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Abstract. We present a variational approach to dense stereo reconstruction which
combines powerful tools such as regularization and multi-scale processing to esti-
mate directly depth from a number of stereo images, while preserving depth dis-
continuities. The problem is set as a regularization and minimization of a non-
quadratic functional. The Tikhonov quadratic regularization term usually used to
recover smooth solution is replaced by a function of the gradient depth specifi-
cally derived to allow depth discontinuities formation in the solution. Conditions
to be fulfilled by this specific regularizing term to preserve discontinuities are
also presented. To solve this problem in the discrete case, a PDE-based explicit
scheme for moving iteratively towards the solution has been developed. This ap-
proach presents the additional advantages of not introducing any intermediate
representation such as disparity or rectified images: depth is computed directly
from the grey-level images and we can also deal with any number (greater than
two) of cameras. Promising experimental results illustrate the capabilities of this
approach.

1 Introduction

Over the years numerous algorithms for passive stereo have been proposed, which use
different strategies:

Feature-based: Those algorithms establish correspondencesbetween features extracted
from the images, like edge pixels [20, 23, 18], line segments [17, 4] or curves [8, 25]
for instance. Their main advantage is to yield accurate information and to manipu-
late reasonably small amounts of data, thus gaining in time and space complexity.
Their main drawback is the sparseness of the recovered depth information.

Area-based: In these approaches, dense depth maps are provided by correlating the
grey levels of image patches in the views being considered, assuming that they present
some similarity [19, 13]. These methods are well adapted for relatively textured
areas; however, they generally assume that the observed scene is locally fronto-
parallel, which causes problems for slanted surfaces and in particular near the oc-
cluding contours of the objects. Lastly, the matching process does not take into ac-
count the edge information.



Energy-based: A third kind of approach which does not suffer any of the inconve-
nients presented above, consists of expressing the correspondenceproblem as a min-
imization and regularization one [6, 30]. An iterative solution of the discrete version
of the associated Euler-Lagrange equation is then used in order to estimate depth.

The method which we present in this paper follows the third strategy with the im-
portant following issues:

– It computes depth directly from the grey-level images intensities. No intermediate
process such as rectification [5] or disparity estimation is used. The system of cam-
eras is supposed to be calibrated, and the depth information is directly issued as a
depth function ��� ������� of the image point.

– The method addresses the problem of accurately determining depth near disconti-
nuities. It is well known that using the classical Tikhonov regularization approach
[28] by considering a quadratic regularizing term in the energy function, leads to
smoothing the depth image across the discontinuities, yielding a destruction of these
important characteristics in the resulting depth image. We address this important
problem by replacing the energy quadratic regularizing term by a function specially
designed in order to allow the minimization process to preserve the original discon-
tinuities in the depth map. It is shown that in this case, the minimization process
involves an isotropic smoothing step in the homogeneous regions (i.e with small
depth gradient), and an anisotropic smoothing step in the inhomogeneous regions
(i.e high depth gradient).

– In order to speed up convergence and avoid possible local minima,a multi-scale ap-
proach is also used.

2 Formalism of the matching process

2.1 Notations for one camera

We assume that the imaging system follows the pinhole model. The projection matrix	

of a camera with respect to a reference frame �
� is computed during a calibration

phase. It allows finding ����� ��������� , projection onto the retina of the point� ��� ��� �!�"�#�$� expressed in world coordinates ( % is a scale factor):� % ��� % �&� % � � � 	
 � �'� �!�(�)�+*"� �
The ,.-0/ matrix

	

can be decomposed as follows:	
 �1� 243&56�!798;:3&�<=*?> �1� 243&56�+@

The 4 - 4 matrix @ involving 8 and : changes world coordinates into camera coor-
dinates (see figure 1). It represents the extrinsic information about the camera. 3 < is the



null 3-vector. The other matrix contains the intrinsic information [29]: the 3 - 3 matrix2 changes camera coordinates into pixel units. It is well known that in the generic case,

2�� ������������
	���
�� ���� ������������� � �� � *
��

where
�

is the angle between pixel rows and columns.
Thus, the camera coordinates of a point

�
in the 3D space can be derived from its

projection � and its depth: � �'� �!�(�)� � � � 2 �"! � �����&� * � �
All these matrices can be computed with good accuracy with the method described

in [24].
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Fig. 1. The pinhole model and the different frames

2.2 Correspondence

In the remainder of this article, we consider a calibrated stereo rig. All the quantities
introduced in the previous paragraph and related to one camera are assigned the index
of the considered camera.

