent the
illumination exactly, we need an infinite number of coeffi-
cients, corresponding to the intensity for each incident
direction. It would appear that each illumination condition
leads to a distinct appearance for the object under considera-
tion, making it impossible to derive a good low-dimensional
subspace approximation using PCA.

However, experimental results go against this intuition.
Empirical work is reported by Hallinan [8], Epstein et al. [5],
and Yuille et al. [22]. They used a human face and other objects
to perform PCA on a number of different images acquired by
moving a distant point source along a sphere surrounding the
object. These classic experiments came to the somewhat
counterintuitive conclusion that, for largely diffuse objects,
the first five principal components explain most of the image
variation. In other words, images of diffuse objects under
varying illumination lie very close to a 5D subspace.

Although the experiments by Hallinan [8] andEpstein et al.
[5] are nearly a decade old, and have been confirmed by other
authors [3], [6], [7], [22], there has been no satisfactory
theoretical explanation. The closest prior work ignores the
question of visibility, deriving the result that, in the absence of
shadows, a 3D subspace suffices to describe the set of images
of a Lambertian object under distant illumination [14], [18].
However, the absence of shadows is not a valid assumption in
most practical situations. In reality, each point on an object is
illuminated only from the upper hemisphere of incident
directions. Attached shadows, referring to surface normals
that face backward with respect to the light source and are
therefore shadowed, are usually an important factor,
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especially when the illumination is complex. For this reason,
the 3D subspace approximations are too simple to explain the
empirical data (which lies close to a 5D subspace).

Most recently, Basri and Jacobs [1] and Ramamoorthi and
Hanrahan [16] have independently derived an analytic
formula for the irradiance (and, hence, reflected radiance
from a convex Lambertian object) under arbitrary distant
illumination, explicitly considering attached shadows. They
show that the irradiance can be regarded as a convolution of
the incident illumination with the Lambertian reflectance
function (a clamped cosine) and express the irradiance in
terms of spherical harmonic coefficients of the illumination.
A key result of their work is that Lambertian reflection acts
as a low-pass filter so that the irradiance lies very close to a
9D subspace. This model is a significant step toward
explaining why images of a diffuse object lie close to a
low-dimensional subspace and provides novel frequency-
space tools to understand lighting variability. However, the
connection between the spherical harmonic basis and the
principal components is not obvious. More importantly, the
9D subspace predicted is somewhat at variance with the
5D subspace observed empirically.

Given these discrepancies between previous analytical
predictions and empirical observations, it appears that a
complete theoretical explanation must explicitly construct
the PCA. However, numerical PCA methods for empirical
data sets usually operate on a small discrete set of images
and may be biased by the particular lighting directions
used. On the other hand, an analytical approach must
consider an infinite set of images that correctly samples all
possible illumination conditions. Furthermore, using a very
dense discrete sampling of the sphere of incident illumina-
tion directions, with thousands of source images, would
make PCA computationally intractable. For this reason,
previous empirical work has not usually reported using
very dense samplings nor has theoretical work tried a brute-
force numerical computation of the PCA for synthetic
images. However, there has recently been progress in
analytically-based methods [10], [23] for extending PCA
from a discrete set of images to a continuous sampling, with
practical results demonstrating much better generalization
than with a purely empirical method. In fact, Zhao and
Yang [23] have analytically constructed the covariance
matrix for PCA under the assumption of no shadowing.

In this paper, we analytically construct the PCA in terms
of spherical harmonic basis functions, explicitly taking
attached shadows into account, for images of a convex1

Lambertian object under varying illumination, but fixed
viewing conditions. In so doing, we uncover the connec-
tions between the spherical harmonic basis and the PCA.
We show that, under appropriate assumptions, the princi-
pal components or eigenvectors are equal to the spherical
harmonic basis functions and the eigenvalues, correspond-
ing to how important a principal component is in explain-
ing image variability, are equal to the spherical harmonic
coefficients describing the Lambertian BRDF.

Next, we extend these results even further. Our main
contribution is in showing how the eigenvectors (principal
components) and eigenvalues are affected by restricting
attention to a single viewpoint—where we have only the
upper hemisphere of normals, instead of the whole sphere of
surface orientations. While it is clear qualitatively that
restricting the space of surface normals should produce a
lower-dimensional approximation, this paper is the first
disciplined approach to taking this restriction into account. In
particular, we show that the reduced dimensionality stems
from the fact that, while the spherical harmonics are
orthonormal over the entire sphere of normals, this no longer
holds over a reduced domain. This requires us to linearly
combine the spherical harmonics to create a new set of
orthonormal eigenfunctions over the reduced domain. The
eigenvalue spectrum also changes, with a faster decay of
eigenvalues, and a breaking of some of the degeneracies
present when considering the entire sphere of surface
normals. We show that one can numerically compute the
eigenvectors and eigenvalues to very high accuracy simply
by computing the eigensystem of a 9� 9 matrix, making use
of the 9D approximation introduced by Basri and Jacobs [1]
and Ramamoorthi and Hanrahan [16].

Besides being of theoretical interest, this analysis gives
analytic forms for the modified lighting and appearance
basis functions to be used in object recognition. In this way,
we extend the nine parameter Lambertian BRDF model,
showing how to modify it when we have only a single
viewpoint. Furthermore, the results point to a way of
extending other computer vision algorithms to handle
complex illumination. Our theoretical predictions, summar-
ized below, are seen to be very close both qualitatively and
quantitatively, to the previous empirical observations of
Hallinan [8] and Epstein et al. [5].

Orthogonality Matrix. The major mathematical result is
that the principal components and associated eigenvalues
correspond to the eigenvectors of a scaled version of the
orthogonality matrix, i.e., a matrix expressing the orthogon-
ality between the spherical harmonic basis functions when
the domain of integration is restricted to the surface
normals in the image. If we were considering the entire
sphere of possible normal directions, this matrix would just
be the identity matrix. Hence, the eigenvectors or principal
components would simply be the spherical harmonic
modes. However, if we consider images from a single
viewpoint, the orthogonality matrix is no longer the identity
and the eigenvectors or principal components are linear
combinations of the spherical harmonics, with a new
eigenvalue spectrum. The orthogonality matrix depends
on the distribution of surface normals in the image and,
hence, depends on object geometry. We are able to derive
quantitative results for a number of cases of interest,
including images of a human face and a sphere, shown in
Figs. 1 and 2, respectively.

