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Abstract
Scene flow is the three-dimensional motion field of

points in the world, just as optical flow is the two-
dimensional motion field of points in an image. Any optical
flow is simply the projection of the scene flow onto the im-
age plane of a camera. In this paper, we present a frame-
work for the computation of dense, non-rigid scene flow
from optical flow. Our approach leads to straightforward
linear algorithms and a classification of the task into three
major scenarios: (1) complete instantaneous knowledge of
the scene structure, (2) knowledge only of correspondence
information, and (3) no knowledge of the scene structure.
We also show that multiple estimates of the normal flow
cannot be used to estimate dense scene flow directly with-
out some form of smoothing or regularization.

1 Introduction
Optical flow is a two-dimensional motion field in the

image plane. It is the projection of the three-dimensional
motion of the world. If the world is completely non-rigid,
the motions of the points in the scene may all be indepen-
dent of each other. One representation of the scene motion
is therefore a dense three-dimensional vector field defined
for every point on every surface in the scene. By analogy
with optical flow, we refer to this three-dimensional motion
field asscene flow.

In this paper, we present a framework for the compu-
tation ofdense, non-rigidscene flow directly from optical
flow. Our approach leads to efficient linear algorithms and
a classification of the task into three major scenarios:

1. Complete instantaneous knowledge of the structure
of the scene, including surface normals and rates of
change of depth maps. In this case, only one optical
flow is required to compute the scene flow.

2. Knowledge only of stereo correspondences. In this
case, at least two optical flows are needed to compute
the scene flow, but more improve robustness.

3. No knowledge of the surface. In this case, several op-
tical flows can be used in a reconstruction algorithm
to estimate the scene structure (and then scene flow).

For each scenario, we propose an algorithm and demon-
strate it on a collection of video sequences of a dynamic,
non-rigid scene. We also show that multiple estimates of
the normal flow cannot be used to estimate scene flow di-
rectly, without some form of regularization or smoothing.

One possible application of scene flow is as a predictor
for efficient and robust stereo. Given a reconstructed model
of the scene at a certain time, one would like to obtain an
estimate of the structure at the next time step using minimal
computation. This would allow: (1) more efficient compu-
tation of the structure at the next time step because a first
estimate would be available to reduce the search space, and
(2) more robust computation of the structure because the
predicted structure can be integrated with the new stereo
data. Other applications of scene flow include various dy-
namic rendering and interpretation tasks, from the genera-
tion of slow-motion replays, to the understanding and mod-
eling of human actions.

1.1 Related Work
Computing the three-dimensional motion of a scene is

a fundamental task in computer vision that has been ap-
proached in a wide variety of ways. If the scene is rigid
and the cameras are calibrated, the three-dimensional scene
structure and relative motion can be computed (up to a
scale factor) from a single monocular video sequence using
structure-from-motion[Ullman, 1979]. If the scene is only
piecewise rigid, extensions to structure-from-motion algo-
rithms can be used. See, for example,[Zhang and Faugeras,
1992a] and[Costeira and Kanade, 1998].

Although restricted forms of non-rigidity can be ana-
lyzed using the structure-from-motion paradigm[Avidan
and Shashua, 1998], general non-rigid motion cannot be
estimated from a single camera without additional assump-
tions about the scene. However, given strong enougha
priori assumptions about the scene, for example in the
form of a deformable model[Pentland and Horowitz, 1991]
[Metaxas and Terzopoulos, 1993] or the assumption that
the motion minimizes the deviation from a rigid body mo-
tion [Ullman, 1984], recovery of three-dimensional non-
rigid motion from a monocular view is possible. See
[Penna, 1994] for a recent survey of monocular non-rigid
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motion estimation, and the assumptions used to compute it.
Another common approach to recovering three-

dimensional motion is to use multiple cameras and com-
bine stereo and motion in an approach known asmotion-
stereo. Nearly all motion-stereo algorithms assume that
the scene is rigid. See, for example,[Waxman and Dun-
can, 1986], [Young and Chellappa, 1999], and[Zhang and
Faugeras, 1992b]. A paper which explicitly combines two
optical flow fields is that of[Shiet al., 1994]. In this paper,
both the analysis and implementation are only applicable
to certain simple motions of the camera (i.e. translations).

