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Abstract
We present a generative appearance-based method for recognizing human faces under variation in
lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose,
but under all possible illumination conditions, is a convex cone in the space of images. Using a
small number of training images of each face taken with different lighting directions, the shape and
albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model
that can be used to render—or synthesize—images of the face under novel poses and illumination
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone
is approximated by a low-dimensional linear subspace whose basis vectors are estimated using
the generative model. Our recognition algorithm assigns to a test image the identity of the closest
approximated illumination cone (based on Euclidean distance within the image space). We test
our face recognition method on 4050 images from the Yale Face Database B; these images contain
405 viewing conditions (9 poses � 45 illumination conditions) for 10 individuals. The method
performs almost without error, except on the most extreme lighting directions, and significantly
outperforms popular recognition methods that do not use a generative model.

Index Terms: Face Recognition, Image-Based Rendering, Appearance-Based Vision, Face Mod-
eling, Illumination and Pose Modeling, Lighting, Illumination Cones, Generative Models.



1 Introduction
It has been observed that “the variations between the images of the same face due to illumination

and viewing direction are almost always larger than image variations due to change in face iden-

tity” [46]. As is evident in Figures 1, 2, and 4, the same person, with the same facial expression,

can appear strikingly different when light source direction and viewpoint vary.

Over the last few years, numerous algorithms have been proposed for face recognition, see

surveys [59, 7, 17, 50]. For decades, geometric feature-based methods [21, 33, 35, 34, 27, 26, 59,

6, 69, 42] have used properties and relations (e.g., distances and angles) between facial features

such as eyes, mouth, nose, and chin to perform recognition under variable illumination and pose.

Despite their economical representation and their insensitivity to variations in illumination and

viewpoint, feature-based methods are quite sensitive to the feature extraction and measurement

process. It has been argued that existing techniques for the extraction and measurement of facial

features are not reliable enough [12]. It has also been claimed that methods for face recognition

based on finding local image features and inferring identity by the geometric relations of these

features are ineffective [6].

Methods have recently been introduced which use low-dimensional representations of images

of objects to perform recognition. See for example [36, 66, 23, 51, 55, 47, 45, 25]. These meth-

ods, often termed appearance-based methods, differ from feature-based techniques in that their

low-dimensional representation is, in a least-squares sense, faithful to the original image. Tech-

niques such as SLAM [47] and Eigenfaces [66] have demonstrated the power of appearance-based

methods both in ease of implementation and in accuracy.

Despite their success, much of the previous appearance-based methods suffer from an impor-

tant drawback: recognition of an object under a particular lighting and pose can be performed

reliably provided the object has been previously seen under similar circumstances. In other words,

these methods in their original form cannot extrapolate to novel viewing conditions.

In this paper, we present a generative model for face recognition. Our approach is, in spirit,

an appearance-based method. However, it differs substantially from previous methods in that a

small number of training images are used to synthesize novel images under changes in lighting

and viewpoint. Our face recognition method exploits the following main observations:

1. The set of images of an object in fixed pose but under all possible illumination conditions is
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a convex cone (termed the illumination cone) in the space of images [1].

2. When the surface reflectance can be approximated as Lambertian, this illumination cone can

be constructed from a handful of images acquired under variable lighting [1].

3. An illumination cone can be well approximated by a low-dimensional linear subspace [1].

4. Under variable lighting and pose, the set of images is characterized by a family of illumina-

tion cones parameterized by the pose. The illumination cones for non-frontal poses can be

constructed by applying an image warp on the extreme rays defining the frontal cone.

To construct the illumination cone, the shape and albedo of each face is reconstructed using our

own variant of photometric stereo. We use as few as seven images of a face seen in a fixed pose, but

illuminated by point light sources at varying, unknown positions, to estimate its surface geometry

and albedo map up to a generalized bas-relief (GBR) transformation [2, 20, 18, 19]. (A GBR

transformation scales the surface and introduces an additive plane.) We then exploit the symmetries

and similarities in faces to resolve the three parameters specifying the GBR transformation.

Using the estimated surface geometry and albedo map, synthetic images of the face could then

be rendered by varying lighting directions and viewpoint. However, because the space of lighting

conditions is infinite dimensional, sampling this space is no small task. To get around this, we

take advantage of the fact that, under fixed viewpoint, the set of all n-pixel images of a face (or

any object), under arbitrary illumination, forms a convex cone in the image space IRn [1]. Since

this illumination cone is convex, it is characterized by a set of extremal rays (i.e., images of the

face illuminated by appropriately chosen single point light sources), and all other images in the

cone are formed by convex combinations of the extreme rays. The cone can be simplified in

two ways: Using a subset of the extreme rays and approximating it as a low-dimensional linear

subspace [20, 19]. This method for handling lighting variability in images of human faces differs

from [23, 24, 25] in that our model is generative—it requires only a few images to predict large

image changes. It is, in spirit, most closely related to the synthesis approaches suggested in [61, 56]

and stands in stark contrast to the illumination insensitivity techniques argued for in [3, 8].

To handle image variation due to viewpoint, we warp the images defining the frontal illumina-

tion cone in a manner dictated by 3-D rigid transformations of the reconstructed surface geometry.

This method for handling pose variability differs from [4, 38, 30, 43] in that we warp synthetic

frontal-pose images of each face using its estimated surface geometry. Thus, for each face we
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generate a collection of illumination cones—one for each sampled viewpoint. Each pose-specific

illumination cone is generated by warping the images corresponding to its extremal rays.

For our recognition algorithm, we could assign to a test image the identity of the closest cone

(based on Euclidean distance). However, this would require computing the distance of the test

image to all illumination cones for all people over all viewpoints and would be computationally

expensive. To avoid this expense, we use SVD (singular value decomposition) to compress each

face representation independently. This compression is done in two stages. First, we approximate

each of the illumination cones with its own low-dimensional subspace, as suggested in [1]. We then

project the compressed illumination cones of a single face down to a low-dimensional subspace

specific to the face. This low dimensional subspace can be determined by applying SVD on all the

images in the cones of the face.