If �$#����&% are the two-dimensional projections of a three-dimensional point
�

on



retinae
� ��� , we can easily express � % as a function � #�� % of ��� # �(� # � . Indeed,

�� % � %% ��%%
�� � � # � 2��!3&56� @��"@ �
	�

���� 2 �
	�
�� �"#� #*

��
*

� 

�
Thus, finding a correspondent for a point of image

�
is completely equivalent to finding

depth � # at that point.

3 The energy function

Let us assume for a while that the world is made of Lambertian objects, i.e. of objects
that look equally bright from all viewing directions. Finding a correspondent in image
2 for each point of image 1 turns into finding a � function that minimizes:� !�� � � � ��������� ! ��� ! � � � � � � ! ��� ! �(����� ! � � ��� �
� � !
( � # is the intensity in image

�
). This is of course not sufficient, since it may first lead

to chaotic solutions, in which each point of image 1 finds its correspondent in image
2 independently from its neighbors. We need to add a constraint on the shape of the
depth function. As a consequence, the matching problem is expressed as a constrained
minimization one, where the minimized functional is the following:� � � � � � !�� � � ������� � � �
The first term holds for similarity of the image intensities at corresponding points. In
practice, the use of additional attributes like intensity gradient or rgb grey-level images
helps establishing the right correspondencesby reducing ambiguity. More generally, we
have: � !�� � � � � � �"!$#&%%�'

#
! ��� ! � � '

#
� � � ! ��� ! �(� ��� ! � � � %% � � � !

where ' ## is a field of attributes, scalar – e.g. intensity – or vectorial – e.g. intensity
gradient – extracted from image

�
.

If we have more than two views, we can very easily take into account the informa-
tion of all the images, by defining the similarity term of the functional as� � � � � ! % � ! % � � �
where � varies from 2 to the number of images.

Please note that the simplicity of this expression emerges from the fact that we are
searching for a depth function � defined with respect to one reference image, which is
matched with any other image. With classical techniques based on a disparity represen-
tation, things would not be as simple. Indeed, to define disparity, one needs two images.



In the last section of the article, we will show the importance of using more than
two views in image-based surface reconstruction.

The second term stands for the constraint to be applied on the depth map. A classical
constraint is the smoothness assumption on the resulting depth map. That is the case for
the well-known Tikhonov regularization term [28]:�#� � � � � � ������� � � � � � !

This term leads to a solution where discontinuities of the depth function are smoothed.
This is not really desirable if one wants to preserve these discontinuities and recover
the original scene as accurately as possible. The next section is devoted to presenting
an original approach which tackles in an efficient way this important problem.

4 Regularizing the solution and preserving discontinuities

In order to preserve the discontinuities while regularizing the solution, a natural way to
proceed is to forbid regularizing and smoothing across such discontinuities. One way of
taking into account these technical remarks is by looking for a function � �	� � such that
the following regularization term:� � � � � ��� � � �
� ��� � � � � � !
preserves those discontinuities (For instance, a quadratic function as the one used in the
Tikhonov case [28], does clearly not correspond to such type of functions).

In this section, we summarize our variational approach to 3D recovery from stereo
images. This approach is inspired from the approaches developed for image restoration
purpose in [26, 21, 31, 7, 9, 10, 3]. A detailed review of all these approaches can be
found in [12].

The key idea to deal with such a problem is first to consider the functional to be
minimized, written as follows:� � � � � ���
� ���9� �&�(�)� � � �
� � � � � � � � � �
A necessary condition for it to be extremal is the derived Euler-Lagrange differential
equation: ��� ���� � ����� ���� � ����� � �
This yields the following equation:!�#�� ' #! ����� � '

#
� � � ! ��� �"������� � �	��� � ' �� � � � ��� � � � ��� � � �!� � � ��
� � � � � �#" � �

(1)

Where the term � � � denotes the divergence operator. Developping and simplifying, the
term on the left can be rewritten as!$#�� ' #! ����� � '

#
� � � ! ��� �(� ����� � �$�%� � ' �� � � � ��� � � � ����� � � ��
�&� � � �('	' � � �)� � �
�&� � � � �+*,*-"

(2)



where � � and � � � represent respectively the first and second derivatives of � � % � with
respect to the parameter % . � *,* represents the second order directional derivatives of� ����� in the direction of the gradient � ��� �� � � � , and � '	' is the second order directional
derivatives of � ����� in the direction � orthogonal to the gradient. Boundary conditions
have also to be considered in order to solve this equation.