A few motion-stereo papers do consider non-rigid mo-
tion, including [Liao et al., 1997] and [Malassiotis and
Strintzis, 1997]. The former uses a relaxation-based al-
gorithm to co-operatively match features in both the tem-
poral and spatial domains. It therefore does not provide
dense motion. The latter uses a grid which acts as a de-
formable model in a generalization of the monocular ap-
proaches mentioned above. Besides requiringa priori
models of the scene, most deformable-model based ap-
proaches to motion-stereo would be too inefficient for our
stereo-prediction application.

2 Image Formation Preliminaries
Consider a non-rigidly moving surfacef(x; y; z; t) = 0

imaged by a fixed camerai, with 3 � 4 projection matrix
Pi, as illustrated in Figure 1. There are two aspects to the
formation of the image sequenceIi = Ii(ui; vi; t) captured
by camerai: (1) the relative camera and surface geometry,
and (2) the illumination and surface photometrics.
2.1 Relative Camera and Surface Geometry

The relationship between a point(x; y; z) on the surface
and its image coordinates(ui; vi) in camerai is given by:

ui =
[Pi]1 (x; y; z; 1)T

[Pi]3 (x; y; z; 1)T
(1)

vi =
[Pi]2 (x; y; z; 1)

T

[Pi]3 (x; y; z; 1)T
(2)

where[Pi]j is the jth row of Pi. Equations (1) and (2)
describe the mapping from a pointx = (x; y; z) on the
surface to its imageui = (ui; vi) in camerai. Without
knowledge of the surface, these equations are not invert-
ible. Givenf , they can be inverted, but the inversion re-
quires intersecting a ray in space with the surfacef .

The differential relationships betweenx andui can be
represented by a2�3 Jacobian matrix@ui

@x
. The 3 columns

of the Jacobian matrix store the differential change in pro-
jected image co-ordinates per unit change inx, y, andz. A
closed-form expression for@ui

@x
as a function ofx can be

derived by differentiating Equations (1) and (2) symboli-
cally. The Jacobian@ui

@x
describes the relationship between

a small change in the point on the surface and its image in

ui

vi

uiδ
δx
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Figure 1: A non-rigid surfacef(x; y; z; t) = 0 is moving with
respect to a fixed world coordinate system(x; y; z). The normal
to the surface isn = n(x;y; z; t). The surface is assumed to
be Lambertian with albedo� = �(x;y; z; t) and the illumination
flux (irradiance) isE. Theith camera is fixed in space, has a co-
ordinate frame(ui; vi), is represented by the3� 4 camera matrix
Pi, and captures the image sequenceIi = Ii(ui; vi; t).

camerai via �ui �
@ui
@x

�x. Similarly, the inverse Jaco-
bian @x

@ui
describes the relationship between a small change

in a point in the image of camerai and the point it is imag-
ing in the scene via�x � @x

@ui
�ui.

Since image co-ordinates do not map uniquely to scene
co-ordinates, the inverse Jacobian cannot be computed
without knowledge of the surface. If we know the surface
(and its gradient), the inverse Jacobian can be estimated as
the solution of the following two sets of linear equations:

@ui

@x

@x

@ui
=

�
1 0
0 1

�
(3)

@f

@ui
=

@f

@x

@x

@ui
= rf

@x

@ui
= ( 0 0 ) : (4)

Equation (3) expresses the constraint that a small change
in ui must lead to a small change inx which when pro-
jected back into the image gives the original change inui.
Equation (4) expresses the constraint that a small change in
ui does not lead to a change inf since the corresponding
point in the world should still lie on the surface.

The 6 linear equations in Equations (3) and (4) can be
decoupled into 3 for@x

@ui
and 3 for@x

@vi
. Unique solutions

exist for both@x
@ui

and @x
@vi

if and only if:
�
@ui

@x
�

@vi

@x

�
�rf 6= 0: (5)

Sincerf is parallel to the surface normaln, the equations
are degenerate if and only if the ray joining the camera cen-
ter of projection andx is tangent to the surface.