We should point out that our dimensionality reduction techniques are similar to those used

in [45], but they differ on three important counts. First, in our method the representation of each

face is a collection of low-dimensional subspaces, one per sampled viewpoint. That is, each rep-

resentation is face-specific. This is in contrast to [45] where all faces are modeled by a single

collection of low-dimensional subspaces, with each subspace modeling the appearance of all faces

in one particular view. Second, in our method each subspace explicitly models the image variabil-

ity of one face in a particular pose under different illumination conditions. Third, the images used

to generate our subspaces are synthetic, rendered from the small set of training images.

This generative, or extrapolating, ability of our method distinguishes it from previous ap-

proaches to face recognition under variable illumination and pose. In a recent approach, a 3-D

model of a face (shape and texture) is utilized to transform the input image into the same pose as the

stored prototypical faces, and then direct template matching is used to recognize faces [4, 5, 68, 67].

Similarly, a simple, generic 3-D model of a face is used to estimate the pose and light source di-

rection in the input image [75]. This image is then converted into a synthesized image with vir-

tual frontal view and frontal illumination. This virtual image is finally fed into a system such as

LDA [76] (similar to the Fisherfaces method [3]) for recognition. In another approach, an Active

Appearance Model of a generic face is deformed to fit to the input image, and the control param-

eters are used as a feature vector for classification [10, 39, 14, 11]. In our method, on the other

hand, image variability is explicitly modeled, and we therefore skip the intermediate steps of fitting

parameters or estimating the pose and light source direction.
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To test our method, we perform face recognition experiments on a 4050 image subset of the

publicly available Yale Face Database B1. This subset contains 405 viewing conditions (9 poses

� 45 illumination conditions) for 10 individuals. Figure 3 shows the 10 individuals from the Yale

Face Database B used to test our method, while Figure 4 shows a single individual seen under

the 405 viewing conditions used in the testing. Our method performs almost without error on this

database, except on the most extreme lighting directions.

While there is an ever growing number of face databases, we have developed the Yale Face

Database B to allow for systematic testing of face recognition methods under large variations in

illumination and pose. This is in contrast to other databases, such as the FERET, which contain

images of a large number of subjects but captured under limited variations in pose and illumination.

Even though many face recognition algorithms have been tested and evaluated using the FERET

database [52, 53, 54], FERET does not allow for a systematic study of the effects of illumination

and pose. Although the Harvard Robotics Lab database [23, 24, 25] contains images of faces with

large variations in illumination, the pose is fixed throughout.

We concede that in our experiments, and in our database, we have made no attempt to deal

with variations in facial expression, aging, or occlusion (e.g., beards and glasses). Furthermore,

we assume that the face to be recognized has been located (but not necessarily accurately aligned)

within the image, as there are numerous methods for finding faces in images [13, 55, 60, 38, 9, 41,

44, 40, 32, 22, 72, 45, 58, 57, 71]. Instead, our method performs a local search over a set of image

transformations.

In Section 2, we will briefly describe the illumination cone representation and show how we

can construct it using a small number of training images. We will then show how to synthesize

images under differing lighting and pose. In Section 3, we will explain the construction of face

representations and then describe their application in new face recognition algorithms. Finally,

Section 4 presents experimental results.

2 Modeling Illumination and Pose Variability
2.1 The Illumination Cone

In earlier work, it was shown that the set of all n-pixel images of an object under arbitrary com-

binations of point or extended light sources forms a convex cone C in the image space IRn. This
1ftp://plucky.cs.yale.edu/CVC/pub/images/yalefacesB/
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cone, termed the illumination cone, can be constructed from as few as three images [1] if the object

is convex in shape and has Lambertian reflectance.

Let the surface of a convex object be specified by the graph of a function z(x; y). Let the

surface have a Lambertian reflectance [37] with albedo �(x; y) and be viewed orthographically.

Let b(x; y) be a row vector determined by the product of the albedo with the inward pointing unit

normal of a point (x; y) on the surface. We can write b(x; y) as

b(x; y) = �(x; y)
(zx(x; y); zy(x; y);�1)q
z2
x
(x; y) + z2

y
(x; y) + 1

; (1)

where zx(x; y) and zy(x; y) are the x� and y�partial derivatives. Let the object be illuminated by

a point light source at infinity; let the light source be specified by s 2 IR3 signifying the product of

the light source intensity with a unit vector in the direction of the light source.

Let the vector x 2 IRn denote an n-pixel image of the object whose surface is specified by

z(x; y). A coordinate of x specifies the image irradiance of a pixel which views a surface patch

centered at some point (x; y). Let B 2 IRn�3 be a matrix where each row is given by b(x; y) as

defined above. Let the rows of the x and the rows of B correspond to the same points (x; y) on the

object’s surface. Under the Lambertian model of reflectance, the image x is given by

x = max(Bs; 0); (2)

where max(Bs; 0) sets to zero all negative components of the vector Bs. The pixels set to zero

correspond to the surface points lying in attached shadows. Convexity of the object’s shape is

assumed at this point to avoid cast shadows. While attached shadows are defined by local geometric

conditions, cast shadows must satisfy a global condition. Note that when no part of the surface

is shadowed, x lies in the 3-D “illumination subspace” L given by the span of the columns of

B [23, 48, 62]; the subset L0 � L having no shadows (i.e., intersecting with the non-negative

orthant2) forms a convex cone [1].

If an object is illuminated by k light sources at infinity, then the image is given by the su-

perposition of the images which would have been produced by the individual light sources, i.e.,

x =
kX

i=1

max(Bsi; 0) (3)

2By orthant we mean the high-dimensional analogue to quadrant, i.e., the set fxjx 2 IR
n, with certain components

of x � 0 and the remaining components of x < 0g. By non-negative orthant we mean the set fxjx 2 IR
n, with all

components of x � 0g.
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where si is a single light source. Due to this superposition, the set of all possible images C of a

convex Lambertian surface created by varying the direction and strength of an arbitrary number of

point light sources at infinity is a convex cone. It is also evident from Equation 3 that this convex

cone is completely described by matrix B. (Note that B� = BA, where A 2 GL(3) is a member

of the general linear group of 3� 3 invertible matrices, also describes this cone.)

Furthermore, any image in the illumination cone C (including the boundary) can be determined

as a convex combination of extreme rays (images) given by

xij = max(Bsij; 0); (4)

where
sij = bi � bj: (5)

The vectors bi and bj are rows of B with i 6= j. It is clear that there are at most m(m � 1)

extreme rays for m � n independent surface normals. Since the number of extreme rays is finite,

the convex illumination cone is polyhedral.