In order to regularize the solution and preserve discontinuities, one would like to
smooth isotropically the solution inside homogeneous regions and preserve the discon-
tinuities in the inhomogeneous regions. Assuming that the function � � � �	� � exists, the
condition on smoothing in an isotropic way inside homogeneousregions can be achieved
by imposing the following conditions on the � �	� � function:

� ���� �	� � � � � � � � �
� � � � ����&� � � � � ���� �
� � � � � � � � � �
�&� � � � � � �)� � � ��� � (3)

Therefore, at the points where the depth gradient is small, Z is solution of:!$# � ' #! ��� � � '
#
� � � ! ��� �(������� � � � � � ' �� � � � � � �)� � � � � �('	' � �+* * � � �

This process corresponds to the case where the function � � % � is quadratic [28]. Note
that the coefficients are required to be positive, otherwise the regularization part will act
as an inverse heat equation notably known as an instable process.

In order to preserve the discontinuities near inhomogeneous regions presenting a
strong depth gradient, one would like to smooth along the isophote and not across them.
This leads to stopping the diffusion in the gradient direction, i.e setting the weight � �)� � �� � � � � to zero, while keeping a stable diffusion along the tangential direction to the

isophote, i.e setting the weight 
���� � �	�
� � �� � � � � to some positive constant:

� ���� � � � � ��� � �)� � �
� � � � �!� ��� � ���� � � � � ��� � � � �
�&� � � ����&� � � ����� � (4)

Therefore, at the points where the depth gradient is strong, Z will be the solution of the
following equation:! # � ' #! ����� � '

#
� � � ! ��� �(� ����� � � � � � ' �� � � � � �!� '	' � �

which yields Z as a regularized solution in the � direction. Note that the positiveness of
the � coefficient is also required to generate a stable smoothing process in the � direc-
tion.

Unfortunately, the two conditions of (4) cannot be satisfied simultaneously by a func-
tion � � ���&� � � � . However, the following conditions can be imposed in order to de-
crease the effects of the diffusion along the gradient more rapidly than those associated
with the diffusion along the isophotes:

� ���� �
� � � ��� � � � � �
�&� � � � � � ���� �	� � � ��� � � � ��� � � � ��
� � � � � � ���� �	� � � ��� � � � � ��� � � � �

 � �
� �
� � � �� �	� � � � �

(5)



The conditions given by Equations (3) and (5) are those one would like to impose
in order to deal with a regularization process while preserving the existing discontinu-
ities. As it has been shown very recently in [3], these conditions are also sufficient to
prove that the model is well-posed mathematically, and the existence and uniqueness of
a solution is also guaranteed by these conditions.

A certain number of functions have already been proposed in the literature in order
to address the problem of discontinuities. Table 4 illustrates the most commonly used
functions. One can see easily that only the last three functions fulfill all the conditions
mentioned above. The Tikhonov function and the Aubert function will be used in our
experimental section.

Author � � % � � � � % � � % � � � � % �
Perona-Malik [22] �

# �� ��� � � ��� # � � � *+� � � � ��� # � � � * � � � �# � � ��� � � �� � �
Perona-Malik [22]

# �� 	�

� � * � � % ��� � � � !!�� � �� ���
# �
�
# � � � � �

�
# � � � � ���

Geman et � ��� # � �!�� � ��� # ��� � # �
�
# � � � � ��� � � # � � � # � � < � � �

�
# � � � � ���

Reynolds [14]
Alvarez [1] ...

