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Abstract

Our goal is to reconstruct both the shape and reectance properties of surfaces from multiple
images. We argue that an object-centered representation is most appropriate for this purpose
because it naturally accommodates multiple sources of data, multiple images (including
motion sequences of a rigid object), and self-occlusions. We then present a speci�c object-
centered reconstruction method and its implementation. The method begins with an initial
estimate of surface shape provided, for example, by triangulating the result of conventional
stereo. The surface shape and reectance properties are then iteratively adjusted to minimize
an objective function that combines information from multiple input images. The objective
function is a weighted sum of stereo, shading, and smoothness components, where the weight
varies over the surface. For example, the stereo component is weighted more strongly where
the surface projects onto highly textured areas in the images, and less strongly otherwise.
Thus, each component has its greatest inuence where its accuracy is likely to be greatest.
Experimental results on both synthetic and real images are presented.

1 Introduction

The problem of recovering the shape and reectance properties of a surface from multiple
images has received considerable attention (Barrow and Tenenbaum 1978, Grimson and
Huttenlocher 1992, Marr 1982, Okutomi and Kanade 1991, Terzopoulos 1988). This is a key
problem not only in developing general-purpose vision systems, but also in specialized areas
such as the generation of Digital Elevation Models from aerial images (Barnard 1989, Diehl
and Heipke 1992, Hannah 1989, Kaiser et al. 1992, Wrobel 1991).
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In this paper, we view the ultimate goal of a surface reconstruction method as �nding an
object-centered description of a surface from a set of input images that is su�ciently com-
plete, in terms of its geometric and radiometric properties, that it is possible to generate an
image of the surface from any viewpoint. In particular, the description should be su�ciently
complete to reproduce the input images to within a certain tolerance, given models of the
cameras, their relative locations, and expected noise.

Our surface reconstruction method uses an object-centered representation, speci�cally
a triangulated 3{D mesh of vertices. Such a representation accommodates both geometric
and radiometric information, as well as multiple images (including motion sequences of a
rigid object) and self-occlusions. We have chosen to model the surface material using the
Lambertian reectance model with variable albedo. Consequently, the natural choice for the
monocular information source is shading, while intensity is the natural choice for the image
feature used in multi-image correspondence. Not only are these the natural choices given a
Lambertian reectance model, they are also complementary (Blake et al. 1985, Leclerc and
Bobick 1991): intensity correlation is most accurate wherever the input images are highly
textured, whereas shading is most accurate where the input images are untextured.

The reconstruction method is to minimize an objective function whose components de-
pend on the input images and some measure of the complexity of the 3{D mesh. The method
starts with an initial estimate for the mesh derived, for example, from the triangulation of
conventional stereo results, and uses conjugate gradient descent to minimize the objective
function. The image-dependent components of the objective function are related to the two
sources of information mentioned above. We take advantage of the complementary nature of
the information sources by weighting the components at each facet of the triangulated mesh
according to the degree of texturing within the areas of the images that the facet projects
to. The projection uses a hidden-surface algorithm to take occlusions into account.

In the following section, we describe related work and our contributions in this area.
Following this we discuss some of the key issues in multi-image surface reconstruction and
how to combine di�erent sources of information for such purposes. We then describe in detail
our speci�c procedure, discuss its behavior on synthetic data, and show some results on real
images.

2 Related Work and Contributions

Three-dimensional reconstruction of visible surfaces continues to be an important goal of
the computer vision research community. Initially, much of the work concentrated on 21

2
{D

image-centered reconstructions, such as Barrow and Tenenbaum's Intrinsic Images (Barrow
and Tenenbaum 1978) and Marr's 21

2
{D Sketch (Marr 1982). These view-centered surface

representations have been the basis for quite successful systems for recovering shape and
surface properties. Some have used single sources of information, such as sequences of range
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data or intensity images (Asada et al. 1992, Hung et al. 1991), stereo (Diehl and Heipke
1992, Kaiser et al. 1992, Witkin et al. 1987, Wrobel 1991), and shading (Hartt and Carlotto
1989, Horn 1990, Terzopoulos 1988). Others have combined sources of information, such as
shading and texture (Choe and Kashyap 1991), focus, vergence, stereo, and camera calibra-
tion (Abbot and Ahuja 1990). See (Aloimonos 1989) for further discussions on information
fusion.

More recently, full 3{D representations have been used, such as 3{D surface meshes
(Terzopoulos and Vasilescu 1991, Vemuri and Malladi 1991), parameterized surfaces (Stokely
and Wu 1992, Lowe 1991), local surfaces (Ferrie et al. 1992, Fua and Sander 1992), particle
systems (Szeliski and Tonnesen 1992), and volumetric models (Pentland 1990, Terzopoulos
and Metaxas 1991, Pentland and Sclaro� 1991).

As with the methods employing 21
2
{D representations, those employing 3{D represen-

tations have used a variety of single image cues for reconstruction, such as silhouettes and
image features (Cohen et al. 1991, Delingette et al. 1991, Terzopoulos et al. 1987, Tomasi
and Kanade 1992, Wang and Wang 1992), range data (Whaite and Ferrie 1991), stereo (Fua
and Sander 1992), and motion (Szeliski 1991). Liedtke et al. (1991) �rst uses silhouettes
to derive an initial estimate of the surface, and then uses a multi-image stereo algorithm to
improve on the result. Both their approach to deriving an initial estimate for the mesh and
Szeliski and Tonnesen's approach (1992) are di�erent from ours and this is an important
topic for future research.