Form of Principal Components: Hallinan [8] charac-
terizes the first five principal components for human faces
as corresponding to frontal lighting, side lighting, lighting from

above/below, extreme side lighting, and lighting from a corner.
Visual inspection of Figs. 1 and 2 indicates that the principal
components predicted by our theoretical model agree well
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1. In other words, we explicitly take into account local attached shadows,
i.e., normals back facing with respect to the illumination, but ignore the
effects of global cast shadows. Hence, our method is not completely
accurate for concave objects. However, as seen in the results, the agreement
with experiment is excellent even when the surfaces have a few concave
regions, such as human faces.



with these labelings. Furthermore, Fig. 1 looks almost
identical to Fig. 1 in Hallinan [8].2

Dimensionality of Approximating Linear Subspace.
From our derivation, we conclude that five eigenvectors or
principal components suffice to capture over 95 percent of the
image variance. These results agree with empirical work [8],
[5]. In fact, we even have good quantitative agreement. For
instance, Epstein et al. [5] report that, for an image of a
basketball, three eigenvectors capture 94 percent of the
variance, while five eigenvectors account for 98 percent. Our
corresponding theoretical results for an image of a sphere are
91 percent and 96 percent. For a human face, the correspond-
ing empirical numbers [5] for three and five eigenvectors are
90 percent and 94 percent, respectively. Our corresponding
theoretical predictions are 91 percent and 97 percent,
respectively.

Eigenvalue Spectrum. Hallinan [8] notes that, for human
faces, the principal components lie in two groups. In a group,
the eigenvalues are similar so the principal components may
exchange places. The first group, consisting of two members,
corresponds to frontal and side lighting. This is in agreement
with our theoretical predictions, illustrated in Fig. 1, which
show these two eigenvalues to be close, having numerical
values 0:42 and 0:33 respectively, and well separated from

the other eigenvalues. The next group consists of the next
three principal components. Our theory predicts that the
eigenvalues for the fourth and fifth principal components are
close (having values 0:035 and 0:021), so these may exchange
places, as observed by Hallinan [8]. We predict that the third
principal component should always correspond approxi-
mately to lighting from above/below, i.e., the Y direction.
This appears to be the case in the empirical data also.

The rest of this paper is organized as follows: In Section 2,
we mathematically show how to analytically construct the
PCA, deriving the result that the principal components
correspond to eigenvectors of the scaledorthogonality matrix.
In Section 3, we use these results to actually compute the
eigensystem, i.e., principal components and eigenvalues, for
several cases of interest. In Section 4, we redo the computa-
tions with the mean value subtracted, as is conventional in
PCA. The results of this section can directly be compared to
experiment. Finally, Section 5 concludes the paper by
presenting implications for a number of areas in computer
vision and graphics, as well as suggesting some directions for
future work. This paper is an expanded and more detailed
versionof the work [15]presented at theCVPR 2001 workshop
on identifying objects across lighting variations.

2 MATHEMATICS OF ANALYTIC PCA
CONSTRUCTION

In this section, we give the mathematical details of our
approach to analytic PCA construction. We first define the
notation and the appropriate matrices. We then show how
to reduce the problem to an eigensystem. In the next
section, we will compute the eigenmodes for a number of
cases of interest. There are two points worth noting about
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Fig. 1. The first five principal components of a face, computed by our method. The form of these eigenmodes is strikingly similar to those derived

empirically by previous researchers (see Fig. 1 in Hallinan [8]). The corresponding eigenvalues are in the ratio of 0.42, 0.33, 0.16, 0.035, 0.021 and

are in agreement with empirical observation, with the first five eigenmodes accounting for 97 percent of the variance. The principal components

contain both positive values, shown in green, and negative values, shown in red. The face is an actual range scan courtesy of Cyberware.

Fig. 2. The first five principal components for an image of a sphere, as computed analytically by our method. The correspodning eigenvalues are in

the ratio of 0.43, 0.24, 0.24, 0.023, 0.023, with the first five eigenvalues accounting for 96 percent of the variance. The principal components contain

both positive values, shown in green, and the negative values, shown in red.

2. We would like to propose a correction to his terminology, however.
Eigenvectors 4 and 5 involve second order or quadratic modes and,
therefore, cannot really be simply classified as corresponding to a single
source of illumination. In fact, all the eigenmodes except the first have
negative lobes as well as positive and cannot therefore be thought of as
corresponding to any physical illumination. Hence, we think it should be
emphasized that the principal components do not necessarily correspond to
physical lighting conditions since they may take negative values. It may be
more appropriate in the future to label the eigenvectors based on how they
correspond to the spherical harmonic basis functions.



the mathematics. First, our original derivation will be
without subtracting out the mean, as opposed to the
common practice in PCA analysis. This will make the
derivation slightly simpler and confer some interesting
insights. Later, we will redo the analysis with the mean
subtracted in order to make a more accurate comparison to
empirical work. Second, we assume untextured surfaces.
This assumption does not significantly affect the validity of
our results since we may simply multiply all the principal
components by the same texture in order to obtain results
for textured objects. However, it should be noted that
consideration of texture causes the principal components to
have greater amplitude in regions of high albedo. For
objects of interest for us, such as human faces, this effect is
unlikely to be significant since the low-frequency texture
variations are relatively minor.

2.1 Principal Component Analysis

We first define the notation. We will be interested in images
Eð�; �Þ corresponding to a light source at direction ð�; �Þ,
where ð�; �Þ are the global spherical coordinates of the
distant light source. A single pixel in the image will be
denoted by Eð�; �; �; �Þ, where ð�; �Þ stand for the spherical
coordinates of the surface normal. Note that, in our model
of the world (distant illumination, convex Lambertian
surfaces, no cast shadows), these four parameters suffice
to determine the shading. Also, since the surface is
Lambertian and we are ignoring the albedo, Eð�; �; �; �Þ
can be though of as corresponding directly to the irradiance
at orientation ð�; �Þ due to a unit directional source at ð�; �Þ.

Assume now that we sample the space of possible image
pixels in some way, i.e., by means of some light source
positions ð�	; �	Þ and some normal coordinates, i.e., ð�i; �iÞ.
The matrixQ consisting of all observations then has the form

Qi	 ¼ Eð�	; �	; �i; �iÞ: ð1Þ

Here, the rows (depending on index i) denote image
observations, while the columns (depending on index 	)
correspond to different light source positions. This is the
standard definition of the matrix Q. In order to find
the principal components or eigenimages, we must find the
eigensystem of the matrix T ¼ QQT . The formula for this
matrix is given by

Tij ¼
X
	

Qi	Q
T
	j ¼

X
	

Qi	Qj	

¼
X
	

Eð�	; �	; �i; �iÞEð�	; �	; �j; �jÞ:
ð2Þ

To help make matters concrete, assume that, in an
experimental situation, there are n image pixels and d light
positions. In most experiments, n > d. Then, matrix Q will
be n� d, while matrix T will be n� n. The eigenvectors of T
will correspond to principal component images, while the
eigenvalues will measure their importance. We can get an
idea of how well the matrix T is approximated by some
number of eigenvectors by considering the fraction of the
total sum of eigenvalues given by the sum of the
eigenvalues corresponding to the eigenvectors in question.
It should be noted that, in practical applications, it is
possible to write down an equivalent d� d eigensystem that
is computationally simpler. However, for analytic PCA
construction, we work directly with the matrix T .