2.2 Constructing the Illumination Cone

Equations 4 and 5 suggest a way to construct the illumination cone for each face: gather three or

more images under differing illumination without shadowing and use these images to estimate a

basis for the three-dimensional illumination subspaceL. At the core of our approach for generating

images with novel lighting viewpoints is a variant of photometric stereo [64, 70, 29, 28, 73] which

simultaneously estimates geometry and albedo across the scene. However, the main limitation of

classical photometric stereo is that the light source positions must be accurately known, and this

necessitates a fixed, calibrated lighting rig (as might be possible in an industrial setting). Instead,

the proposed method does not require knowledge of light source locations—illumination could be

varied by simply waiving a light source around the scene.

A method to estimate a basis for L is to normalize the images to be of unit length, and then

use singular value decomposition (SVD) to find the best (in a least-squares sense) 3-D orthogonal

basis in the form of matrix B�. This task can be cast into a minimization problem given by

min
B�;S

jjX � B
�
Sjj

2 (6)

where X = [x1; : : : ;xk] is the data matrix for k images of a face (in vector form), and S is a 3� k

matrix whose columns, si, are the light source directions scaled by their corresponding source

intensities for all k images.
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Note that even if the columns of B� exactly span the subspace L, they differ from those of B

by an unknown linear transformation, i.e., B� = BA where A 2 GL(3); for any light source,

x = Bs = (BA)(A�1s) [28]. Nonetheless, both B
� and B define the same illumination cone C

and represent valid illumination models. From B
�, the extreme rays defining the illumination cone

C can be computed using Equations 4 and 5.

Unfortunately, using SVD in the above procedure leads to an inaccurate estimate of B�. Even

for a convex object, whose occluding contour is visible, there is only one light source direction

(the viewing direction) for which no point on the surface is in shadow. For any other light source

direction, shadows will be present. If the object is non-convex, such as a face, then shadowing in

the modeling images is likely to be more pronounced. When SVD is used to find B � from images

with shadows, these systematic errors can bias its estimate significantly. Therefore, an alternative

method is needed to find B�, one that takes into account the fact that some data values are invalid

and should not be used in the estimation. For the purpose of this estimation, any invalid data will

be treated as missing measurements. The minimization problem stated in Equation 6 can then be

reformulated into:

min
b�
j
;si

X
ij

wijjxij� < b�
j
; si > j

2 (7)

where xij is the j-th pixel of the i-th image, b�
j

is the j-th row of matrix B� 2 IRn�3, si is the light

source direction and strength in the i-th image, and

wij =

�
1 xij valid measurement,
0 otherwise.

The technique we use to solve this minimization problem is a combination of two algorithms.

A variation of [63] (see also [31, 65]) which finds a basis for the 3-D linear subspace L from image

data with missing elements is used together with the method in [16] which enforces integrability in

shape from shading. We have modified the latter method to guarantee integrability in the estimates

of the basis vectors of subspace L from multiple images. By enforcing integrability, a surface

context is introduced. Namely, the vector field induced by the basis vectors is guaranteed to be a

gradient field that corresponds to a surface.

Furthermore, enforcing integrability inherently leads to more accurate estimates because there

are fewer parameters (or degrees of freedom) to determine. It also resolves six out of the nine

parameters of A 2 GL(3). The other three parameters correspond to the generalized bas-relief
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(GBR) transformation which cannot be resolved with illumination information alone (i.e. shading

and shadows) [2, 74]. (We term this the GBR ambiguity.) This means we cannot recover the true

matrix B and its corresponding surface, z(x; y); we can only find their GBR transformed versions

�B and �z(x; y).

Our estimation algorithm is iterative. To enforce integrability, the possibly non-integrable vec-

tor field induced by the current estimate of B� is, in each iteration, projected down to the space

of integrable vector fields, or gradient fields [16]. Let us expand the surface �z(x; y) using basis

surfaces (functions):

�z(x; y; �c(w)) =
X

�c(w)�(x; y;w) (8)

where w = (u; v) is a two dimensional index over which the sum is performed, and f�(x; y;w)g

is a finite set of basis functions which are not necessarily orthogonal. We chose the discrete cosine

basis so that f�c(w)g is exactly the full set of discrete cosine transform (DCT) coefficients of �z(x; y).

Since the partial derivatives of the basis functions, �x(x; y;w) and �y(x; y;w), are integrable, the

partial derivatives of �z(x; y) are guaranteed to be integrable as well; that is �zxy(x; y) = �zyx(x; y).

Note that the partial derivatives of �z(x; y) can also be expressed in terms of this expansion,

giving

�zx(x; y; �c(w)) =
X

�c(w)�x(x; y;w) (9)

and

�zy(x; y; �c(w)) =
X

�c(w)�y(x; y;w): (10)

Since the partial derivatives of the basis functions, �x(x; y;w) and �y(x; y;w), are integrable and

the expansions of �zx(x; y) and �zy(x; y) share the same coefficients �c(w), it is easy to see that

�zxy(x; y) = �zyx(x; y).

Suppose, now, we have the possibly non-integrable estimate B
� from which we can easily

deduce from Equation 1 the possibly non-integrable partial derivatives z�
x
(x; y) and z�

y
(x; y). These

partial derivatives can also be expressed as a series, giving

z
�

x
(x; y; c�

1
(w)) =

X
c
�

1
(w)�x(x; y;w) (11)

and

z
�

y
(x; y; c�

2
(w)) =

X
c
�

2
(w)�y(x; y;w): (12)

Note that in general c�
1
(w) 6= c

�

2
(w), which implies that z�

xy
(x; y) 6= z

�

yx
(x; y).
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Let us assume that z�
x
(x; y) and z�

y
(x; y) are known from an estimate of B� and we would like

to find �zx(x; y) and �zy(x; y) (a set of integrable partial derivatives) which are as close as possible

to z�
x
(x; y) and z�

y
(x; y), respectively, in a least-squares sense. The goal is to solve the following:

min
�c

X
x;y

(�zx(x; y; �c)� z
�

x
(x; y; c�

1
))2 +

(�zy(x; y; �c)� z
�

y
(x; y; c�

2
))2: (13)

In other words, we take a set of possibly non-integrable partial derivatives, z�
x
(x; y) and z

�

y
(x; y),

and “enforce” integrability by finding the least-squares fit of integrable partial derivatives �zx(x; y)

and �zy(x; y). Notice that to get the GBR transformed surface �z(x; y), we need only perform the

inverse 2-D DCT on the coefficients �c(w).