Of special relevance to this paper is research in combining stereo and shape from shading.
Using 21

2
{D representations, Blake et al. (1985) is the earliest reference we are aware of

that discusses the complementary nature of stereo and shape from shading, but meaningful
experimental results are not provided. Leclerc and Bobick (1991) discuss the integration
of stereo and shape from shading, but their implementation uses stereo only as an initial
condition to their height{from{shading algorithm. Cryer et al. (1992) combine the high{
frequency output of a shape from shading algorithm with the low{frequency output of a
stereo algorithm using �lters designed to match those in the human visual system.

Using full 3{D representations, Heipke (1992) integrates stereo and shading, but assumes
that the images can be separated beforehand into zones of variable albedo (where one does
stereo) and areas of constant albedo (where one does shape from shading). This is in contrast
to our approach described below, in which the optimization procedure dynamically adapts
to the image data.

In this paper, we unify the idea of using 3{D meshes to integrate information from
multiple images with that of using multiple cues. Our speci�c approach to this uni�cation
has led to a number of important contributions:

� We correctly deal with occlusions by using a hidden surface algorithm during the
reconstruction process.

� Our stereo technique avoids the constant depth assumption of traditional correlation-
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based stereo algorithms, e�ectively using self-adjusting variable-sized windows in the
images.

� Our approach to shape from shading is applicable to surfaces with slowly varying
albedo. This is a signi�cant advance over traditional approaches that require constant
albedo.

Finally, we view the speci�c manner in which the multiple cues are integrated together
to be an important contribution in itself. The integration is achieved by using a weighting
scheme for combining shape from shading and stereo that depends on the local degree of
texturing in the input images. We establish, using both synthetic and real images, that it
leads to signi�cantly better results than using either cue alone.

To demonstrate the validity of the overall approach, we have implemented a computa-
tionally e�ective optimization procedure, and have demonstrated that it �nds good minima
of the objective function on both synthetic and real images.

3 Issues in Multi-Image Surface Reconstruction

We briey discuss here some of the key issues in multi-image surface reconstructions, and
outline how we address the issues here. These outlines will be expanded upon in Section 4.

3.1 Surface Shape and Its Representation

Since the task is to reconstruct a surface from multiple images whose vantage points may
be very di�erent, we need a surface representation that can be used to generate images
of the surface from arbitrary viewpoints, taking into account self-occlusion, self-shadowing,
and other viewpoint-dependent e�ects. Clearly, a single image-centered representation is
inadequate for this purpose. Instead, an object-centered surface representation is required.

Many object-centered surface representations are possible. However, practical issues are
important in choosing an appropriate one. First, the representation should be general-
purpose in the sense that it should be possible to represent any continuous surface, closed or
open, and of arbitrary genus. Second, it should be relatively straightforward to generate an
instance of a surface from standard data sets such as depth maps or clouds of points. Finally,
there should be a computationally simple correspondence between the parameters specifying
the surface and the actual 3-D shape of the surface, so that images of the surface can be
easily generated, thereby allowing the integration of information from multiple images.

A regular 3{D triangulation is an example of a surface representation that meets the
criteria stated above, and is the one we have chosen for this paper. In our implementation,
all vertices except those on the edges have six neighbors and are initially regularly spaced.
Such a mesh de�nes a surface composed of three-sided planar polygons that we call triangular
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facets, or simply facets. Triangular facets are particularly easy to manipulate for image and
shadow generation; consequently they are the basis for many 3-D graphics systems. These
facets tend to form hexagons and can be used to construct virtually arbitrary surfaces.
Finally, standard triangulation algorithms can be used to generate such a surface from noisy
real data (Fua and Sander 1992, Szeliski and Tonnesen 1992).

3.2 Material Properties and Their Representation

Objects in the world are composed of many types of material, and the material type can
vary across the object's surface in many ways. The key issues, therefore, are the type of
material we wish to consider, and how its variation across the surface is to be represented.
In general, one can represent a material type by its reectance function, which maps the
wavelength distribution and orientation of a light source, the normal to the surface, and
the viewing direction into the color of the image at a point. This function is generally
quite complex. However, there are reectance functions that are not only much simpler,
but are also quite common. Such functions are modeled using only one, or, at most, a few,
parameters. Consequently, one can accurately model the material properties of a surface by
representing these parameters at every point on the surface.

Probably the simplest, and most common, such function is the Lambertian reectance
function. For gray-level images, this function not only has a single parameter, albedo, which
is the ratio of outgoing to incoming light intensity, but the image intensity is independent of
viewpoint. Image intensity can therefore be used directly when computing surface properties,
as explained in Section 4. For this reason, and for the time being, we have chosen to
restrict ourselves to Lambertian surfaces. Possible extensions are discussed as future work
in Section 6.

Having chosen a speci�c reectance function, the remaining issue is how to represent the
spatially varying parameter(s). In general, one needs to be able to represent independent
parameter values at every point of the surface. In terms of the mesh representation of the
surface, this implies some type of spatial sampling of each facet. We have chosen to use two
types of spatial sampling. The �rst is most appropriate when the parameters vary quickly
across the surface, and the second when they vary more slowly. For the former case, we use
a uniform sampling of each facet, where the intersample spacing corresponds roughly to no
more than one or two pixels in any of the images. For the latter case, we use a single value
associated with each facet.

As we shall see later, both representations are necessary to handle the various sources
of information; the relative importance of their contributions is weighted on a facet-by-facet
basis as a function of the images.
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3.3 Information Sources for Reconstruction

A number of information sources are available for the reconstruction of a surface and its
material properties. Here, we consider two classes of information.

The �rst class comprises those information sources that do not require more than one
image, such as texture gradients, shading, and occlusion edges. When using multiple images
and a full 3-D surface representation, however, we can do certain things that cannot be done
with a single image. First, the information source can be checked for consistency across all
images, taking occlusions into account. Second, when the source is consistent and occlusions
are taken into account, the information can be fused over all the images, thereby increasing
the accuracy of the reconstruction.