2.2 Illumination and Surface Photometrics
At a pointx in the scene, the irradiance or illumination

flux measured in the directionm at time t can be repre-
sented byE = E(m;x; t) [Horn, 1986]. This 6D irradi-
ance functionE is what is described as theplenoptic func-
tion in [Adelson and Bergen, 1991].

We denote the net directional irradiance of light at the
point (x; y; z) on the surface at timet by s = s(x; y; z; t).
The net directional irradiances is a vector quantity and is
given by the (vector) surface integral of the irradianceE

over the visible hemisphere of possible directions:

s(x; y; z; t) =

Z
S(n)

E(m;x; y; z; t) dm (6)

whereS(n) = fm : kmk = 1 andm�n � 0g is the hemi-
sphere of directions from which light can fall on a surface
patch with surface normaln.

We assume that the surface is Lambertian with albedo
� = �(x; t). Then, assuming that the pointx = (x; y; z)
is visible in theith camera, and that the intensity registered
in imageIi is proportional to the radiance of the point that
it is the image of (i.e. image irradiance is proportional to
scene radiance[Horn, 1986]), we have:

Ii(ui; t) = �C � �(x; t) [n(x; t) � s(x; t)] (7)

whereC is a constant that only depends upon the diameter
of the lens and the distance between the lens and the image
plane. The image pixelui = (ui; vi) and the surface point
x = (x; y; z) are related by Equations (1) and (2).

3 Two-Dimensional Optical Flow
Supposex(t) is the 3D path of a point on the surface

and the image of this point in camerai is ui(t). The 3D
motion of this point isdxdt and the 2D image motion of its
projection isduidt . The 2D flow fielddui

dt is usually known
as optical flow. As the pointx(t) moves on the surface, it
is natural to assume that its albedo� = �(x(t); t) remains
constant; i.e. we assume that

d�

dt
= 0: (8)

(For a deformably moving surface, it is only the surface
properties like albedo that distinguish points anyway). The
basis for optical flow algorithms is then the equation:

dIi
dt

= rIi �
dui
dt

+
@Ii

@t
= �C � �(x; t)

d

dt
[n � s] (9)

whererIi is the spatial gradient of the image,dui
dt is the

optical flow, and@Ii
@t

is the instantaneous rate of change of
the image intensityIi = Ii(ui; t).

The termn�s depends upon both the shape of the surface
(n) and the illumination (s). To avoid explicit dependence

upon the structure of the three-dimensional scene, it is often
assumed that:

n � s =

Z
S(n)

E(m;x; t)n � dm (10)

is constant (d
dt
[n � s] = 0). With uniform illumination or

a surface normal that does not change rapidly, this assump-
tion holds well (at least for Lambertian surfaces).

In either scenariodIidt goes to zero, and we arrive at the
Normal Flow or Gradient ConstraintEquation, used by
“differential” optical flow algorithms[Barronet al., 1994]:

rIi �
dui
dt

+
@Ii

@t
= 0: (11)

Using this constraint, a large number of algorithms have
been proposed for estimating the optical flowduidt . See
[Barronet al., 1994] for a recent survey.

4 Three-Dimensional Scene Flow
In the same way that optical flow describes an instanta-

neous motion field in an image, we can think of scene flow
as a three-dimensional flow fielddxdt describing the motion
at every point in the scene. The analysis in Section 2.1
was only for a fixed timet. Now suppose there is a point
x = x(t) moving in the scene. The image of this point in
camerai is ui = ui(t). If the camera is not moving, the
rate of change ofui is uniquely determined as:

dui
dt

=
@ui

@x

dx

dt
: (12)

Inverting this relationship is, again, impossible with-
out knowledge of the surfacef . To invert it, note thatx
depends not only onui, but also on the time, indirectly
through the surfacef = f(x; t). That isx = x(ui(t); t).
Differentiating this expression with respect to time gives:

dx

dt
=

@x

@ui

dui
dt

+
@x

@t

����
ui

: (13)

This equation says that the motion of a point in the world is
made up of two components. The first is the projection of
the scene flow on the plane tangent to the surface and pass-
ing throughx. This is obtained by taking the instantaneous
motion on the image plane (the optical flowduidt ), and pro-
jecting it out into the scene using the inverse Jacobian@x

@ui
.