The above procedure is incorporated into the following algorithm. Recall that the data matrix

for k images of an individual is defined as X = [x1; : : : ;xk]. If there were no shadowing, X

would be rank 3 [61] (assuming no image noise), and we could use SVD to factorize X into

X = B
�
S, where S is a 3� k matrix whose columns, si, are the light source directions scaled by

their corresponding source intensities for all k images.

Since the images have shadows (both cast and attached), and possibly saturations, we first have

to determine which data values do not satisfy the Lambertian assumption. Unlike saturations,

which can be simply determined, finding shadows is more involved. In our implementation, a

pixel is labeled as being in shadow if its value divided by its corresponding albedo is below a

threshold. As an initial estimate of the albedo, we use the average of the modeling (or training)

images. A conservative threshold is then chosen to determine shadows, making it almost certain

that no invalid data is included in the estimation process, at the small expense of throwing away a

few valid measurements. Any invalid data (both shadows and saturations) are treated as missing

measurements by the following estimation method:

1. Find the average of the modeling (or training) images and use it as an initial estimate of the

albedo, �(x; y).

2. Without doing any row or column permutations, sift out all the full rows (with no missing

measurements) of matrix X to form a full sub-matrix ~X . The number of rows in ~X is almost

always larger than its number of columns, k.

3. Perform SVD on ~X to find an initial estimate of matrix S 2 IR3�k which best spans the row

space of ~X .
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4. Find the vectors b�
j

(the rows of B�) by performing the minimization in Equation 7, and by

using the elements of matrix X for the values of xij and the columns of the S matrix for the

values of si. The S matrix is fixed to its current estimate.

5. Estimate a possibly non-integrable set of partial derivatives z�
x
(x; y) and z

�

y
(x; y) by using

the rows of B� for the values of b(x; y) in Equation 1. The value of �(x; y) is fixed to its

current estimate.

6. Estimate (as functions of �c(w)) a set of integrable partial derivatives �zx(x; y) and �zy(x; y)

by minimizing the cost functional in Equation 13. (For more details on how to perform this

minimization see [16].)

7. Update the albedo �(x; y) by least-squares minimization using the previously estimated ma-

trix S and the partial derivatives �zx(x; y) and �zy(x; y).

8. Construct �B by using the newly calculated albedo �(x; y) and the partial derivatives �zx(x; y)

and �zy(x; y) in Equation 1.

9. Update each of the light source directions and strengths si independently using least-squares

minimization and the newly constructed �B.

10. Repeat steps 4-9 until the estimates converge.

11. Perform inverse DCT on the coefficients �c(w) to get the GBR surface �z(x; y).

In our experiments, the algorithm is well behaved, provided the input data is well conditioned, and

converges within 10-15 iterations. With 7 training images of size 192� 168 pixels, the algorithm

took 3-4 minutes to converge on a Pentium II with a 300 MHz processor and 384MB of memory.

Figure 5 demonstrates the process for constructing the illumination cone. Figure 5.a shows

the 7 original single light-source images of a face used in the estimation of �B. Note that the

light source in each image moves only a small amount (up to �12o in either direction) about

the viewing axis. Despite this, the images do exhibit some shadowing, e.g., left and right of the

nose. In fact, there is a tradeoff in the image acquisition process: the smaller the motion of the

light source, meaning fewer shadows present in the images, the worse the conditioning of the

estimation problem. On the other hand, if the light source moves excessively, the conditioning

improves, however, more extensive shadowing can increase the possibility of having too few (less

than three) valid measurements for some parts of the face. Therefore, the light source should move

in moderation as it did in the images shown in Figure 5.a.
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Figure 5.b shows the basis images of the estimated matrix �B. These basis images encode not

only the albedo (reflectance) of the face but also its surface normal field. They can be used to

construct images of the face under arbitrary and quite extreme illumination conditions. Figure 5.c

shows the reconstructed surface of the face �z(x; y) up to a GBR transformation. On the left, the

surface was rendered with flat shading; on the right, the first basis image of �B shown in Figure 5.b

was texture-mapped on the surface.

Figure 5.d shows images of the face generated using the image formation model in Equation 2

which has been extended to account for cast shadows. To determine cast shadows, we employ

ray-tracing that uses the reconstructed GBR surface of the face �z(x; y). Specifically, a point on

the surface is in cast shadow if, for a given light source direction, a ray emanating from that point

parallel to the light source direction intersects the surface at some other point. With this extended

image formation model, the generated images exhibit realistic shading and have strong attached

and cast shadows, unlike the images in Figure 5.a.

2.3 Image Synthesis Under Differing Lighting and Pose

The reconstructed surface and the illumination cones can be combined to synthesize novel images

of an object under differing lighting and pose. However, one complication arises because of the

GBR ambiguity, in that, the surface and albedo can only be reconstructed up to a 3-parameter

GBR transformation. Even though shadows are preserved under a GBR transformation [2], with-

out resolution of this ambiguity, images with non-frontal viewpoints synthesized from a GBR

reconstruction will differ from a valid image by an affine warp of image coordinates. (It is affine

because the GBR is a 3-D affine transformation and the weak perspective imaging model assumed

here is linear.) Since the affine warp is an image transformation, one could perform recognition

over variations in viewing direction and affine image transformations. We, instead, resolve the

GBR ambiguity to obtain a Euclidean reconstruction using class-specific information.

In our experiments with faces, we use prior knowledge about the shape of faces to resolve the

3 parameters of the GBR ambiguity, namely the scale, the slant, and the tilt of the surface. We

take advantage of the left-to-right symmetry of faces (correcting for tilt); we exploit the fact that

the forehead and chin of a face are at about the same height (correcting for slant); and we require

that the range of height of the surface is about twice the distance between the eyes (correcting for

scale). (Another possible method is to use a set of 3-D “eigenheads” to describe the subspace of
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typical head shapes in the space of all 3-D shapes [49], and then find the three GBR parameters

which minimize the distance of the face reconstruction to this subspace.) Once the GBR param-

eters are resolved, it is a simple matter using ray-tracing techniques to render synthetic images

under variable lighting and pose. Figure 6 shows the shape and albedo reconstructions for the 10

individuals shown in Figure 3. These reconstructions are used in the image synthesis for creating

the face representations proposed in Section 3 and used in the experiments reported on in Section 4.