The second class comprises those information sources that require at least two images,
such as the triangulation of corresponding points between input images (given camera models
and their relative positions). Generally speaking, this source is most useful when correspond-
ing points can be easily identi�ed and their image positions accurately measured. The ease
and accuracy of this correspondence can vary signi�cantly from place to place in the image
set, and depends critically on the type of feature used. Consequently, whatever the type of
feature used, one must be able to identify where in the images that feature provides reliable
correspondences, and what accuracy one can expect.

The image feature that we have chosen for correspondence (although it is by no means the
only one possible) is simply intensity, because the Lambertian reectance model described
earlier implies that the image intensity of a surface point is independent of the viewing
direction. Therefore, corresponding points should have the same intensity in all images.
Clearly, intensity can be a reliable feature only when the albedo varies quickly enough on
the surface (and, consequently, the images are highly textured), the search space is su�ciently
narrow, and the radiometry is the same in all images. Otherwise, there would be signi�cant
ambiguity in the correspondence of pixels across the images. Di�erences in radiometry,
however, can be accommodated by �rst band-passing the images (Poggio et al. 1985, Barnard
1989).

In contrast to our approach, traditional correlation-based stereo methods use �xed-size
windows in images to measure disparities, which will in general yield correct results only
when the surface is parallel to the image plane. Instead, we compare the intensities as
projected onto the facets of the surface. Consequently, the reconstruction can be signi�cantly
more accurate for slanted surfaces. Some correlation-based algorithms achieve similar results
by using variable-shaped windows in the images. Control Data's work (Panton 1978), the
Hierarchical Warp Stereo System (Quam 1984), Nishihara's real-time stereo matcher (1984),
and the adaptative windows technique described in (Kanade and Okutomi 1990) are examples
of such methods. However, they typically use only image-centered representations of the
surface.

As for the monocular information source, we have chosen to use shading. There are a
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number of reasons for this. First, we are using a Lambertian reectance model, making
shading a relatively simple source of information. Second, shading is most reliable when the
albedo varies slowly across the surface, which is the natural complement to intensity corre-
spondence, which requires quickly varying albedo. The complementary nature of these two
sources should allow us to accurately recover the surface geometry and material properties
for a wide variety of images.

In contrast to our approach, traditional uses of shading information assume that the
albedo is constant across the entire surface, which is a major limitation when applied to real
images. We overcome this limitation by improving upon a method to deal with discontinu-
ities in albedo alluded to in the summary of (Leclerc and Bobick 1991). We compute the
albedo at each facet using the normal to the facet, a light-source direction, and the aver-
age of the intensities projected onto the facet from all images. We use the local variation
of this computed albedo across the surface as a measure of the correctness of the surface
reconstruction. To see why albedo variation is a reasonable measure of correctness, consider
the case when the albedo of the real surface is constant. When the geometry of the mesh
is correct, then the computed albedo should be approximately the same as the real albedo,
and hence should be approximately constant across the mesh. Thus, when the geometry is
incorrect, this will generally give rise to variations in the computed albedo that we can take
advantage of. Furthermore, by using a local variation in the computed albedo, we can deal
with surfaces whose albedo is not constant, but instead varies slowly over the surface.

3.4 Combining and Using Information Sources

Simply put, our approach to surface reconstruction is to adjust the parameters of the surface
(in the case of the mesh, this means the coordinates of the vertices), until the synthesized
images of the surface are most consistent with the information sources described above.
This approach requires a number of things. First, one must have an initial estimate of
the surface. Second, one must know the light source direction, camera models, and their
relative positions|we assume these are provided a priori|so that synthetic images of the
surface can be generated. Third, one must have a way of quantifying what is meant by
\most consistent with the information sources." Here, we use an objective function that
is a linear combination of components, one for each information source, whose weights are
determined on a facet-by-facet basis as a function of the images. Finally, one must have
a computationally e�ective means of �nding a surface, given the initial estimate, that is
reasonably close to the best of all possible surfaces according to the objective function.

Our combined objective function has three components, two of which were mentioned
above: an intensity correlation component, and an albedo variation component. A third
component is a measure of the smoothness of the surface. The �rst two components are
weighted di�erently at each facet as a function of the image intensities projected onto the
facet, while the surface smoothness component has the same weight everywhere, but is
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typically decreased as the iterations proceed.
Since the intensity correlation component depends on the di�erences in image intensities

at a given point on a facet, it is most accurate when the images are highly textured in
the areas that the facet projects to. To see this, consider the case when the images have
constant intensity in the neighborhood of the projected facet: the di�erence in intensity will
be a constant, independent of small variations in the facet's position or orientation. On the
other hand, when the images are highly textured, small changes in the facet can signi�cantly
change the value of this component. Thus, we weight the intensity correlation component
most strongly for those facets in which the projected image intensities are highly textured.

Conversely, the albedo variation component is most accurate when the intensities within a
facet vary slowly. This is because we are assuming that the albedo varies slowly enough across
the surface that a constant-albedo facet is a good model for the surface. Since the facets
are planar, this should produce images whose intensities are constant within the projected
facet. Thus, we weight the albedo variation component most strongly when the projected
intensities within a facet vary slowly.

Since rapidly changing albedos produce highly textured image regions, our weighting
scheme, in e�ect, turns o� the shading component and turns on the stereo component in
such regions. Thus, it provides the shape from shading component with boundary conditions
at the edge of regions of slowly varying albedo.