To proceed further, we will need a formula for E. We
make use of a frequency-space analytic formula for the
irradiance derived independently by Ramamoorthi and
Hanrahan [16] as well as Basri and Jacobs [1].

Eð�; �; �; �Þ ¼
X1
l¼0

Xl
m¼�l

ÂAlLlmð�; �ÞYlmð�; �Þ: ð3Þ

In (3) above, Ylm are the spherical harmonics [4], [11], [19].

Spherical harmonics with l � 0 and �l � m � l are the

appropriate signal processing tools in angular space and are

the spherical analog of the conventional Fourier basis. The

coefficients Llm are the spherical harmonic coefficients of the

incident illumination, while ÂAl is a constant which vanishes

for odd l > 1 and decays for even l as l�5=2. Because of this

rapid decay, a very good approximation can be obtained by

limiting l � 2. In fact, 99 percent of the energy of the

Lambertian BRDF filter, i.e., of ÂAl, is contained by l � 2.

Appendix A lists values for ÂAl and Ylm for l � 2.
The above formula describes the effects of general

illumination conditions. We must specialize it to our case
of a single-directional source by finding the coefficients
Llmð�; �Þ in terms of the angular coordinates ð�; �Þ of the
light source. Since the light source is described by a delta
function, we simply evaluate the spherical harmonics at the
light vector, deriving Llmð�; �Þ ¼ Ylmð�; �Þ. Note that we
use the real form of the spherical harmonics, so there is no
need to worry about complex conjugation. Now,

Eð�; �; �; �Þ ¼
X1
l¼0

Xl
m¼�l

ÂAlYlmð�; �ÞYlmð�; �Þ: ð4Þ

It is worthwhile contrasting (4) with the standard
angular-space formula for E, obtained simply by the dot
product of the vectors corresponding to ð�; �Þ and ð�; �Þ.

Eð�; �; �; �Þ ¼ max½0; sin � sin � cosð� � �Þ þ cos � cos ��:
ð5Þ

The angular-space formula above is difficult to manipulate
because of the max expression. The main advantage of the
frequency-space formula in (4) is that no special case
manipulation is required to treat attached shadows.

Plugging (4) into (2), we get

Tij ¼
X

l;m;l0;m0
ÂAlÂAl0Ylmð�i; �iÞYl0m0 ð�j; �jÞ

�
X
	

Ylmð�	; �	ÞYl0m0 ð�	; �	Þ:
ð6Þ

We now proceed to do the summation over	. Clearly, this will
depend, in practice, on the specific sampling pattern used for
movingthelightsource.However,ourgoal is togetananalytic
understanding. It is most reasonable to assume, for mathe-
matical purposes, that the light source samples are infinitely
dense, sampling the sphere of directions equally for all
differential solid angles. This assumption also makes physical
sense since we wish to make no a priori assumptions about the
lighting distribution in the scene, so we should assume the
illumination is equally likely to come from any direction. The
summation over the index 	 may then be replaced by an
integral over the angular coordinates ð�; �Þ, and we obtain
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Tij ¼
X

l;m;l0;m0
ÂAlÂAl0Ylmð�i; �iÞYl0m0 ð�j; �jÞ

�
Z �

�¼0

Z 2�

�¼0

Ylmð�; �ÞYl0m0 ð�; �Þ sin� d� d�:

ð7Þ

It is now straightforward to use the orthonormality of the
spherical harmonics to set l ¼ l0 and m ¼ m0 and write

Tij ¼
X1
l¼0

Xl
m¼�l

ÂAl

� �2
Ylmð�i; �iÞYlmð�j; �jÞ: ð8Þ

We have just derived an analytic form for the elements Tij
of the covariance matrix used for principal component
analysis. This analytic form has been derived under fairly
weak assumptions—a convex Lambertian surface under
distant illumination, with a uniform probability for the
lighting over the entire sphere of incident directions. We
now show how to derive the corresponding eigensystem.

2.2 Reduction to Eigensystem

We now wish to find an eigenvector u, which is a vector that
satisfies Tu ¼ �u, where � is the eigenvalue. This can also
be written as

P
j Tijuj ¼ �ui. Note that u corresponds to a

principal component image. Now, we expand u in terms of
spherical harmonics,

uj ¼
X1
p¼0

Xp
q¼�p

cpqYpqð�j; �jÞ: ð9Þ

Our goal is to find the coefficients cpq. Plugging into (8), we

obtain

X
j

Tijuj ¼
X

l;m;p;q;j

ÂAl

� �2
Ylmð�i; �iÞYlmð�j; �jÞcpqYpqð�j; �jÞ

�ui ¼ �
X
l;m

clmYlmð�i; �iÞ:
ð10Þ

We require the first and second lines above to be equal.
First, we do the summation over the index j in the first line
above. Define

Mlm;pq ¼
X
j

Ylmð�j; �jÞYpqð�j; �jÞ: ð11Þ

The matrixM will be fundamental in the ensuing discussion.
It indicates how orthogonal the various spherical harmonics
are when the domain of integration is taken as the pixels of the
image. In the special case where image pixels correspond
uniformly to the entire sphere of surface normals, the
orthonormality relation for the spherical harmonics will hold
and the matrix M will simply be the identity with
Mlm;pq ¼ �lp�mq. However, this condition is never satisfied in
practice since we never see the normals facing away from us.
Later, in the next section, we will consider various matricesM
and determine the resulting eigenmodes.

In terms of the matrix M, it is straightforward to write

X
j

Tijuj ¼
X
l;m;p;q

ÂAl

� �2
Mlm;pqcpqYlmð�i; �iÞ: ð12Þ

This expression may be compared to the first line of (10). The
right-hand side must therefore equal the right-hand side in
the second line. Since the spherical harmonics are linearly

independent, the coefficients of the Ylm must match and we
obtain

X
p;q

ÂAl

� �2
Mlm;pqcpq ¼ �clm: ð13Þ

Thus, we have reduced the problem of computing the
principal components to an eigenvalue problem involving
the matrix M, which may be thought of as the frequency-
space analog of the standard covariance matrix.