Figure 7 shows synthetic images of a face under novel pose and lighting. Note that these images

were generated from the seven images in Figure 5.a where the pose is fixed and where there are

only small, unknown variations in illumination. In contrast, the synthetic images exhibit not only

large variations in pose but also a wide range in shading and shadowing. The simulated point light

source in the images is fixed, therefore, as the face moves around and its gaze direction changes

with respect to the light source direction, the shading of the surface changes and both attached and

cast shadows are formed, as one would expect.

Figure 8 demonstrates in a more direct way the ability of our generative model to synthesize

images under large variations in illumination and pose. The synthesized images are of the same

individual shown in Figure 4 with the same illumination and viewpoints. Note that all the images

in Figure 8 were generated from the seven images in frontal pose shown in Figure 5.a. Yet, the

variability in the synthesized images is as rich as in the original (captured) images shown in Fig-

ure 4. This means that synthesized images can be used to form representations of faces useful for

recognition under variable lighting and pose.

3 Representations and Algorithms for Face Recognition
While the set of images of a face in fixed pose and under all lighting conditions is a convex cone,

there does not appear to be a similar geometric structure in the image space for the variability due to

pose. We choose to systematically sample the pose space in order to generate a face representation,

Rf . For every sample pose p 2 f1; : : : ; Pg of the face, we generate its illumination cone Cp, and

the union of all the cones forms its representation Rf =
S
P

p=1
Cp, where P is the total number of

sample poses. In other words, each face f is represented by a collection of synthesized illumination

cones, one for each pose.

However, as noted in Section 2.2, the number of independent surface normals m in matrix

B can be large (more than a thousand), hence the number of synthesized extreme rays (images)
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needed to completely define the illumination cone for a particular pose can run into the millions.

Furthermore, the pose space is six-dimensional, so the complexity of a face representation consist-

ing of one cone per pose can be very large. We therefore use several approximations to make the

face representations computationally tractable.

As a first step, we use only a small number of synthesized extreme rays (images) to create each

cone, i.e., cones are sub-sampled. The hope is that a sub-sampled cone will provide an approxi-

mation that causes a negligible decrease in the recognition performance; in our experiments about

80-120 synthesized images were sufficient, provided that the corresponding light source directions

sij (from Equation 5) were more or less uniform on the illumination sphere. The resulting cone

Ĉp is a subset of Cp, the true cone of the face in a particular pose. An alternative approximation

to Cp can be obtained by directly sampling the space of light source directions rather than using

Equation 5. Again 80-120 source directions were sufficient. While the resulting images from the

alternative approximation form the extreme rays of the representation Ĉp and lie on the boundary

of Cp, they are not necessarily extreme rays of Cp. Nevertheless, like before Ĉp is a subset of Cp.

Another simplifying factor which can reduce the size of the representations is the assumption

of a weak perspective imaging model. Under this model, the effect of pose variation can be de-

coupled into that due to image plane translation, rotation, and scaling (a similarity transformation),

and that due to the viewpoint direction. Within a face recognition system, the face detection pro-

cess generally provides estimates for the image plane transformations. Neglecting the effects of

occlusion or appearance of surface points, the variation due to viewpoint can be seen as a non-

linear warp of the image coordinates with only two degrees of freedom (one for azimuth and one

for elevation). Therefore, in our method, representations of faces contain only variations in illumi-

nation and viewpoint; the search over planar transformations is performed during testing. In the

recognition experiments described in Section 4, a cone was constructed for every sample of the

viewing sphere at 4Æ intervals over elevation from �24Æ to +24Æ and over azimuth from �4Æ to

+28Æ about the frontal axis. Hence, a face representation consisted a total of (P = 17 � 9 =)

117 sub-sampled illumination cones—one for each sampled viewpoint. The illumination cones for

non-frontal viewpoints can be constructed by applying an image warp on the extreme rays defin-

ing the frontal illumination cone. This image warp is done in a manner dictated by the 3-D rigid

transformations of the reconstructed surface geometry of each face. Finally, the extreme rays in all

pose-specific illumination cones are masked using the binary mask shown in Figure 12.
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Yet, recognition using a representation consisting of a collection of sub-sampled illumination

cones can still be too costly since computing distance to a cone is O(n e2), where n is the number

of pixels and e is the number of extreme rays (images). From an empirical study, it was conjectured

in [1] that the cone Ĉp for typical objects is flat (i.e., all points lie near a low-dimensional linear

subspace), and this was confirmed for faces in [15]. Hence, for computational efficiency, we

perform dimensionality reduction on each sub-sampled cone in the representation of a face. In

other words, we model a face in fixed pose but over all lighting conditions by a low-dimensional

linear subspace Îp which approximates the sub-sampled cone Ĉp. In our experiments, we chose

each subspace Îp to be 11-D since this captured over 99% of the variation in the sample extreme

rays of its corresponding cone Ĉp. With this approximation, the representation of a face is then

defined as Rf =
S
P

p=1
Îp.

As a final speed-up, the whole face representation Rf is projected down to Df , a low dimen-

sional subspace. The basis vectors of this subspace, which is specific to face f , are computed by

performing SVD on the 117� 11 basis images of the subspaces Îp, where those basis images have

been scaled by their corresponding singular values from the previous dimensionality reduction. We

intended this as an approximation to finding the basis vectors of Df by performing SVD directly

on all the synthesized images of the face in the collection of sub-sampled illumination cones. In

the experiments described in Section 4, each face-specific subspace Df had a dimension of 100 as

this was enough to capture over 99% of the variability in the 117 illumination cones.

In summary, each face f is represented by a union of the (projected) linear subspaces Îp,

p 2 f1; 2; : : : ; 117g, within subspace Df . Recognition of a test image x is performed by first

normalizing x to unit length and then computing the distance to the representation of each face

f in the database. This distance is defined as the Euclidean distance to Df plus the Euclidean

distance to the closest projected subspace Îp within Df . The image x is then assigned the identity

of the closest representation.