The surface smoothness component is required as a stabilizing term because neither of
the above components is likely to be exactly correct, the surfaces are not exactly Lambertian,
and the camera positions are not exactly correct: there is noise in the images, and so on.
Currently, we use the heuristic technique of starting with a relatively large weight for the
smoothness component, and decrease it as the iterations proceed. The theoretically optimal
point at which the smoothness weight should no longer be decreased is still an open question.
Nonetheless, a single empirically determined value has been used with great success across
all of the images presented in this paper when simultaneously using stereo and shape from
shading.

4 Details of Surface Model and Optimization Proce-

dure

As discussed in the previous section, our approach to recovering surface shape and reectance
properties from multiple images is to deform a 3{D representation of the surface so as
to minimize an objective function. The free variables of this objective function are the
coordinates of the vertices of the mesh representing the surface, and the process is started
with an initial estimate of the surface. For the experiments described in this paper, we
have derived this initial estimate using one of the various methods mentioned in Section 5.
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The simplest one is to triangulate the smooth depth-map generated by the correlation-based
stereo algorithm described in (Fua 1993).

4.1 Images and Camera Models

In this paper, we assume that images are monochrome, and that their camera models are
known a priori. The set of gray-level images is denoted G = (g1; g2; : : : ; gng ). A point in an
image is denoted u = (u; v), and the intensity of point u in image gi is denoted gi(u). For
noninteger values of u we use bilinear interpolation over the four points represented by the
oor and ceiling of the coordinates of u.

The projection of an arbitrary point x = (x; y; z) in space into image gi is denoted
mi(x). There are well-known methods for correcting both geometric and radiometric errors
in images, as surveyed in (Baltsavias 1991). Thus, we assume that all e�ects of lens distortion
and the like have been taken care of in producing the input images, so that the projection
of a surface into an image is well modeled by a perspective projection. Thus, u =mi(x) can
be written as:

2
64
U

V

W

3
75 = Mi

2
6664

x

y

z

1

3
7775

u = U=W

v = V=W;

where Mi is a three-by-four projection matrix.

4.2 Surface Representation

We represent a surface S by a hexagonally connected set of vertices V = (v1; v2; : : : ; vnv)
called a mesh. The position of vertex vj is speci�ed by its Cartesian coordinates (xj; yj; zj).
Each vertex in the interior of the surface has exactly six neighbors. Vertices on the edge of
a surface may have anywhere from two to �ve neighbors.

Neighboring vertices are further organized into triangular planar surface elements called
facets, denoted F = (f1; f2; : : : ; fnf ). In this work, we require that the initial estimate of the
surface have facets whose sides are of equal length. The objective function described below
tends to maintain this equality, but does not strictly enforce it. The representation can be
extended in a straight-forward fashion to support di�erent surface resolutions by subdividing
facets (which we have done but do not describe in detail here). However, facets of a given
resolution will still be required to have approximately equal sides.
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4.3 Objective Function

The objective function E(S) that we use to recover the surface is best described in two
equations. In the �rst equation,

E(S) = �DED(S) + EG(S); (1)

E(S) is decomposed into a linear combination of two components. The �rst component,
ED(S), is a measure of the deformation of the surface from a nominal shape, and is indepen-
dent of the images. This nominal shape represents the shape that the surface would take in
the absence of any information from the images. For this paper, it is a plane. Higher-order
measures, such as deformation from a sphere, are also possible.

The second component,

EG(S) = �CEC(S) + �SES(S) (2)

depends on the images, and is the one that drives the reconstruction process. It is further
decomposed into a linear combination of the two information sources described in the pre-
vious section: a multi-image correlation component, EC(S), and a component that depends
on the shading of the surface, ES(S).

These components, and their relative weights, are described in more detail below.

4.3.1 Surface Deformation Component

As stated earlier, the surface deformation (or smoothness) component is a measure of the
deviation of the mesh surface from some nominal smooth shape. When the nominal shape
is a plane, we can approximate this as follows.

Consider a perfectly planar hexagonal mesh for which the distances between neighboring
vertices are exactly equal. Let the neighbors of a vertex vi be ordered in clockwise fashion
and let us denote them vNi(j) for 1 � j � 6. This notation is depicted in Figure 1(a). If the
hexagonal mesh was perfectly planar, then the third neighbor over from the jth neighbor,
vNi(j+3), would lie on a straight line with vi and vNi(j). Given that the intervertex distances
are equal, this implies that coordinates of vi equal the average of the coordinates of vNi(j)

and vNi(j+3), for any j.
Given the above, we can write a measure of the deviation of the mesh from a plane as

follows:

ED(S) =
nvX

i=1

3X

j=1

k=Ni(j)

k0=Ni(j+3)

(2xi � xk � xk0)2 + (2yi � yk � yk0)2 + (2zi � zk � zk0)2
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vN (1)i
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N

L

(a) (b) (c)

Figure 1: (a) The six neighbors Ni(j) of a vertex vi are ordered clockwise. The defor-
mation component of the objective function tends to minimize the distance
between vi and the midpoint of diametrally opposed neighbors, represented by
the dotted circle. (b) Facets are sampled at regular intervals as illustrated here.
We use the gray levels of the projections of these sample points to compute the
stereo score. (c) The albedo of each facet is estimated using the facet normal
�!
N , the light source direction

�!
L and the average gray level of the projection

of the facet into the images.

Note that this term is also equivalent to the squared directional curvature of the surface
when the sides have approximately equal lengths (Kass et al. 1988). This term can be made
to accommodate multiple resolutions of facets by normalizing each term by the nominal
intervertex spacing of the facets.

4.3.2 Multi-Image Intensity Correlation

The multi-image intensity correlation component is the sum of squared di�erences in intensity
from all the images at a given sample-point on a facet, summed over all sample-points, and
summed over all facets. This component is presented in stages in the remainder of this
subsection.