To proceed further, we will make a number of notational
changes. First, let us collapse the double indices lmandpq into
a single index in the standard way, i.e., r ¼ l2 þ lþm
and s ¼ p2 þ pþ q. r and s simply impose an absolute
ordering on the spherical harmonics, first on the index l or p
and then onm or q. Next, we define ÂAr ¼ ÂAl, i.e., we use the
value of l corresponding to that value of r. To make things
more concrete, considerY21 in double-index form. Here, l ¼ 2,
m ¼ 1, and r ¼ 7. Hence, the spherical harmonic would be
written Y7 in single-index notation. In double-index notation,
we would use ÂA2 for all the Y2m. In single-index notation, we
use the same numerical value, but now denote it as ÂA7. Refer to
Appendix A for mathematical values of the spherical
harmonics and constants ÂA in both single and double index
notation. Finally, define M̂Mrs ¼ ðÂArÞ2Mrs, where ÂAr ¼ ÂAl. It
should be noted that, while the matrix M is symmetric, the
matrix M̂M is no longer symmetric because of the premultipli-
cation factor. It is now straightforward to write (13) asX

s

M̂Mrscs ¼ �cr: ð14Þ

But, this is simply an eigenvalue problem with M̂Mc ¼ �c.
Thus, we have reduced the principal component analysis
problem to an eigenvalue problem for M̂M. However,
remember that the matrix M̂M is no longer symmetric. It often
helps to work with symmetric matrices since their eigensys-
tems have a number of nice properties. It is straightforward to
rescale the matrices and vectors for symmetry. We first define
a new symmetric matrix ~MM and vector d by

cr ¼ ÂArdr

~MMrs ¼ ÂArÂAsMrs:
ð15Þ

Now, starting with the basic matrix eigensystem in (14), we
make the following substitutions:X

s

ÂArÂArMrscs ¼ �cr

)
X
s

ÂAr ÂArMrsÂAs

� �
ds ¼ �ÂArdr

) ~MMd ¼ �d:

ð16Þ

Thus, we now have a symmetric eigensystem that can be

solved for the vectors d. To find the eigenvectors of the

original problem, we must find the corresponding vectors c

using (15).The eigenvalues remain the same.

3 COMPUTATION OF EIGENMODES

Our goals now are to actually compute the eigenvectors and
eigenvalues for various different values of the matrix ~MM.
However, this matrix is infinite dimensional since both rand s
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canbe arbitrarily large, correspondingtoallpossible spherical
harmonic coefficients. Thus, it would appear that we are no
better off in the frequency domain than using a brute force
numerical technique in the angular domain. However, our
analysis in terms of spherical harmonics allows for principled
approximations to be made that make actual computation
tractable. Specifically, it has been shown [1], [16] that
99 percent of the energy of the Lambertian BRDF is captured
by l � 2, i.e., by r; s < 9. In other words, only the first nine
sphericalharmonic termsare importantandthere is littleerror
introduced by truncating the series to order 2. Therefore, for
numerical calculations in the rest of this section, we will use
the nine term approximation, reducing matrix ~MM to a
9� 9 matrix. To verify the accuracy of this approximation,
we will also compare one of our results to the eigensystem
computed using a much larger value of l � 6, i.e.,r; s < 49. We
analyze the resulting eigensystem for many choices of the
matrix ~MM. It should be emphasized that the analytic formulas
wederivearegeneralandholdforallvaluesofrands. It isonly
the computed numerical values of the eigenvectors and
eigenvalues that depend on the nine term (or higher)
approximation.

Now, we find the principal components for several
special cases of interest by considering the corresponding
values of ~MM and computing the eigensystem. We first
explicitly write down the formula for ~MM by rewriting (11) as
per our modified notation:

~MMrs ¼ ÂArÂAs
X
j

Yrð�j; �jÞYsð�j; �jÞ: ð17Þ

3.1 Pixels Equally Distributed over Sphere

The first special case of interest is when the pixels j are

distributed in such a way that the sum can be replaced with an

integral over the entire sphere. As already mentioned, this is

unrealistic, but is nevertheless an insightful special case. In

that case, orthonormality of the spherical harmonics yields

~MMrs ¼ ÂArÂAs

Z �

�¼0

Z 2�

�¼0

Yrð�; �ÞYsð�; �Þ sin � d�d�

¼ ÂArÂAs�rs ¼ ÂAr

� �2
�rs:

ð18Þ

In other words, ~MM is a diagonal matrix. The eigenvectors or

principal components (for both d and c) are simply the

spherical harmonics themselves with eigenvalues ðÂArÞ2. The

amount of variance accounted for by some number of

eigenvectors is simply the sum of the corresponding eigen-

values divided by the sum of all the eigenvalues. This

corresponds to the case previously studied by Basri and

Jacobs [1] and Ramamoorthi and Hanrahan [16]. As noted by

Basri and Jacobs [1], 37.5 percent of the variance is accounted

for by the constant term l ¼ 0; r; s < 1, 87.5 percent of the

variance is accounted for when also considering the linear

terms l � 1; r; s < 4, and over 99 percent of the variance is

accounted for when considering the quadratic terms, i.e., all

nine terms in our approximation: l � 2; r; s < 9. Thus, we see

that our formulation agrees with the previous subspace

results. It is worth pointing out an important special case or

corollary here. Shashua [18] has considered the situation

where there are no attached shadows. In this case, the images

of a Lambertian object lie exactly in a three-dimensional

subspace. We can consider this case in our formulation by

removingthethresholdto0 inourdefinitionof theLambertian

BRDF intensity of (5). In terms of the above formulation, ÂAr
would vanish unless l ¼ 1 (the linear terms), i.e., r ¼ 1; 2; 3.

Thus, the eigenvectors would be exactly the linear spherical

harmonics and, as noted by Shashua [18], a 3D subspace

would suffice.

3.2 Pixels Equally Distributed over Hemisphere

We now consider a more realistic case. Since only front facing

normals are visible in a single image, we allow the pixels to be

equally distributed over the hemisphere with z > 0. In the

standard spherical coordinates, this corresponds to � < �=2.