For three test images of a face in three different poses, Figure 9 shows the closest images in the

representation for that individual. Note that these images are not explicitly stored or directly syn-

thesized by the generative model, but instead lie within the closest matching linear subspace. This

figure qualitatively demonstrates how well the union of linear subspaces within Df approximates

the union of the original illumination cones.
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4 Recognition Results
We have performed two sets of experiments. In either set, all methods, including ours, were trained

on seven acquired images per face in frontal pose. (These experiments were also performed with

19 training images per face, and the results were reported on in [19].)

In the first set, tests were performed under variable illumination but fixed pose, and the goal

was, first, to compare the illumination cones representation with three other popular methods, and

second, to test the accuracy of the subspace approximation of illumination cones. The second set

of experiments was performed under variable illumination and pose. The primary goal of this set

was to test the performance of the face representation proposed in Section 3. Secondarily, affine

image transformations are often used to model modest variations in viewpoint, and so another goal

was to determine when this would break down for faces; i.e., recognition methods using affine

image transformations were trained on frontal-pose images, but tested on non-frontal images. As

demonstrated, our proposed face representations more effectively handle both large variations in

lighting and viewpoint.

The rest of this section is divided into three parts. In the following section, we describe the face

image database used in our experiments. In Section 4.2, we present the first set of experiments

under variable illumination but fixed pose, while in Section 4.3, we describe the second set under

variable illumination and pose.

4.1 Face Image Database

The experimentation reported on here was performed on the Yale Face Database B. To capture

the images in this database, we have constructed the geodesic lighting rig shown in Figure 10

with 64 computer controlled xenon strobes whose positions in spherical coordinates are shown in

Figure 11. With this rig, we can modify the illumination at frame rate and capture images under

variable illumination and pose. Images of ten individuals (shown in Figure 3) were acquired under

64 different lighting conditions in 9 poses (a frontal pose, five poses at 12Æ, and three poses at 24Æ

from the camera axis). The 64 images of a face in a particular pose are acquired in about 2 seconds.

Therefore, there is only minimal change in head position and facial expression in those 64 images.

Of the 64 images per person in each pose, 45 were used in our experiments, for a total of

4050 images (9 poses � 45 illumination conditions � 10 faces). The images from each pose were

divided into 4 subsets (12Æ, 25Æ, 50Æ, and 77Æ) according to the angle the light source direction
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makes with the camera’s axis; see Figure 4. Subset 1 (respectively 2, 3, 4) contains 70 (respectively

120, 120, 140) images per pose.

The original size of the images is 640 � 480 pixels. In our experiments, all images were

manually cropped to include only the face with as little hair and background as possible. The

images from the frontal pose were aligned (scaled and rotated) so that the eyes in each image

fell on the same positions lying on a horizontal line. This alignment was performed in order to

remove any bias from the recognition results due to the association of a particular scale, position,

or orientation to a particular face. Only the frontal-pose images were aligned because these were

the only ones used for training purposes in all methods, including ours. The images in the other 8

poses were only loosely cropped—the position of each face could vary by as much as �5% of the

width of the cropped window, while the scale could vary between 95% to 105% from the average.

All cropped images, used for both training and testing, were finally sub-sampled by 4 down to a

resolution of 36� 42 pixels, and then masked using the binary mask shown in Figure 12.

4.2 Extrapolation in Illumination

The first set of recognition experiments was performed under fixed pose using 450 images (45

per face) for both training and testing. This experimental framework, where only illumination

varies while pose is kept fixed, was designed to compare three other recognition methods to the

illumination cone representation. Another goal of these experiments was to test the accuracy of

the subspace approximation of illumination cones.

From a set of face images labeled with the person’s identity (the training set) and an unlabeled

set of face images from the same group of people (the test set), each algorithm was used to identify

the person in the test images. For more details about the comparison algorithms, see [3] and [20].

Here, we only present short descriptions:

Correlation: The simplest recognition scheme is a nearest neighbor classifier in the image space

[6]. An image in the test set is recognized (classified) by assigning to it the label of the closest

point in the learning set, where distances are measured in the image space. When all of the images

are normalized to have zero mean and unit variance, this procedure is also known as Correlation.

As correlation techniques are computationally expensive and require great amounts of storage, it

is natural to pursue dimensionality reduction schemes.

Eigenfaces: A technique commonly used in computer vision—particularly in face recognition
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—is principal components analysis (PCA), which is popularly known as Eigenfaces [23, 36, 47,

66]. Given a collection of training images xi 2 IRn, a linear projection of each image yi =

Wxi to a l-dimensional feature space is performed, where the projection matrix W 2 IRl�n is

chosen to maximize the scatter of all projected samples. A face in a test image x is recognized

by projecting x into the feature space, followed by nearest neighbor classification in IRl. One

proposed method for handling illumination variation in PCA is to discard from W the three most

significant principal components; in practice, this yields better recognition performance [3]. In

Eigenfaces, like Correlation, the images were normalized to have zero mean and unit variance, as

this improved its performance. This also made the results independent of light source intensity.

In our implementations of Eigenfaces, the dimensionality of the feature space was chosen to be

20, that is, we used 20 principal components. (Recall that performance approaches correlation as

the dimensionality of the feature space is increased [3, 47].) Error rates are also presented when

principal components four through twenty-three were used.

Linear Subspace: A third approach is to model the illumination variation of each face with the

three-dimensional linear subspace L described in Section 2.1. To perform recognition, we simply

compute the distance of the test image to each linear subspace L and choose the face identity corre-

sponding to the shortest distance. We call this recognition scheme the Linear Subspace method [2];

it is a variant of the photometric alignment method proposed in [62] and is related to [24, 48].

While this method models the variation in shading when the surface is completely illuminated, it

does not model shadowing.

Illumination Cones: Finally, recognition is performed using the illumination cone representation.

We have used 121 generated images (extreme rays) to form the illumination cone for each face.

The illumination sphere was sampled at 15Æ intervals in azimuth and elevation from �75Æ to 75Æ

in both directions, hence a total of (11� 11 =) 121 sample light-source directions. We have tested

on three variations of the illumination cones:

1. Cones-attached: The cone representation was constructed without cast shadows, so the 121

extreme rays were generated directly from Equation 4. That is, the representation contained

only attached shadows along with shading.

2. Cones-cast: The representation was constructed as described in Section 2.2 where we em-

ployed ray-tracing and used the reconstructed surface of the face to determine cast shadows.