First, we de�ne the sample-points of a facet by noting that all points on a triangular
facet are a convex combination of its vertices. Thus, we can de�ne the sample-points xk;l of
facet fk as:

xk;l = �l;1 xk;1 + �l;2 xk;2 + �l;3 xk;3; l = 4; : : : ns;

where xk;1, xk;2, and xk;3 are the coordinates of the vertices of facet fk, and �l;1+�l;2+�l;3 = 1.
In practice, �l;1 and �l;2 are both picked at regular intervals in [0; 1] and �l;3 is taken to be
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1 � �l;1 � �l;2. In the top half of Figure 1(b), we see an example of the sample-points of a
facet.

Next, we develop the sum of squared di�erences in intensity from all images for a given
point x. Recall that a point x in space is projected into a point u in image gi via the
perspective transformation u = mi(x). Consequently, the sum of squared di�erences in
intensity from all the images, �02(x), is de�ned by:

�0(x) =
1

ni

niX

i=1

gi(mi(x))

�02(x) =
1

ni

niX
i=1

(gi(mi(x))� �0(x))
2

Figure 1(b) illustrates the projection of a sample-point of a facet onto several images.
The above de�nition of �02(x) does not take into account occlusions of the surface. To

do so, we use a \Facet-ID" image, shown in Figure 2. It is generated by encoding the index
i of each facet fi as a unique color, and projecting the surface into the image plane, using
a standard hidden-surface algorithm. Thus, when a sample-point from facet fk is projected
into an image, the index k is compared to the index stored in the Facet-ID image at that
point. If they are the same, then the sample-point is visible in that image; otherwise, it
is not. Let vi(x) = 1 when point x is determined to be visible in image gi by the method
above, and vi(x) = 0 otherwise. Then, the correct form for the sum of squared di�erences
in intensity at a point x is de�ned by:

�(x) =

Pni
i=1 vi(x)gi(mi(x))Pni

i=1 vi(x)

�2(x) =

Pni
i=1 vi(x) (gi(mi(x))� �(x))2Pni

i=1 vi(x)

When the sample-point is visible in fewer than two images (that is, when
Pni

i=1 vi(x) < 2),
the above variance has no meaning and is taken to be 0. Let sk denote the number of facet
samples for facet k for which the variance is meaningful. Summing �2(x) over all sample-
points and over all facets and normalizing by the number of meaningful sample-points yields
the multi-image intensity correlation component:

EC(S) =

Pnf
k=1 ck

Pns
l=4 �

2(xk;l)Pnf
k=1 sk

;

where ck is a number between 0 and 1 that weights the contribution from each facet di�er-
ently, depending on the average degree of texturing within a facet (see Section 4.3.4).

12



(a) (b) (c)

Figure 2: Illustration of the projection of a mesh, and the \Facet-ID" image used to
accommodate occlusions during surface reconstruction. (a) A shaded image of
a mesh. (b) A wire-frame representation of the mesh (bold white lines) and
the sample-points in each facet (interior white points). (c) The \Facet-ID"
image, wherein the color at a pixel is chosen to uniquely identify the visible
facet at that point (shown here as a gray-level image).

When the original surface giving rise to the images is su�ciently textured, this component
should be smallest when the surface S closely approximates the original surface. However,
when the surface has constant, or nearly constant, albedo this component would be small for
many di�erent surfaces. As an extreme example of this ambiguity, consider a planar surface
with constant albedo. This produces images with constant intensity. Thus, this component
will not be able to constrain the shape of the surface, since the di�erence in intensity will
be zero for all surfaces.

4.3.3 Shading

The shading component of the objective function is the sum, over all facets, of the di�erence
between the computed albedo of the facet and the computed albedos of all of its neighbors.
The motivation for this component, and its precise form, follow.

Recall that the Lambertian reectance model de�nes the intensity g at a point on a

surface with a unit surface normal
�!
N as:

g = �(a+ b
�!
N �

�!
L ); (3)

where � is the albedo of the surface, a is the magnitude of the ambient light, b is the

magnitude of a point light source, and
�!
L is the direction of the point light source as depicted
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in Figure 1(c).
Note that g is independent of the viewing direction. Consequently, if we were to image a

planar Lambertian facet from several points of view, its intensity would be the same for all
pixels in the projection of the facet. Conversely, if we were to measure the average intensity
�gk of all of the pixels within the projection of a facet fk, we could compute its albedo, �k,
as follows:

�k =
�gk

(a+ b
�!
N �

�!
L )

: (4)

This assumes, of course, that the facet is well-modeled by a single albedo, that the variation
in intensity is due only to noise, and that the light source is located at in�nity. In this paper,

we assume that the ambient and direct illumination (i.e., a, b, and
�!
L ) are either given or

estimated from the initial surface and images, as was done in (Leclerc and Bobick 1991).
The average intensity �gk of a facet is computed by scanning over all the Facet-ID images

for index k, and taking the average of the intensities at matching points in the corresponding
images. This computed albedo minimizes the mean squared error between the synthesized
images of the mesh surface and the input images.

Now, if the original surface had exactly constant albedo, and if our mesh surface were a
good approximation to the original surface, then the computed albedos should be approxi-
mately the same across all facets. Thus, some measure of the variation in computed albedos
would be a good measure of the correctness of the mesh surface. If the albedo varies slowly
across the surface, we propose that an appropriate measure of this variation is the di�erence
between the computed albedo at the facet and the computed albedos of all its neighboring
facets:

ES(S) =
nfX

k=1

(1 � ck)
X

j2Nf (k)

(1 � cj)(�k � �j)
2;

where Nf (k) is the set of indices of the facets that are neighbors of facet fk, and ck and cj
are numbers between 0 and 1 that depend on the degree of texturing within facets fk and
fj.