The matrix M now encodes how orthogonal the spherical

harmonics are when the domain of integration is restricted to

the upper hemisphere. While linear independence of the

spherical harmonics guarantees that no linear combination

can have norm 0, we will see that the norm of certain linear

combinations comes very close to 0, i.e., most of the norm is

concentrated over the unseen lower hemisphere. Thus, these

lighting configurations have negligible impact on the

irradiance of the upper hemisphere and may be neglected.
It is now straightforward to define

~MMrs ¼ ÂArÂAs
Z �=2

�¼0

Z 2�

�¼0

Yrð�; �ÞYsð�; �Þ sin � d�d�: ð19Þ

It should be noted that ~MMrs 6¼ 0 only for terms having the

samem index, i.e., those withm ¼ 0:Y0; Y2; Y6 (corresponding

in two-index notation to Y00; Y10; Y20), those with m ¼ �1:

Y1; Y5 (corresponding toY1�1 andY2�1), and those withm ¼ 1:

Y3; Y7 (corresponding to Y11 and Y21). We have not included

m ¼ �2 since there is only one term with that value of m

(Y4; Y8 corresponding to Y2�2 and Y22, respectively). All other

cross terms will vanish. Also, cross terms involving odd

(lþm odd) and even (lþm even) spherical harmonics only

vanish. Hence, the cross terms between Y0 and Y6 vanish.

Thus, the effects of rearranging the integration to lie over the

hemisphere rather than the full sphere will be the intermin-

gling of the basis functions corresponding tom ¼ 0 and those

corresponding tom ¼ 1 andm ¼ �1. Y4 and Y8, correspond-

ing to m ¼ �2, will remain eigenvectors of ~MM and are not

affected by this intermingling.

It is now straightforward to compute the matrix ~MM and

its eigensystem. We used Mathematica for this purpose. The

diagonal terms of ~MM are as follows: The factor of �2 comes

from the formulas for ÂA and the factor of 1=2 from the

integration being done over the hemisphere rather than the

sphere. The terms below are simply 1
2 ðÂArÞ

2.

~MM00=�
2 ¼ 1

2

~MM11=�
2 ¼ ~MM22=�

2 ¼ ~MM33=�
2 ¼ 2

9

~MM44=�
2¼ ~MM55=�

2 ¼ ~MM66=�
2 ¼ ~MM77=�

2 ¼ ~MM88=�
2 ¼ 1

32
:

ð20Þ
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The nonzero off-diagonal terms are as follows (we show
only terms with r � s since ~MM is symmetric):

~MM02=�
2 ¼ 1

2
ffiffiffi
3

p

~MM15=�
2 ¼

ffiffiffi
5

p

32

~MM26=�
2 ¼ 1

32

ffiffiffi
5

3

r

~MM37=�
2 ¼

ffiffiffi
5

p

32
:

ð21Þ

The eigensystem of the matrix can now be found
analytically, but the results are complicated and do not
confer any special insights. Instead, we give, in Table 1, the
numerical forms for the eigenvectors and eigenvalues. The
eigenvectors are normalized to have unit norm and are
determined only up to sign. The eigenvalues are normalized
to be the percentage of the total sum of the nine eigenvalues.
They thus correspond to the fraction of variance accounted
for by that particular eigenvector. We also show the
cumulative sum of eigenvalues. This indicates how well the
image is approximated using only a number of the most
important principal components. To account for components
not considered by us, i.e., terms higher than order 2, we
multiply the eigenvalues by 0:99, corresponding to the
amount of energy captured by the first nine terms, i.e., modes
up to order 2. It should be noted that this is only an
approximation. However, exact bounds on the nine term
error for any physical lighting distribution can be derived
from the fact that the lighting must be everywhere positive,
using an approach similar to that of Basri and Jacobs [1].

The four columns in Table 1 stand for the eigenvectors d

of the matrix ~MM, the corresponding eigenvectors c of the

original PCA (as per (15))—note that these have more

energy in the lower frequencies—the normalized eigenva-

lues �, and the cumulative sum of eigenvalues, correspond-

ing to the variance accounted for (VAF).
Note that the eigenvectors split into groups corresponding

to the value ofm, i.e., the azimuthal dependence. Thus, there
are three eigenvectors (those numbered 1, 4, 9) composed of
linear combinations of Y0; Y2; Y6. This group of eigenvectors
has no azimuthal dependence (m ¼ 0). There are other groups
with m ¼ 1 (eigenvectors 2 and 7 involving Y3 and Y7), and
m ¼ �1 (eigenvectors 3 and 8 involving Y1 and Y5). In all of
these cases, restriction to the hemisphere instead of the sphere
causes us to obtain mixed eigenvectors, where basis functions
that would be orthogonal over the entire sphere combine.
Finally, we have the eigenvectors Y4 and Y8 corresponding to
m ¼ �2andm ¼ 2, respectively, which are not mixed and not
affected by restriction to the hemisphere.

Another noteworthy point is that 98 percent of the
variance is accounted for using only the first six principal
components or eigenvectors. The observation that fewer
than nine eigenvectors suffice for an accurate approximation
is not really surprising. Intuitively, over the visible hemi-
sphere where z > 0, the basis functions y and yz or x and xz
(corresponding, respectively, to Y1 and Y5 or Y3 and Y7) are
very similar. Furthermore, one can show from first princi-
ples that there must be at least one eigenvector with a
negligible eigenvalue. Our numerical calculations are based

on the observation that the half-cosine function can be
well-approximated using spherical harmonics up to order 2,
which allows us to use the 9� 9 matrix approximation for
numerical work. But, this also means that the backward half-
cosine function, which has its positive lobe in the lower
hemisphere and is zero over the visible upper hemisphere, is
well-approximated using spherical harmonics up to order 2.
This approximation has negligible norm over the visible
upper hemisphere.

To formalize this observation, note that the backward half-

cosine function canbe written asmax½0;� cos ��. This function is

positive when � 2 �
2 ; �
� 	

in the lower hemisphere and is 0over

theupperhemisphere 0; �2
� 	

.Now,consider therepresentation

of this function using spherical harmonics up to order 2.

Straightforward integration to find coefficients yields

max½0;� cos �� �
ffiffiffi
�

p

2
Y0 �

ffiffiffi
�

3

r
Y2 þ

ffiffiffiffiffiffi
5�

p

8
Y6

¼ 0:89Y0 � 1:02Y2 þ 0:50Y6:

ð22Þ

This is simply the spherical harmonic representation of the
cosine function, and an analytic formula for arbitrary orders
can be derived [1], [16]. Upon renormalizing and rescaling,
we obtain

0:694max½0;� cos �� � 0:61Y0 � 0:71Y2 þ 0:35Y6: ð23Þ

Indeed, we see that the right-hand side corresponds directly

to the ninth eigenvector c in Table 1, i.e., the ninth principal

component is the normalized backward half-cosine, with the

corresponding eigenvalue being nearly three orders of

magnitude smaller than the largest eigenvalue.