The second term is the contribution to scene flow arising
from the three-dimensional motion of the point in the scene
imaged by a fixed pixel. It is the instantaneous motion of
x along the ray corresponding toui. The magnitude of
@x
@t

��
ui

is (proportional to) the rate of change of the depth

of the surfacef along this ray. A derivation of@x
@t

��
ui

is
presented in Appendix A.

There are three major ways of computing scene flow, de-
pending upon what is known about the scene at that instant:



t = 1 t = 2 t = 3 t = 4 t = 5

Figure 2: A sequence of images that show the scene motion. For lack of space, we only present scene flow results fort = 1 in this
paper. The extended sequence is presented to help the reader visualize the three-dimensional motion.

1. Completely known instantaneous structure of the
scene, including surface normals, depth maps, and the
temporal rate of change of these depth maps.

2. Knowledge only of stereo correspondences. Since we
are working in a calibrated setting, this is equivalent to
having the depth maps. However, it does not include
the surface normals and the temporal rates of change
of the depth maps.

3. Completely unknown scene structure. We do not even
know correspondence information.

Each of these cases leads to a different strategy for estimat-
ing the scene flow. It seems intuitive that less knowledge
of scene structure requires the use of more optical flows,
and indeed this result does follow from the amount of de-
generacy in the linear equations used to compute scene
flow. We now describe algorithms for each of the three
cases. We also demonstrate their validity using flow results
computed from multiple image sequences (captured from
various viewpoints) of a non-rigid, dynamically changing
scene. One such image sequence is shown in Figure 2.
4.1 Complete Knowledge of Surface Geometry

If the surfacef is completely known (with high accu-
racy), the surface gradientrf can be computed at every
point. The inverse Jacobian@x

@ui
can then be estimated by

solving the set of 6 linear equations in Equations (3) and
(4). Given the inverse Jacobian, the scene flow can be esti-
mated from the optical flowduidt using Equation (13):

dx

dt
=

@x

@ui

dui
dt

+
@x

@t

����
ui

: (14)

Computing @x
@t

��
ui

requires the temporal derivative of the
surface depth map, and is described in Appendix A.

Complete knowledge of the scene structure thus enables
us to compute scene flow from one optical flow, (and the
rate of change of the depth map corresponding to this im-
age.) These two pieces of information correspond to the
two components of the scene flow; the optical flow is pro-
jected onto the tangent plane passing throughx, and the
rate of change of depth map is mapped onto a component
along the ray passing through the scene pointx and the
center of projection of the camera.

Figure 3:The horizontal and vertical optical flows att = 1 for
the same camera used in Figure 2. Darker pixels indicate motion
to the left and top of the frames respectively.

Note that we assume that the surface is locally planar
when computing the inverse Jacobian. Since the surface is
known, it is possible to project the “flowed” point in the
image and intersect this ray with the surface. We currently
do not perform this to save an expensive ray-surface inter-
section for every pixel.

If only one optical flow is used, the scene flow can be
computed only for those points in the scene that are visible
in that image. It is possible to use multiple optical flows
in multiple cameras for better visibility, and for greater ro-
bustness. Also, flow is recovered only when the change in
depth map is valid - that is, when an individual pixel sees
neighboring parts of the surface as time changes. If the
motion of a surface is large relative to its size, then a pixel
views different surfaces, and flow cannot be computed.

Consider the scene shown as a sequence in Figure 2. For
lack of space, we only present scene flow results for time
t = 1 in this paper. The scene flow is computed using depth
maps from the model obtained from the volumetric merg-
ing of multiple range images,each computed using stereo,
as described in[Randeret al., 1996]. Another input is the
optical flow shown in Figure 3, which was computed using
a hierarchical version of the Lucas-Kanade optical flow al-
gorithm. The final input is the temporal rate of change of
the depth map, estimated from the difference between two
independently computed volumetric models.