This term can be exactly zero only where the albedo is constant. However, as will be
shown in Section 5, it provides a reasonable constraint on the variation of surface normals
when the albedo variation is slow. It constrains the normals of neighboring facets projecting
to areas of similar gray-levels to have similar orientations. As a result, it prevents the surface
normals from varying wildly in the absence of strong image gray-level variations and acts as
an image-dependent regularization term that prevents the surface from wrinkling in bland
areas.
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4.3.4 Combining the Components

Recall that the objective function E(S) is a linear combination of three components:

E(S) = �DED(S) + �CEC(S) + �SES(S);

where the last two components are themselves linear combinations of subcomponents com-
puted on a per-facet basis:

EC(S) = (
nfX

k=1

ck

nsX

l=4

�2(xk;l))=
nfX

k=1

sk

ES(S) =
nfX

k=1

(1 � ck)
X

j2Nf (k)

(1 � cj)(�k � �j)
2: (5)

Thus, one needs to specify both the �s, de�ning the relative weights of the components, and
the cks, de�ning the relative weights of the two image-based components for each facet.

The � weights are de�ned as follows:

�D =
�0

D

k
�!
rED(S0) k

�C =
�0

C

k
�!
rEC(S0) k

(6)

�S =
�0

S

k
�!
rES(S0) k

;

where S0 is the initial estimate of the surface, and the �0s are user-de�ned weights. Normal-
izing each component by the magnitude of its initial gradient allows the components to have
roughly the same inuence when the �0s are equal. Thus, the user can more easily specify
the relative contributions of each component in an image-independent fashion. This normal-
ization scheme was used with great success in (Fua and Leclerc 1990), and is analogous to
standard constrained optimization techniques in which the various constraints are scaled so
that their eigenvalues have comparable magnitudes (Luenberger 1984).

As mentioned earlier, the ck weights are a function of the degree of texturing in the
intensities projected within a facet fk. A simple measure of the degree of texturing within
a facet is the variance in intensity of all the pixels projecting onto the facet, denoted �k(S)
(using the Facet-ID image to accommodate occlusions). We have empirically determined
that using the logarithm of �k(S) yields the most stable results for a large set of images:
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ck = a log (1 + �k(S)) + b; (7)

where a and b are normalizing factors chosen so that the smallest ck is zero, and the largest
is one.

4.4 The Optimization Procedure

The purpose of the optimization procedure is to iteratively modify the surface S so as to
minimize E(S), given some initial estimate S0, and some value for the weights �0

S , �
0

C , and
�0

D (where �0

S +�0

C +�0

D = 1) de�ned in Equation 6. Ideally, one would like to use as small a
value of the deformation weight �0

D as possible so as to minimize the bias introduced by this
term. However, in practice, �0

D serves a dual purpose. First, since the surface deformation
term is a quadratic function of the vertex coordinates, it \convexi�es" the energy landscape
and improves the convergence properties of the optimization procedure. Second, as discussed
above and shown in Section 5, in the absence of a smoothing term, the objective function
may over�t the data and wrinkle the surface excessively. Furthermore, the ck weights of
Equations 5 and 7 are computed for the initial position of the mesh and are meaningful only
when it is relatively close to the actual surface.

Consequently, we use an optimization method that is inspired by the heuristic technique
known as a continuation method (Terzopoulos 1986, Leclerc 1989a, Leclerc 1989b, Leclerc
and Bobick 1991). We �rst \turn o�" the shading term by setting �0

S (Equation 6) to 0 and
setting �0

D to a value that is large enough to su�ciently convexify the energy landscape but
small enough to allow curvature in the surface. In this paper, we take the initial value of both
�0

D and �0

C to be 0.5. Given the initial estimate S0, a local minimum of this approximate
objective function is found, using a standard optimization procedure. Then, �0

D is decreased
slightly, and the optimization procedure is applied again, starting at the local minimum
found for the previous approximation. This cycle is repeated until �0

D is decreased to the
desired value. Finally we \turn on" the shading term, compute the ck weights and reoptimize.
In all examples shown in Section 5, we use �0

C = �0

S = 0:4 and �0

D = 0:2 for this �nal stage.
The stereo component e�ectively uses only zeroth-order information about the surface

(i.e., the position of the vertices), whereas shading uses �rst-order information about the
surface (i.e., its normals). Thus, by optimizing the stereo component �rst, we e�ectively
compute the zeroth-order properties of the surface and set up boundary conditions that
the shading component can then use to compute the �rst-order properties of the surface in
textureless regions. In Section 5, we will show that this leads to a signi�cant improvement
over using the stereo component alone.

When dealing with surfaces for which motion in one direction leads to more dramatic
changes than motions in others, as is typically the case with the z direction in Digital
Elevation Models (DEMs), we have found the following heuristic to be useful. We �rst �x
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the x and y coordinates of vertices and adjust z alone. Once the surface has been optimized,
we then allow all of the coordinates to vary simultaneously.

The optimization procedure we use at every stage is a standard conjugate-gradient descent
procedure called FRPRMN (from (Press et al. 1986)) in conjunction with a simple line-
search algorithm. The conjugate-gradient procedure requires three inputs: (1) a function
that returns the value of the objective function for any S; (2) a function that returns the
gradient of E(S), that is, a vector whose elements are the partial derivatives of E(S) with
respect to the vertex coordinates, evaluated at S; and (3) an initial estimate S0.

Since it would be signi�cantly slower to compute the gradient of E(S) using �nite dif-
ferences than analytically, we do the latter. The analytical expression of this gradient is
conceptually straightforward, but is fairly complicated to derive manually. We have used
the Maple 1 mathematical package to derive some of the terms. Maple directly yields the C
code used in our implementation. We summarize the calculation of the derivatives below in
general terms.