Finally, we verify the accuracy of our computation using

the 9� 9 matrix approximation. To do so, we go through

the same calculation, but using matrices to order 6 instead

of order 2, i.e., 49� 49 instead3 of 9� 9. This order 6

approximation captures 99.92 percent of the energy of the

Lambertian BRDF filter, as opposed to 99.2 percent with an

order 2 (nine term) approximation. The results in Table 2

are almost identical to those in Table 1, showing the

correctness of the calculation using the 9D approximation.

RAMAMOORTHI: ANALYTIC PCA CONSTRUCTION FOR THEORETICAL ANALYSIS OF LIGHTING VARIABILITY IN IMAGES OF A LAMBERTIAN... 7

TABLE 1
Eigenvectors and Eigenvalues for the Hemisphere

3. It can be shown [1], [16] that the contributions due to odd order
harmonics greater than order one vanish. Hence, there are really only 31
relevant terms and a 31� 31 matrix would suffice.



We note that the first nine eigenmodes in Table 2 account

for 99.4 percent of the variance, justifying our multiplying

the variance accounted for by 0.99 in Table 1 to account for

the 9D approximation. The only nontrivial difference in

Table 2 is the slightly different form of the ninth

eigenvector. This now includes a significant contribution

from the spherical harmonic Y20 in single index form, i.e.,

the fourth-order harmonic Y40 in double index form, and the

eigenvalue is also appreciably higher. Since the backward

half-cosine has such a low norm over the visible hemisphere,

it is reasonable that a more accurate computation of the

ninth eigenvector includes higher-order terms, which

increase the eigenvalue somewhat. In fact, the coefficient

of the fourth order term is the negative of what it would be

in the fourth order approximation of the backward half-cosine

function.

3.3 Image of a Sphere

While the previous section gave considerable insight, it

does not correspond to a realistic situation. This is because,

in practice, the number of pixels occupied by regions at

oblique angles to the camera is reduced by a cosine factor

when projected down into the camera plane. Thus, we

should consider that factor when doing the integrations.

Hence, we add a factor of cos � in (19):

~MMrs ¼ ÂArÂAs
Z �=2

�¼0

Z 2�

�¼0

Yrð�; �ÞYsð�; �Þ cos � sin � d�d�: ð24Þ

Note that this does not change the azimuthal structure of

the matrix M. Thus, our previous discussion regarding the

groups for the eigenvectors for different values m continues

to hold. The diagonal terms in the matrix ~MM now are

~MM00=�
2 ¼ 1

4

~MM11=�
2 ¼ ~MM33=�

2 ¼ 1

12

~MM22=�
2 ¼ 1

6

~MM44=�
2 ¼ ~MM88=�

2 ¼ 5

512

~MM55=�
2 ¼ ~MM66=�

2 ¼ ~MM77=�
2 ¼ 5

256
:

ð25Þ

The nonzero off-diagonal terms are:

~MM02=�
2 ¼ 1

3
ffiffiffi
3

p

~MM06=�
2 ¼

ffiffiffi
5

p

64

~MM15=�
2 ¼ 1

12
ffiffiffi
5

p

~MM26=�
2 ¼ 1

6
ffiffiffiffiffi
15

p

~MM37=�
2 ¼ 1

12
ffiffiffi
5

p :

ð26Þ

Finally, the eigensystem is given in Table 3 and is largely

similar to that in Table 1.

3.4 Image of a Face

To more accurately compare our predictions to those of

Hallinan [8], we would ideally like to consider the image of

a face rather than a sphere. Hence, we took a range scan of a

face (courtesy of Cyberware) and raytraced a single frontal

image, storing the surface normal, i.e., ð�; �Þ at each pixel.

Since we do not explicitly consider variation in surface

texture, we ignored any albedo information in the input

data. We could then evaluate the matrix ~MM directly in a

numerical fashion, using (17), by summing over all pixels.

While the azimuthal structure is still nearly preserved,

numerically, all elements of the matrix ~MM will be nonzero,

unlike in the previous sections. The eigenvectors and

eigenvalues are listed in Table 4. These are quite similar

to those in Table 3. It should be noted that the numerical

values depend on the specific face model used by us and

will differ slightly for other faces. As before, five or six

principal components suffice to explain almost the entire

sequence of images. In fact, three principal components

predict 92 percent of the image, while five predict

97 percent. Perhaps the most important feature of the face

geometry, that distinguishes it from an image of a sphere, is

that the symmetry between side and top directions is now

broken because of the asymmetric dimensions of the face. In

fact, the eigenvalue corresponding to side lighting (#2) is

almost twice as large as that for vertical lighting (#3).
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TABLE 2
The First Nine Eigenvectors and Eigenvalues for the

Hemisphere Using an Order 6, i.e., 49� 49 Matrix

TABLE 3
Eigenvectors and Eigenvalues for Image of a Sphere



4 RESULTS WITH REMOVAL OF MEAN VALUE

One final point in attempting a quantitative comparison with
the work of Hallinan [8] and Epstein et al. [5] concerns
removal of the mean value before taking the PCA. As is the
standard practice when computing principal components,
those authors have subtracted the mean value before
applying their analysis. We have so far chosen not to do so
because the mathematics is somewhat simpler to explain
when retaining the mean value and we believe there are
valuable insights in the previous section. Furthermore, in
many applications, the numerical forms of the basis functions
derived in the previous section are likely to be useful.

However, it is not significantly more difficult to apply
our framework with the mean image value removed. In this
section, we will extend our results under those conditions. It
can be shown that removing the mean simply corresponds
to ignoring the constant or ambient term Y0 or Y00.
Alternatively, we may set ÂA0 ¼ 0. This makes intuitive
sense since the ambient term simply sets the mean value.
The same result can also be derived through some simple
algebra on the definition of the PCA and is presented in
Appendix B. We will now numerically use an 8� 8 matrix
and eight eigenvectors and eigenvalues since the mean term
will no longer contribute.

We first show the eigenvectors and eigenvalues for the
case of an image of a sphere with the constant term
subtracted in Table 5.

The first three eigenmodes are now very clearly identifi-
able as frontal, side, and top/bottom lighting, while the next
two are quadratic modes. Three eigenvectors account for
91 percent of the variance and five eigenvectors for
96 percent. These results clearly show why the first five
eigenvectors form a stable group that is a good approxima-
tion in a variety of circumstances. Furthermore, our
numerical values are quantitatively similar to the empirical
results quoted by Epstein et al. [5] for an image of a
basketball, wherein three eigenvectors captured 94 percent
of the variance, while five eigenvectors accounted for 98
percent. The somewhat better low-dimensional fit obtained
by Epstein et al. [5] can be at least partially explained by the
details of their experiment. Their lighting conditions
sampled only part of the illumination sphere (the top right),
while we make the more general assumption of light sources
equally sampling the entire sphere of incident directions. It
should be noted that the sixth eigenvector, although having

eigenvalue similar to eigenvectors 4 and 5, corresponds to a

backlighting configuration not well sampled experimentally

by Hallinan [8] and Epstein et al. [5].