3. Cones-cast Subspace Approximation: The illumination cone of each face with cast shad-
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ows Ĉp is approximated by an 11-D linear subspace Îp. It was empirically determined [1, 19]

that 11 dimensions capture over 99% of the variance in the sample extreme rays (images).

The basis vectors for this subspace are determined by performing SVD on the 121 extreme

rays in Ĉp and then selecting the 11 eigenvectors associated with the largest singular values.

In the first two variations of the illumination cone representation, recognition is performed by

computing the distance of the test image to each cone and then choosing the face identity corre-

sponding to the shortest distance. Since each cone is convex, the distance can be found by solving

a convex optimization problem (see [20]). A modified version of the Matlab non-negative linear

least-squares (nnls) function was used. This modified algorithm has a computational complexity

of O(n e2), where n is the number of pixels and e is the number of extreme rays. In the third

variation, recognition is performed by computing the distance between the test image and each

linear subspace, and then choosing the face corresponding to the shortest distance. Using the

cone subspace approximation method significantly reduces the computational time and storage (as

compared to the original illumination cone method). Since the basis vectors of each subspace are

orthogonal, the computational complexity of using the subspace approximation is only O(n q),

where n is the number of pixels and q is the number of basis vectors (11 in this case).

Similar to the extrapolation experiments described in [3], each method was trained on images

from Subset 1 (seven images per face in frontal pose with near-frontal illumination), and then

tested on all 450 images from the frontal pose. Figure 13 shows the results from these experi-

ments. (This test was also performed on the Harvard Robotics Lab face database [23, 24] and

was reported on in [20].) Notice that the cone subspace approximation performed as well as the

original illumination cone representation with no mistakes in 450 images. This supports the use

of low-dimensional subspaces to approximate the full illumination cones in the face representation

described in Section 3.

4.3 Recognition Under Variable Lighting and Pose

Next, we conducted recognition experiments under variable pose and illumination using images

from all nine poses in the database. The primary goal of these experiments were to test the perfor-

mance of the face representation proposed in Section 3. Secondarily, affine image transformations

are often used to model modest variations in viewpoint, and so another goal was to determine when

this would break down for faces.
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Five recognition methods (in part different from those in the previous section) were compared

on 4050 images. Each method was trained on seven images per face with near-frontal illumination

and frontal pose, and then tested on all images from all nine poses—an extrapolation in both pose

and illumination.

Like before, we have used 121 generated images to form the illumination cone Ĉp of a face

in a particular viewpoint. The illumination sphere was sampled at 15Æ intervals in azimuth and

elevation from�75Æ to 75Æ in both directions, hence a total of (11�11 =) 121 sample light-source

directions. Furthermore, each cone was approximated by an 11-D linear subspace, Îp. The basis

vectors for this subspace were determined by performing SVD on the 121 extreme rays in Ĉp and

then selecting the 11 eigenvectors associated with the largest singular values.

As mentioned in Section 3, the effect of pose variation can be decoupled into that due to im-

age plane translation, rotation, and scaling, and that due to viewpoint. While variations due to

viewpoint have been incorporated into the face representations introduced in Section 3, the search

over planar transformations is performed during testing. Note that in the implementation of the

last three methods presented here, the planar transformations did not include image rotations (only

translations and scaling). This was done to reduce computational time. The search in translations

was in both directions from�6 to +6 pixels in 2-pixel increments (at the 42� 36 resolution). This

is equivalent to �24 to +24 pixels in 8-pixel increments in the original resolution. The search in

scale was from 0:92 to 1:04 at increments of 0:04.

The five methods are:

1. Correlation: (As described in the previous Section.)

2. Cones-cast Subspace Approximation: Each face is represented by an 11-D subspace ap-

proximation of the cone (with cast shadows) corresponding to the frontal pose. In this

method, no effort was made to accommodate for pose during recognition, not even a search

in image plane transformations.

3. Correlation + planar transformations: This is like the first method except that during

recognition a search in planar transformations was allowed.

4. Cones-cast Subspace Approximation + planar transformations: This is an extension of

the second method where recognition is also performed over a search in planar transforma-

tions.
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5. Face Representation proposed in Section 3: Each face is represented by the union of 117,

projected, 11-D linear subspaces Îp; p 2 f1; 2; : : : ; 117g, within the 100-D subspace Df .

Each 11-D subspace approximates its corresponding illumination cone which models the

variation due to illumination at each sampled viewpoint. Recognition of a test image x is

performed by computing the distance to the representation of each face in the database. This

distance is defined as the Euclidean distance to Df plus the Euclidean distance to the closest

projected subspace Îp within Df . The image x is then assigned the identity of the closest

representation. Note that as with the third and fourth methods, recognition is performed

over variations in planar transformations. In our tests, it takes about 25 seconds to recognize

an image with 10 faces in the database using a Pentium II with a 300 MHz processor and

384MB of main memory.

The recognition results are shown in Figure 14. Note that each reported error rate is for all

illumination Subsets (1 through 4). Figure 15, on the other hand, shows the break-down of the

results of the last method (using our proposed face representations) for different poses against

variable illumination.

As shown in Figure 14, the method of Cones-cast Subspace Approximation with planar trans-

formations performs reasonably well for poses up to 12Æ from the viewing axis, but breaks down

when the viewpoint becomes more extreme. This demonstrates the need for representations, like

the one introduced here, that explicitly capture large variations in viewpoint (i.e., out-of-plane rota-

tions) as well as illumination. Figure 14 shows that our proposed representations more effectively

handle image variability due to large changes in lighting and viewpoint. This is in spite of the fact

that they were created using only a handful of training images per face in frontal pose and with

small, unknown changes in the lighting direction and intensity. Figure 15 shows that these face

representations perform almost without error for all poses, except on the most extreme lighting

directions.

Note that in the frontal pose there was a marginal increase in the error rates for the cones

approximation method when, at first, it was extended to include planar transformations and, then,

when variations in viewpoint were allowed. Remember that for test images with faces in frontal

pose, the cone subspace approximation without any pose variations (both viewpoint and planar

transformations) is an adequate model of the image variability. Hence, any additional degrees
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of freedom, such as image-plane transformations, or variations in viewpoint, may provide more

ways for a mismatch. Nevertheless, the increase in errors is insignificant compared to the gain in

performance when the viewpoint in a test image is non-frontal.