The derivatives of the stereo term are linear combinations of image intensity derivatives
and of derivatives of the 3-D projections of points onto the images. Since we use bilinear-
interpolation of image values, the �rst derivatives of image intensity are linear combinations
of the image intensities in the immediate neighborhood of the projection. Since sample-
points are linear combinations in projective space of the mesh vertices, their projections are
ratios of linear combinations of the projections of the vertices, which themselves depend
linearly on the vertex coordinates. Consequently, the derivatives of these projections are
ratios of linear combinations of the vertex coordinates and squares of linear combinations of
the vertex coordinates.

Similarly, the derivatives of the shading term depend on the derivatives of the surface
normal, which can be easily derived analytically, and from the derivative of the mean gray-
level in the facets. In this work, the shading term is used mainly in the fairly uniform areas
where the latter derivative is assumed to be small and therefore neglected.

4.5 Computational Complexity and Convergence Issues

Each iteration of the conjugate gradient algorithm typically involves one evaluation of the
gradient of the objective function and four to eight evaluations of the objective function
itself. The cost of evaluating the stereo term grows as the product of the number of facets,
the number of samples per facet, and the number of images. Because the albedo computation
involves scanning the Facet-ID image, the dominant cost of evaluating the albedo term grows
as the number of pixels per image times the number of images. The cost of evaluating the
deformation term grows as the number of vertices and is small by comparison with the other
two. For example, in the case of the face images shown in Subsection 5.2.2, the meshes have

1Trademark, Waterloo Maple Software
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approximately 800 vertices and 1500 facets. We use six samples per facet and three 128x200
images. It takes about 0.6 second to evaluate the stereo energy, 0.3 second to evaluate the
albedo energy and .01 second to compute the deformation energy on an R4000 SGI Indigo.
Each iteration therefore takes from 5 to 10 seconds, and the computation of the �nal results
shown in this paper took a little less than 10 minutes.

Since the optimization uses image derivatives, our technique is valid only if a majority
of the facet samples project to within a few pixels of where they should be; otherwise the
gradient of the objective function is meaningless and the algorithm cannot converge. This
problem can be alleviated by using a coarse mesh applied to a coarse level of a gaussian
pyramid, and progressively increasing the resolutions of both mesh and images. Proving the
convergence of the algorithm in the general case is beyond the scope of the paper. However,
in Section 5, we use both synthetic and real world examples to show that the algorithm
converges when the condition stated above holds, that is, when the initial estimate is good
enough for the vertices of the mesh to project to within a few pixels of their true locations.

Standard correlation-based techniques can provide starting points that have the required
properties. For example, the speci�c algorithm we use in this paper (Fua 1993) has been
shown to �nd few false matches and to yield a precision in the order of one pixel in disparity
in the areas where it �nds relatively dense matches.

5 Behavior of the Objective Function and Results

We �rst illustrate the behavior of the complete objective function using synthetic data. We
then show that the same behavior can be observed with real data, allowing us to generate
accurate 3-D reconstructions of real surfaces from multiple images.

5.1 Synthetic Data

To demonstrate the properties of the objective function of Equation 1 and the inuence of
the coe�cients de�ned in Equations 6 and 7, we use as input the �ve synthetic images of
a shaded hemisphere with variable albedo shown at the bottom of Figure 3, both with and
without the addition of white noise. Each column of the �gure illustrates the steps used in
the creation of the image at the bottom of the column. We begin with a mesh and an albedo
map, shown in the top row. Then, for each view, two images are produced. The �rst image
(second row of the �gure) is the albedo map texture-mapped onto the mesh from the �nal
image's point of view. The second image (third row of the �gure) is a shaded view of the
mesh, using a constant albedo equal to one. The �nal image is the point-by-point product
of these two images because, by Equation 3, the imaged intensity of a Lambertian surface
is the product of the albedo (�rst image) and the inner product of the light source and the
surface normal (second image).
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Figure 3: The making of synthetic images of a shaded hemisphere with variable albedo
that conforms to our Lambertian model.

Figure 4 depicts graphically the result of our experiments. In each experiment we ran-
domized the mesh by adding random numbers to the coordinates of the mesh vertices, and
added di�erent amounts of noise to the input images. We then used our optimization proce-
dure to estimate the true hemispherical shape and true albedo map. More precisely, starting
from our randomized initial estimate, we �rst use intensity correlation alone and progres-
sively decrease the value of the �0

D parameter of Equation 6 from 0.5 to 0. We then turn
on the shading term by setting both �0

D and �0

S to 0.4, compute the cks of Equation 7, and
optimize the full objective function. To show the stability of the process, we recompute the
cks for the optimized mesh and perform a second optimization using the updated values.

The �rst column of Figure 4 is for experiments using only the �rst, second, and third im-
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Figure 4: Graphs of the errors and objective function components while �tting a surface model

to the synthetic shaded hemisphere images of Figure 3. These graphs are explained

in detail in the text. (a,b,c) Average error in recovered elevation expressed in the

same unit as the radius of the hemisphere, which is equal to 35. (d,e,f) Average

error in recovered albedo. (g,h,i) EC , the stereo component of the energy. (j,k,l) ES ,

the shading component of the energy.

ages from Figure 3, where there is little self-occlusion. The second column is for experiments
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using the �rst, fourth, and �fth images, where there is a signi�cant amount of self-occlusion.
Finally, the third column is for experiments using all �ve images. In this particular set of
experiments, we allowed only the z coordinates of the vertices to vary. We also �xed the
boundary vertices so as to eliminate the e�ect of the gray-level discontinuities at the border
between the texture mapped part of the images and their black background .