� � % � � * ��� � % � � � � % �
Tikhonov [28] % � � � 1 1

Green [15]
	�
�����
 % � � % ��� � ������� � ��� # �# � � � � � 	�� �! � �# � � � �

Rudin [26] % ! � 0

Aubert [10]
" * � � % ��� � � � * !# � �%$ � �� � � � � �

#
�

�
# � � � � � ��& �

5 Minimization of the Energy Function

This section presents the numerical scheme developed to solve the Euler-Lagrange equa-
tion (1,2) associated to the energy function. A time-dependent approach has been devel-
oped to solve this non-linear PDE. We consider the associated evolution equation, or
equivalently the gradient descent method. This leads us to consider the following equa-
tion: � � �(' # � ' #! ��� � � ' #� � � ! ��� �"������� � � � ��)
* �) � �+ �-, 
 � � � �
� � � �� �	� � � �('	' � � �)� � ���&� � � � �+*,*
.
The corresponding explicit numerical scheme is then implemented:/01 02 � � ��!#�3 % � � �#�3 % �5476 � ' # � ' #! ����� � ' #� � � ! ��� �(� ��� � � � � � )�* �) � �+ � � 
 � � � �
� � � �� �	� � � �('	' � � �)� � ���&� � � � �+*,* �8. �#�3 %9

Boundary conditions on the depth

(6)

Finally, we apply a Gauss-Seidel relaxation method for moving iteratively towards
the solution of this problem [27].



5.1 Discretization Scheme

In the following we present the consistent way to discretize the divergence term that
appears in the equation (1).

Denoting by
�

the angle that the unit gradient
� � � � ��� � � � makes with the � axis,

we have the well known expressions:� '	' � % ��� � � � � ����� � � % ��� � � � ��
 % � � � ����� � ��
 % � � � � ���	��+*,* � ��
 % � � � � � ��� � � % ��� � � � � 
 % � � � � ��� � % ��� � � � � � �	� (7)

In order to deal with a consistent discrete approximation of these second directional
derivatives, we proceed as follows:

We look for some constant � � # � #�
 ���
� � and � � � # � #�
 ��� � � such that:

�('	' #�3 %��

�� ��� � � � <� ! � / � � � !� < � � � �
��

� � and ��*,* #�3 %��

�� � � � � � � � � <� � ! � / � � � � � !� � < � � � � � �
��

� � (8)

where the sign � denotes the convolution operation. Using The Taylor expansion of (8)
up to the second order and identifying the coefficients with (7) yields the values of the
following � # and � � # parameters we are looking for:/00000000001 00000000002

� ! � � � � ����� �� � � � �� � � � ��� � ��� �� � � � �� < � !� � � � � �� � � � � � �� � � � � * � � ��� �
� � � !� � * � � � � � � � �� � � � � � �� � � � �

/00000000001 00000000002

� � ! � � � �� ����� �� � � � �� � � � � � �� � ��� �� � � � �� � < � !� � � � �� � � � � � �� � � � � * � � � �� �� � � � !� � * � � � �� ��� � �� � � � � � �� � � � �
Then denoting: � * � � � � � �
� � � � � ' � � � � �
� � � ���� � � (9)

We obtain the following coefficients � � � # � #�
 ��� � � for the divergence term:

� � � � � � � � �
� � � ���� � � � � �#" ��� � * ��*,* � � ' � '$'6� #�3 %!�
�� � � � � � � � � <
� � ! � � � � � !� � < � � � � � �

��



Where:
� � � � � / � � ' ��� � � * � � � �
� � ! � � � � ' � � � � *$� � � � � � � ' ��� �� � � � � � � * ��� �� � � � � �
� � � � � � � ' � � � � * � � � � � � � ' ��� �� � � � � � � * ��� �� � � � � �
� � < � � � � ' � � � � * � � � �
� ���� � * � � � �� � � � � � �� � � � �
� ���� � * � � � �� � � � � � �� � � � �
� � � � � � � ' � � � � *$� � � �
� ���� � * � � � �� � � � � � �� � � � �
� � �� � * ��� � �� � � � � � �� � � � �

(10)

Therefore, the divergence term
� * � *,* � � ' � '	' can be implemented as a convolution

of the image � by a 3*3 mask. It is important to note that the coefficients of this con-
volution mask are not constant. The values of the � � # depend on the gradient

� � � �
through the function � . Hence, in the regions where the depth is homogeneous,

�!� � �
is small and the two coefficients

� * and
� ' are equal to a constant

�
(this is due to the

constraints imposed on the function � �	� � ) and if one note � ��� � � � �� , the coefficients
for the divergence term simplify to:/1 2 � � � � � / � � � � ! � � � � � � *+� � � � � � � � � � *+�

� � < � � � * � � � � � � � � � * � �&�
As expected, these coefficients depend on the � parameter. Here are some configura-
tions for the divergence filter: These filters look like the classical Laplacian operator.