Figure 4 shows the result of computing scene flow for
the visible set of points on the model. The original points
are shown in light grey. The points that the original points
have “flowed to” by adding the scene flow are shown in
black. The darker points therefore represent a prediction
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Figure 4:The computed scene flow. The original points on the
model are shown in grey. The locations that these points have
“flowed” to are shown in black. These flowed points form a pre-
diction of the model at timet = 2.

of the model at timet = 2. They could be used to en-
hance the efficiency and robustness of shape recovery. In
Figure 4, it is seen that the bending motion of the player
on the right (the player with the ball) is recovered, as is
the downward (and somewhat sideways) motion of the ball.
The major motion of the player of the left (the player facing
the ball) is the upward motion of his left arm, which is par-
tially recovered. No flow is recovered for some points on
the arm because the arm moves very fast relative to its size.
Many pixels see completely different surfaces even during
one time-step. Therefore the rate of change of depth infor-
mation for the points on those surfaces is invalid yielding
no flow estimate for those points.

4.2 Known Image Correspondences
The second major case is when the structure of the scene

is not completely known, but correspondences between im-
ages are available. In our calibrated setting, correspon-
dences can be used to compute depth maps, but these depth
maps may be too noisy to estimate surface normals and
temporal rates of change. This situation is common. For
example, it is typical in image based modeling and render-
ing problems. While these problems typically only con-
sider static scenes, scene flow can be used as a means of
extending image based modeling methodologies into the
temporal domain for dynamic scenes.

If the surface is not completely known, it is not possible
to solve fordxdt directly from one camera. Instead, consider
the implicit linear relation between the scene and the opti-
cal flow, as described by the Jacobian in Equation (12).

This set of equations provides two linear constraints on
dx
dt . Therefore, if we haveN > 2 cameras, we can solve
for dx

dt , by setting up the system of equationsBx = U,

Figure 5:The magnitude of the scene flow is displayed for points
on the model (the locations of which are obtained by projecting
depth maps from 4 cameras into the scene). The magnitude of the
scene flow is displayed as intensity. It can be seen that the largest
motion occurs on the ball and the arm of the person at the rear,
while the smallest motion is near the feet of the players.

where:

B =

2
666666666664

@u1
@x

@u1
@y

@u1
@z

@v1
@x

@v1
@y

@v1
@z

: : :

: : :
@uN
@x

@uN
@y

@uN
@z

@vN
@x

@vN
@y

@vN
@z

3
777777777775

; U =

2
66666666664

@u1
@t
@v1
@t

:

:
@uN
@t
@vN
@t

3
77777777775

(15)

This gives us2N equations in 3 unknowns, and so for
N � 2 we have an overconstrained system and can find
an estimate of the scene flow. (This system of equations
is degenerate if and only if the pointx and theN camera
centers are co-linear.) A singular value decomposition ofB

gives the solution that minimizes the sum of least squares
of the error obtained by re-projecting the scene flow onto
each of the optical flows.

We implemented the above algorithm and applied it to
the same sequence that was used in the previous section,
but without using the surface normal or rate of change of
the depth map. We used optical flows from 15 different
cameras. The use of this many optical flows ensures that
every point at which we desire to compute scene flow is
viewed by at least 2 or 3 cameras.

Figure 5 shows the magnitude of the computed scene
flow. The absolute values of the computed flows in thex, y,
andz directions are averaged and displayed as the intensity
for each point. Since image correspondences along with
camera calibration give us depth maps, the scene flow is
computed for a set of points, the locations of which are
obtained by projecting depth maps from 4 widely separated
cameras into the scene. It is seen that the motion of the ball,
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Figure 6:The initial point cloud is shown in light grey, while the
set of points that these points have flowed to are shown in black.
As can be seen, there is significant three-dimensional motion of
the player downwards and to their right.

and the vertical motion of the left arm of the person at the
rear are the most significant.

A close up of the player holding the ball is displayed in
Figures 6 and 7. In Figure 6, the light grey points represent
the model att = 1, which are displaced by the estimated
scene flow to give the darker colored points. The same
flowedpoints are shown in Figure 7, except that the light
grey points now represent the model att = 2, computed in-
dependently using stereo and volumetric merging[Rander
et al., 1996]. The figures clearly show that the displace-
ment of points using the scene flow results in them moving
almost exactly onto the “true” model. Hence, scene flow
may be used as a predictor for the structure of the scene at
subsequent time intervals.