5 Discussion
We draw the following conclusions from the experimental results:

� A small number of images of a face in fixed pose and illuminated by a single point light

source at unknown positions can provide enough information to generate a rich represen-

tation of the face useful for recognition under variable pose and illumination. Figure 15

demonstrates the effectiveness of our representation in face recognition on a database of

4050 images of 10 individuals viewed under large variations in pose and illumination.

� Figure 14 specifically shows the effectiveness of our representation in recognizing faces

under large variations in viewpoint. This is because it explicitly captures the image variability

due to viewpoint. Even though methods that only allow planar transformations can perform

reasonably well for viewpoints up to 12Æ from the camera axis, they break down when the

viewpoint becomes more extreme.

� In the experiments under variable illumination but fixed pose, the illumination cone method

outperforms all other methods, as shown in Figure 13. In fact, both Correlation and Eigen-

faces methods break down under extreme illumination conditions.

� Including cast shadows in the illumination cones improves recognition rates. See Figure 13.

� Since the illumination cone of an object lies near a low-dimensional subspace in the image

space, the images of a face under variable illumination (but fixed pose) can be well approx-

imated by a low-dimensional subspace. Figure 13 demonstrates the effectiveness of using

low-dimensional subspaces. This agrees with their use in the full representations proposed

in Section 3.

The central point of our work was to show that, from a small number of exemplars, it is possible

to extrapolate to extreme viewing conditions. Recall that the seven images of the face in Figure 5.a

were the only information used to synthesize the 405 images in Figure 8. Not only do these syn-

thesized images contain large variations in lighting and pose, they can also be used in recognition,

as demonstrated by the experimental results.
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We believe that our method is applicable to the more general problem of object recognition

where similar representations could be used. In this paper, we have assumed that faces exhibit

Lambertian reflectance which, as demonstrated by the recognition results, is a good approximation.

Nevertheless, applying our method to the recognition of other object classes will require to relax the

Lambertian assumption allowing for more complex bi-directional reflectance distribution functions

(BRDFs).

Future work will concentrate on determining the BRDFs of object surfaces and incorporating

them in object representations. Furthermore, we plan to expand our representations to include

larger variations in viewpoint. Other exciting research domains include facial expression recogni-

tion, aging, and object recognition with occlusions.
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Subset 1.

Subset 2.

Subset 3.

Subset 4.

Figure 1: Example images of a single individual in frontal pose from the Yale Face Database
B, showing the variability due to illumination. The images have been divided into four subsets
according to the angle the light source direction makes with the camera axis—Subset 1 (up to 12Æ),
Subset 2 (up to 25Æ), Subset 3 (up to 50Æ), and Subset 4 (up to 77Æ).
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Pose 1 (Frontal)

Pose 6

Pose 2

Pose 4

Pose 5

Pose 3

Pose 9

Pose 8

Pose 7

Figure 2: Example images of a single individual, one from each of the nine different poses in the
Yale Face Database B.

Figure 3: The ten individuals in the Yale Face Database B.
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Figure 4: Original (captured) images of a single individual from the Yale Face Database B, showing
the variability due to illumination and pose. The images have been divided into four subsets (1
through 4 from top to bottom) according to the angle the light source direction makes with the
camera axis. Every pair of columns shows the images of a particular pose (1 through 9 from left to
right).

29



a.

b.

c.

d.
Figure 5: The process of constructing the cone Ĉ. a. The seven training images from Subset
1 (near frontal illumination) in frontal pose; b. Images corresponding to the columns of �B; c.
Reconstruction up to a GBR transformation. On the left, the surface was rendered with flat shading,
i.e., the albedo was assumed to be constant across the surface, while on the right the surface was
texture-mapped with the first basis image of �B shown in Figure 5.b; d. Synthesized images from
the illumination cone of the face with novel lighting conditions but fixed pose. Note the large
variations in shading and shadowing as compared to the seven training images.
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Figure 6: The surface reconstructions of the 10 faces shown in Figure 3. These reconstructions are
used in the image synthesis for creating the face representations proposed in Section 3 and used in
the experiments reported on in Section 4.

Figure 7: Synthesized images under variable pose and lighting generated from the training images
shown in Figure 5.a.
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Figure 8: Synthesized images of the same individual under the same illumination and viewpoints
as in Figure 4. As before, the synthesized images have been divided into four subsets (1 through 4
from top to bottom) according to the angle the light source direction makes with the camera axis.
Every pair of columns shows the images from a particular pose (1 through 9 from left to right).
Note that all the images were generated from the seven acquired images of Subset 1, Pose 1 shown
in Figure 5.a.
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Test Images

Closest image in the union of 11-D subspaces

Figure 9: TOP ROW: Three images of a face from the test set. BOTTOM ROW: The closest re-
constructed image from the representation proposed in Section 3. Note that these images are not
explicitly stored or directly synthesized by the generative model, but instead lie within the closest
matching linear subspace.

Figure 10: A geodesic dome with 64 strobes used to gather images under variable illumination and
pose.
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Figure 11: The azimuth and elevation of the 64 strobes. Each annulus contains the positions of the
strobes corresponding to the images of each illumination subset—Subset 1 (12Æ), Subset 2 (25Æ),
Subset 3 (50Æ), Subset 4 (77Æ). Note that the sparsity at the top of the figure is due to the distortion
during the projection from the sphere to the plane.
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Figure 12: The 42� 36 binary mask used in the image normalization process.
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Method
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Figure 13: Extrapolation in Illumination: Each method was trained on seven images per person
from Subset 1 (near-frontal illumination), Pose 1 (frontal pose). The plots show the error rates
under more extreme lighting conditions while the pose was kept fixed. The experiments were
conducted on 450 images from Pose 1.
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Figure 14: Extrapolation in Pose: Error rates as the viewing direction becomes more extreme.
The five methods have been trained on seven images per person from Subset 1 (near frontal illumi-
nation), Pose 1 (frontal pose). Note that each reported error rate is for all illumination subsets (1
through 4). The “Frontal Pose” includes 450 images, the “12 degree” (Poses 2, 3, 4, 5, 6) includes
2250 images, and the “24 degree” (Poses 7, 8, 9) includes 1350 images.
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Figure 15: Error rates (%) for different poses against variable lighting using our face representa-
tions proposed in Section 3. The training was performed on seven frontal-pose images per face
with near-frontal illumination. The tests were conducted on a total of 4050 images from all nine
poses of the Yale Face Database B.

35