� � !� � � !� � � <
� � ��*

filter

<
�� � �� <

��� �� � � � ��<
�� � �� <

��

�� � ��� � � � �
�� � ��

�� �� ��
�� � , � ���� �� ��

� � �� � / � �� � �
Table 1. Filters obtained for different values of �

This is what we expected in the design of the regularization scheme: In homogeneous
depth regions, the regularization must allow an isotropic smoothing. In inhomogeneous
regions the configuration of the mask will not look like a Laplacian operator but as a di-
rectional second derivative in the direction normal to the gradient. This will perform an
anisotropic diffusion i.e a diffusion only along the ISO-depth and not across the depth
discontinuities.

Another directional numerical scheme has also been developed. It uses only 6 neigh-
bors and not all the 8 neighbors as the one presented here and inspired from the dis-
cretization scheme proposed by L.Alvarez in [2] for multi-scale image analysis pur-
pose. For more details about these two numerical schemes, one can refer to [11] and
[16] where the two numerical schemes are presented in details.



6 Further Implementation Details

The following two additional points have to be mentioned regarding the implementation
part:

First, it appears that the only use of the intensity field is not sufficient for dealing
with real images, where the Lambertian assumption is almost always violated. The use
of intensity gradient information generally helps a great deal in getting close to the cor-
rect solution. We have studied the evolution of the minimization process using different
additional fields of attributes such as: intensity gradient along the epipolar line, intensity
gradient vector, Laplacian of the intensity. It turns out that the intensity gradient vector
field gives the best results.

Secondly, a multi scale approach speeds up convergence and helps avoiding local
minima. The initial depth function at the coarsest scale is assigned a constant value.
Then, the solution at each scale is used as initial value for the next, finer scale. In prac-
tice, we start with 32 - 32 images and double the image size at each level of the pyramid
until we reach the final resolution.

7 Experimental Results

This section illustrates the experimental results that we have obtained on triplet of syn-
thetic views of a pyramid. The baseline of cameras 1 and 2 (resp. 1 and 3) is aligned
with the � (resp. � ) axis of the pyramid, so the epipolar lines have the directions repre-
sented in Figure 2 (top). Image intensity is very different from one stage of the pyramid
to the next, and at each stage it is almost constant. The small variations due to lighting
simulation cannot be perceived when looking at the images.

The three bottom lines of Figure 2 represent depth maps ((u,v,Z(u,v)) (left column)
and dense 3D reconstructions (center and right columns) obtained, from top to bottom,

1. with cameras 1 and 2, and smoothing using the Tikhonov regurarization term (see
how strong the smoothing is across the discontinuities)

2. with cameras 1, 2 and 3, and smoothing using the Tikhonov regurarization term (see
how the use of a third camera improves the results but we still have the smoothing
across the discontinuities)

3. with cameras 1, 2 and 3, and smoothing using the Aubert regurarization term (see
how the use of this function improves the preservation of the discontinuities.)

The top two lines show the importance of using more than two images. Indeed, in the
binocular case, there is almost no matching information along the epipolar lines, except
close to the vertical edges. Thus, the shape is recovered only at these places. Elsewhere,
since the image information is very weak, the depth-recovery process almost completely
relies on the regularization term. In the trinocular case, depth is recovered everywhere
on the pyramid. However, the smoothing term is too important for the small intensity
variations within each pyramid level to be of any use to the algorithm. In the third case,
we see how the algorithm can recover the shape of the pyramid when it also takes into
account depth discontinuities.



8 Conclusion

A variational approach to dense stereo reconstruction has been presented. It allows to
estimate directly the depth from a number of stereo images, while preserving depth dis-
continuities. The problem has been set as a regularization and minimization of a non
quadratic functional. The Tikhonov regularization term usually used to recover smooth
solution has been replaced by a function of the gradient depth specifically derived to al-
low depth discontinuities formation in the solution. The conditions that must be be ful-
filled by this specific regularizing term to preserve discontinuities have been presented
and a PDE based explicit scheme for moving iteratively towards the solution has been
developed. Promising experimental results have been obtained. These results clearly il-
lustrated the capabilities of this promising approach: direct depth recovery, depth dis-
continuities preservation and possibility to use more than 2 cameras.
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