4.3 No Knowledge of the Surface
If the pointx lies on the surface, Equation (12) must

hold for every camerai. Therefore, it is possible to use the
degree to which Equation (12) is consistent across cameras
as information for a flow-based reconstruction algorithm.
Such an approach would, however, be very susceptible to
outliers. A single large magnitude flow which was wrong
could always make the equations inconsistent. We there-
fore take a slightly different approach.

The solution of Equation (12) can be written in the fol-
lowing form:

dx

dt
=

�
@ui

@x

�?
dui
dt

+ � ri(ui) (16)

where
�
@ui
@x

�?
is the pseudo-inverse of@ui

@x
, ri(ui) is the di-

rection of a ray through the pixelui (see Appendix A), and
� is an unknown constant that depends upon instantaneous
properties of the surfacef . (Equation (16) holds because

(predicted model)

Independently computed model

Flowed location of points

Figure 7: A comparison of the flowed points (black) with an
independently computed model at the next next time instant (light
grey). It is seen that the flowed points are a good approximation
of the model at the next time instant.

ri(ui) is in the null-space of@ui
@x

). Therefore, we have the
following constraint on the the scene flow:

mi(x) �
dx

dt
�

��
@ui

@x

�?
dui
dt

� ri(ui)

�
�
dx

dt
= 0 (17)

wheremi(x) =
�
@ui
@x

�? dui
dt � ri(ui) is a vector which

is perpendicular to the plane defined by the camera center
and the optical flow in the image plane. Hence, ifx is
actually a point on the surface, the vectorsmi(x) should
all lie in a plane (the one perpendicular to the scene flow
dx
dt ). We form a measure of how coplanar the vectors are
by computing the3� 3 matrix:

M (x) =
X
i

m̂im̂
T
i (18)

wherem̂i ismi normalized to a unit vector. The normal-
ization makes the algorithm less susceptible to incorrect
large magnitude flows. The smallest eigenvalue� = �(x)
of M is a measure of non-coplanarity. We therefore use
N � �(x) as a measure of the likelihood thatx lies on the
surface. (N is the number of cameras.)

We discretize the scene into a three-dimensional array
of voxels, as was done in the Voxel Coloring algorithm of
[Seitz and Dyer, 1997]. We then computeN � �(x) for
each voxel, ignoring visibility as in[Collins, 1996]. Ignor-
ing visibility in this way does not significantly affect the
performance because our coplanarity measure is not signif-
icantly affected by outliers. (This algorithm could be ex-
tended to keep track of the visibility in a similar manner to
[Seitz and Dyer, 1997] if so desired.)

We present the results of this algorithm in Figure 8. We
used the data from all 51 cameras of the CMU Virtualized
Reality dome[Narayananet al., 1998] (Some of the data



Figure 8: A volume rendering of the coplanarity measureN �

�(x). As can be seen, the gross scene structure is recovered fairly
well. Note, however, that this algorithm only recovers structure
where the scene is moving. Hence, certain parts of the scene, such
as the legs, are not recovered as well as others. The information
provided byN��(x) could be combined with traditional sources
of information to further enhance the robustness of stereo.

from one camera is presented in Figure 2). For all 51 cam-
eras, we computed the optical flow fromt = 1 to t = 2.
The measure of coplanarityN � �(x) was then computed
for each voxel and thresholded. Figure 8 contains a volume
rendering of the results. As can be seen, the gross structure
of the scene is recovered. Note, however, that this flow-
based reconstruction algorithm can only recover structure
where the scene is actually moving. This is the reason that
certain parts of the scene, such as the legs of the people, are
not fully recovered.
4.4 Three-Dimensional Normal Flow Constraint

Optical flow dui
dt is a two dimensional vector field, and

so is often divided into two components, thenormal flow
and thetangent flow. The normal flow is the component
in the direction of the image gradientrIi, and the tangent
flow is the component perpendicular to the normal flow.
The magnitude of the normal flow can be estimated directly
from Equation (11) as:

1

jrIij
rIi �

dui
dt

= �
1

jrIij

@Ii

@t
: (19)

Estimating the tangent flow is an ill-posed problem. Hence,
some form of local smoothness is required to estimate the
complete optical flow[Barronet al., 1994]. Since the es-
timation of the tangent flow is the major difficulty in most
algorithms, it is natural to ask whether the normal flows
from several cameras can be used to estimate the 3D scene
flow without having to use some form of regularization.