Finally, we can look at the eigenvectors and values for an

image of a face after the mean has been subtracted. As before,

the eigenvectors are largely similar to those above, with the

specific numerical values dependent on the specific face

model used by us. However, it should be noted that there are

some subtle differences between face and sphere eigenvec-

tors, as can be seen by comparing eigenvector 4 (second from

right) in Figs. 1 and 2 or Tables 5 and 6. The eigenvectors and

eigenvalue spectrum are shown below in Table 6 as well as

Fig. 3.
The significant difference compared to the sphere is that

the eigenvalue for side lighting (eigenvalue #2) is substan-

tially higher than that for top/bottom lighting (eigenvalue #3)

and is in fact comparable to the eigenvalue for frontal lighting

(eigenvalue #1). The spherical symmetry between side and

top/bottom (X and Y ) directions is broken since human faces

are elongated and curve more sideways; they are not

symmetric aboutX and Y directions as in a sphere.
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TABLE 4
Eigenvectors and Eigenvalues for the Image of a Face

For clarity and ease of comparison, only those spherical harmonics with
nonnegligible coefficient magnitudes (greater than 0.10) are noted here.

TABLE 5
Eigenvectors and Eigenvalues for Image of the Sphere

with the Mean Image Value Subtracted Out
(i.e., Ignoring the Ambient Term)

TABLE 6
Eigenvectors and Eigenvalues for Image of a Face

with the Mean Image Value Subtracted Out
(i.e., Ignoring the Ambient Term)

For clarity and ease of comparison, only those spherical harmonics with
nonnegligible coefficient magnitudes (greater than 0.10) are noted here.



These results explain Hallinan’s observation that the
eigenvectors split into two groups, with the first two
eigenvectors corresponding to frontal and side lighting and
the next three to top/bottom lighting and more extreme
forms. It does appear from the eigenvalues in Table 6 that the
eigenvector corresponding to top/bottom lighting should
always appear in third position and the empirical data appear
to confirm this. The quantitative predictions for variance
accounted for are also in accordance with empirical work. The
empirical numbers given by Epstein et al. [5] for the variance
accounted for by three and five eigenvectors in images of a
human face are 90 percent and 94 percent, respectively.
Specularity and a small amount of cast-shadowing accounts
for the slightly lower numbers as compared to the basketball
example. Our corresponding theoretical predictions are 91
percent and 97 percent, respectively. These are slightly higher
than the empirical values because we assume Lambertian
surfaces and do not take cast shadows into account. Finally,
Fig. 1 indicates that the principal components predicted by us
are in very good agreement with those from Fig. 1 in Hallinan
[8]. Also, the descriptions attached by Hallinan, namely
ambient/frontal lighting, side, top/bottom, extreme side,
and corner lighting are all consistent with the principal
components predicted by our theory.

5 CONCLUSIONS AND FUTURE WORK

We have presented a method to analytically construct the

principal components for images of a Lambertian object from

a single viewpoint, under varying distant illumination,

explicitly taking attached shadows into account. From this

construction, we derive a number of results including good

approximating low-dimensional subspaces, the forms of the

principal components, and the eigenvalue spectra of the

eigenmodes. These results show excellent qualitative and

quantitative agreement with previous empirical work. Be-

sides explaining a number of previous papers on lighting

variability, the results are likely to be of considerable practical

interest in a number of areas of computer vision and graphics.

. Identifying Objects across Lighting Variability.

With respect to both human and machine vision, our

results indicate that lighting variability maynotbe that
significant an obstacle to object recognition. Under the

assumptions made by us, images from a single view-

point always lie very close to a 5D subspace, regardless

of the complexity of the illumination. From a practical

pointof view,wederive explicit forms for the principal

components. The benefit of having these analytic basis

functions has already been demonstrated by Basri and

Jacobs[1]andZhaoandYang[23].Fromouranalysis, it
is clear that our basis functions are optimal for

constructing principal component images. A subspace

recognition method can then simply check if a new

image lies in the subspace spanned by these principal

components in order to determine if this is an image of

a particular object under novel lighting conditions.

. Complex Illumination in Computer Vision. In the

past, essentially all photometric computer vision

algorithms have been restricted to working under a
single point or directional source or at most a

combination of a small number of point sources.

Further, many methods assume absence of shadow-

ing, i.e., that all points are visible to all sources.

However, lighting in most real indoor and outdoor

scenes is complex, coming from a variety of point and

area sources. Furthermore, in almost all situations,

only a part of the incident illumination will be visible
(i.e., front facing) for any surface point. The frame-

work outlined in this paper provides a general

approach for handling complex illumination while

taking attached shadows into account. One of the key

results of this paper is that complex illumination is not

significantly more difficult to handle than point

sources. We simply need to consider a few additional

basis functions, i.e., 5D or 6D subspaces instead of 3D.
The forms of the appropriate basis functions have also

been analytically derived by us. One simply needs to

project the complex incident illumination onto these

basis functions, representing the lighting and irradi-

ance by the coefficients in these projections. There are

a number of problems in computer vision, such as

photometric stereo, shape from shading, estimation of

texture under complex lighting, and others, where we
believe this approach will allow the use of general,

complex illumination conditions.

. Inverse Rendering. An area of growing importance in

computer vision and graphics is inverse rendering—the

determination of illumination and reflectance proper-

ties from images. In previous work, Ramamoorthi and

Hanrahan [16], [17] have cast inverse rendering as a

deconvolution algorithm and shown some funda-

mental limits to what information can be estimated.

However, their analysis is based on having complete
information about the entire 4D reflected light field,

i.e., the exitant radiance for all surface normal

orientations and all outgoing directions. In practice,

when we have one or a small number of images, the
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Fig. 3. Fraction of eigenvalues accounted for versus number of
eigenvectors or principal components for PCA of a face with mean
removed. Five principal components account for 97 percent of the
variance.



informationavailable is significantly less.Thispaper is
a first step in analyzing how having only part of the

reflected light field available affects the well-posed-

ness and conditioning of inverse problems. Specifi-

cally, our results show that, from a single image of a

Lambertian object of known geometry, only the first

five or six coefficients of the illumination can be

reliably estimated. On the other hand, if multiple

views, covering all surface normals are available, all of
the first nine modes of the illumination—correspond-

ing to spherical harmonics of order 0,1, and 2—can be

estimated [16].
. Image-Based Rendering. Given views of a diffuse

object under a few lighting conditions, we may form

the basis images for the illumination modes corre-

sponding to the principal components. These can

then be efficiently combined to obtain new images

for arbitrary illumination conditions. Conceptually,

this method is similar to that of Malzbender et al.
[12]. However, by analytically constructing the PCA,

we can determine the appropriate choice of basis

functions instead of selecting them in an ad hoc

manner. Furthermore, our approach allows the use

of complex illumination instead of directional

sources; we can express any illumination condition

(and the resulting image) as a linear combination of

basis functions.