The Normal Flow Constraint Equation (11) can be
rewritten as:

rIi �

�
@ui

@x

dx

dt

�
+

@Ii

@t
= 0: (20)

This is a scalar linear constraint on the components of the
scene flowdx

dt . Therefore, at first glance it seems likely

that it might be possible to estimate the scene flow directly
from three such constraints. Unfortunately, differentiating
Equation (7) with respect tox we see that:

rIi
@ui

@x
= �C �r (�(x; t) [n(x; t) � s(x; t)]) : (21)

Since this expression is independent of the camerai, and
instead only depends on properties of the scene (the surface
albedo�, the scene structuren, and the illuminations), the
coefficients ofdxdt in Equation (20) should ideally always
be the same. Hence, any number of copies of Equation (20)
will be linearly dependent. In fact, if the equations turn out
not to be linearly dependent, this fact can be used to deduce
thatx is not a point on the surface. (See Section 4.3.)

This result means that it is impossible to compute 3D
scene flow independently for each point on the object, with-
out some form of regularization of the problem. We wish
to emphasize, however, that this result does not mean that
is it not possible to estimate other useful quantities directly
from the normal flow, as for example is done in[Negah-
daripour and Horn, 1987] and other “direct methods.”

5 Conclusions
Three-dimensional scene flow is a fundamental property

of dynamic scenes. It can be used as a prediction mecha-
nism to build more robust stereo algorithms, and for vari-
ous scene interpretation and rendering tasks. We have pre-
sented a framework for computing scene flow from opti-
cal flow, assuming various instantaneous properties of the
scene are known. We intend to extend our framework to in-
corporate knowledge of structure computed independently
at the next time instant. We also plan to investigate other
algorithms for computing scene flow that do not use opti-
cal flow, and develop methods of quantitatively evaluating
their accuracy.

A Computing @x

@t

���
ui

The term @x
@t

��
ui

is the 3D motion of the point in the
scene imaged by the pixelui. Suppose the depth of the sur-
face measured from theith camera isdi = di(ui). Then,
the pointx can be written as a function ofPi, ui, anddi as
follows. The3� 4 camera matrixPi can be written as:

Pi = [Ri Ti ] (22)

whereRi is a 3 � 3 matrix andTi is a 3 � 1 vec-
tor. The center of projection of the camera is�R�1i Ti,
the direction of the ray through the pixelui is ri(ui) =
R
�1
i (ui; vi; 1)

T, and the direction of the cameraz-axis is
ri(0) = R

�1
i (0; 0; 1)T. Using simple geometry, (see Fig-

ure 9) we therefore have:

x = �R�1i Ti + di

�
kri(0)k ri(ui)

ri(0) � ri(ui)

�
: (23)



ui

vi

(u ,v )i i

di

�
�
�
�

��
��
��
��

��

�
�
�
�

(x,y,z)

Camera Pi

fSurface

(0,0)

Center of Projection

r (u )

r (0)i

i i

Figure 9: Given the camera matrixPi and the distancedi to
the surface, the direction of the ray through the pixelui and the
direction of thez-axis of the camera can be used to derive an
expression for the pointx. This expression can be symbolically
differentiated to give@x

@t

��
ui

as a function ofx,Pi, and@di

@t
:

(Care must be taken to choose the sign ofPi correctly so
that the vectorri(ui) points out into the scene.) If camera
Pi is fixed, we have:

@x

@t

����
ui

=

�
kri(0)k ri(ui)

ri(0) � ri(ui)

�
@di

@t
: (24)

So, the magnitude of@x
@t

��
ui

is proportional to the rate of
change of the depth map and the direction is along the ray
joiningx and the center of projection of the camera.
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