In future work, we would like to extend our derivation to
consider nonuniform sampling patterns for the light source,
corresponding to preferred directions of illumination.
Slightly better quantitative agreement with experiment
might also be obtained by considering a higher-dimensional
approximation than the 9� 9 orthogonality matrix we use for
numerical work here and by explicitly accounting for
variation in surface albedos. We would also like to
incorporate specularity in our analysis. From a practical
point of view, we would like to implement some of the
algorithms proposed here for problems such as photometric
stereo, inverse rendering, and image-based rendering. In this
connection, it is worth noting that Basri and Jacobs [2] have
already considered photometric stereo under unknown
general lighting.

Finally, we note that this paper has developed a
significantly new set of tools for analyzing lighting variability
and for analytically constructing principal components. We
expect these and more advanced methods to be of increasing
significance in principal component analysis, object recogni-
tion, and other areas of computer vision.

APPENDIX A

SPHERICAL HARMONICS

Below, we list the values of the constants ÂA as well as the
real forms of the first nine spherical harmonics, used for
computation, in both single and double index form.

In double-index notation, such as in (3) and (4), the
constants ÂAl, corresponding to the spherical harmonic Ylm
are given by

ÂA0 ¼ � ÂA1 ¼ 2�=3 ÂA2 ¼ �=4: ð27Þ

In single-index notation, such as in (15) and (16), the
constants ÂA, corresponding to the spherical harmonics Yr,
are determined by the value of l corresponding to the
single-index value of r, i.e.,

ÂA0 ¼ � : l ¼ 0

ÂA1; ÂA2; ÂA3 ¼ 2�=3 : l ¼ 1

ÂA4; ÂA5; ÂA6; ÂA7; ÂA8 ¼ �=4 : l ¼ 2:

ð28Þ

The spherical harmonics are simply constant, linear, and
quadratic polynomials of the Cartesian components of the
surface normal. However, it will be convenient here to write
them in trigonometric form.

Y0 ¼ Y00ð�; �Þ ¼
ffiffiffiffiffiffi
1

4�

r

Y1 ¼ Y1�1ð�; �Þ ¼
ffiffiffiffiffiffi
3

4�

r
sin � sin�

Y2 ¼ Y10ð�; �Þ ¼
ffiffiffiffiffiffi
3

4�

r
cos �

Y3 ¼ Y11ð�; �Þ ¼
ffiffiffiffiffiffi
3

4�

r
sin � cos�

Y4 ¼ Y2�2ð�; �Þ ¼
ffiffiffiffiffiffi
15

4�

r
sin2 � cos� sin�

Y5 ¼ Y2�1ð�; �Þ ¼
ffiffiffiffiffiffi
15

4�

r
sin � cos � sin�

Y6 ¼ Y20ð�; �Þ ¼
ffiffiffiffiffiffiffiffi
5

16�

r
3 cos2 �� 1

 �

Y7 ¼ Y21ð�; �Þ ¼
ffiffiffiffiffiffi
15

4�

r
sin � cos � cos�

Y8 ¼ Y22ð�; �Þ ¼
ffiffiffiffiffiffiffiffi
15

16�

r
sin2 � cos2 �� sin2 �


 �
 �
:

ð29Þ

APPENDIX B

MATHEMATICS OF PCA WITH MEAN REMOVED

The traditional approach to PCA construction is to subtract
out the mean value, averaging over all pixels in all images.
Effectively, this means that, instead of considering the
irradiance E, we must consider ~EE ¼ E � %, where % is a
constant denoting the mean irradiance value. Making this
substitution in (2), we obtain

~TTij ¼
X
	

Eð�	; �	; �i; �iÞ � %
� 	

Eð�	; �	; �j; �jÞ � %
� 	

¼ Tij � %
X
	

Eð�	; �	; �i; �iÞ þ Eð�	; �	; �j; �jÞ
� 	

þ
X
	

%2:

ð30Þ

It is simple to simplify this expression. Let & ¼
P
	 1, i.e.,

the number of images taken with different light source
positions. Since we are assuming images equally sampling
the sphere of possible light source directions, & is just a
measure of the solid angle subtended by a sphere and is
therefore equal to 4�. Further note that, for any pixel
orientation, the average value % is just the average of E over
all light source positions. This is because all light source
directions are equally sampled; hence, the average intensity
over all light source directions is the same regardless of pixel
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orientation. Therefore, (30) simplifies upon grouping terms

appropriately and substituting (8) to

~TTij ¼ Tij � % � 2&%þ &%2

¼ Tij � &%2

¼
X1
l¼0

Xl
m¼�l

ÂAl

� �2
Ylmð�i; �iÞYlmð�j; �jÞ

 !
� &%2

¼ ÂA0Y00

� �2
�&%2

� �

þ
X1
l¼1

Xl
m¼�l

ÂAl

� �2
Ylmð�i; �iÞYlmð�j; �jÞ:

ð31Þ

Now, note that Y00ð Þ2¼ 1
4� . We can multiply and divide

&%2 by this value to obtain

~TTij ¼ ÂA0

� �2
�4�&%2

� �
Y00ð�i; �iÞY00ð�j; �jÞ

þ
X1
l¼1

Xl
m¼�l

ÂAl

� �2
Ylmð�i; �iÞYlmð�j; �jÞ:

ð32Þ

It is clear from this equation that subtracting out the mean

in PCA construction is equivalent to replacing

ÂA0 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÂA0

� �2
�4�&%2

r
: ð33Þ

Now, it is simply a question of substituting numerical values.

We know that ÂA0 ¼ � and & ¼ 4�. % is the average irradiance,

i.e., the average of maxðcos �; 0Þ. Thus,

% ¼ 1

4�

Z �=2

�¼0

Z 2�

�¼0

cos � sin � d� d� ¼ 1

4
: ð34Þ

Finally, making numerical substitutions in (33), we obtain

ÂA0 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4� � 4� � 1

4

� �2
s

¼ 0: ð35Þ
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