The �rst row from the top of Figure 4 is a graph of the average squared error in elevation
(the ordinate) versus decreasing �0

D (the abscissa). To the left of the dotted vertical line,
only the intensity correlation component is used. To the right, both the intensity correlation
and shading components are used. The di�erent curves are for di�erent amounts of noise
in the input images. The bottom curve corresponds to no noise (other than quantization
error), the middle curve is for a noise variance of 4% of the image dynamic range, and the
top curve is for a noise variance of 8%. The short vertical lines along the curves indicate the
standard deviation of the average error over the 20 experiments performed to derive each
curve.

Note that an error of 1 unit in elevation corresponds to a di�erence in computed dis-
parities of approximately 0.25 pixels for projections from image 1 into images 2 or 3 and of
approximately 0.80 pixels for projections from image 1 into images 4 or 5. In these experi-
ments, the noise added to the elevations was gaussian of variance randomly chosen between
1 and 5, resulting in errors in the projections in the order of one pixel for images 2 and 3,
and of three pixels for images 4 and 5. In this particular case, however, much larger errors
can be tolerated: the hemisphere has a radius of 35 elevation units and can be recovered
starting from a at sheet.

The second row of Figure 4 is a graph of the average error in computed albedo. The
third row is the average value of the intensity correlation component, EC(S), and the fourth
row is the average value of the shading component, ES(S).

Note that, as �0

D decreases and stereo alone is used (i.e., as the abscissa is traversed
rightwards to the dotted vertical line), the average elevation error decreases when there is
no noise in the input image (bottom curve), as does the average albedo error and the two
components of the objective function. However, when the images are noisy, the elevation
error (�rst row) stops decreasing and may even begin to increase as we start �tting to the
gray-level noise, even though the value of the intensity correlation component (third row)
continues to decrease, as it must. Furthermore, both the albedo error (second row) and the
shading component (fourth row) also begin to increase when the elevation error does. This
is natural since for smaller values of �0

D the surface becomes rougher and its normals less
well-behaved. As a result, the estimated albedos of Equation 4 become less reliable and
noisier.

In other words, an increase in the shading component provides us with a warning that
we are starting to over�t the data. This is a valuable behavior in itself. Furthermore, by
turning on the shading component of our objective function (those parts of the graphs that
are to the right of the vertical dotted line), we can bring down both the error in albedo
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and the value of the albedo component with at worst a modest increase in the value of the
stereo component, resulting in an overall reduction of the elevation error. Even when there
is nothing but quantization noise in the image, the addition of the shading component can
make a small, but still noticeable di�erence. The reason for this is twofold:

1. The shading component averages over whole facets and is therefore less sensitive to
uncorrelated noise.

2. The shading component uses absolute intensity values, whereas the stereo component
uses intensity di�erences. Thus, in the presence of noise in textureless areas, the signal-
to-noise ratio for the absolute values (used by the shading component) is larger than
for the di�erences (used by the stereo component), thereby making the shading term
more robust.

However, in our experience, the shading term can be used reliably only when the surface
is relatively close to the correct answer. This is not surprising since stereo deals directly
with elevations, whereas shading deals with derivatives of elevation. Consequently, we have
chosen the optimization schedule described above where we �rst optimize using stereo alone
and turn on shading only later.

There is another important point to note about these results. The elevation errors in
the second column, that is, those generated using images 1, 4, and 5 with a lot of self-
occlusion are very close to those of the �rst column, that is those generated using images 1,
2, and 3 with little self-occlusion, while those in the �nal column (using all �ve images) are
signi�cantly better. In addition, the results for images 1,4, and 5 are even slightly better
than those for images 1,2, and 3 in the presence of noise because the former correspond to
larger baselines. In other words, having the same number of images, but with signi�cant
self-occlusions, does not hurt our procedure. Furthermore, adding new images that contain
signi�cant self-occlusions actually improves the results.

To further demonstrate the importance of being able to combine stereo and shape from
shading, even in the presence of slowly varying albedo, we present in Figure 5 a second
synthetic example. If we band-pass the images using a di�erence of gaussians, there is not
enough texture for stereo to work e�ectively and the surface computed using stereo alone is
not very good. However by combining shape-from-shading with stereo, the result improves
markedly and the recovered surface becomes very close to the synthetic one used to generate
the images. In this case our starting point was a at plane, corresponding to errors of up to
4 pixels in the initial projections of the mesh vertices.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5: Combining shape from shading and stereo in the presence of a slowly varying
albedo. (a,b) A synthetic stereo pair generated by rendering the shaded surface
shown in (c) using the albedo map shown in (d). (e) The original shaded
surface and albedo map from (c) and (d) seen from the side. (f) The surface
and albedo map computed using stereo alone on di�erence of gaussians of the
images and starting from a plane. (g) The surface and albedo map recovered by
combining shape from shading and stereo. The di�erence-of-gaussian images
do not retain enough information and stereo alone �nds a poor quality solution.
The shape-from-shading term, however, allows a better recovery of the surface
even though the albedo is not constant.

5.2 Real Images

We now turn to real images and show that the same properties can be observed there.

5.2.1 Aerial Images

In Figure 6 we show the result of running the stereo component of our objective function on
an aerial stereo pair of a sharp ridge. Note that the radiometry of the left and right images is
actually slightly di�erent. As suggested in Section 3.3, we correct for this in the computation
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(a) (b) (c)

(d) (e) (f)

Figure 6: (a,b) A stereo pair of images of the Martin-Marietta ALV test site. (c) Dis-
parity map computed using a correlation-based algorithm. The black areas
indicate that the stereo algorithm could not �nd a match. Elsewhere, lighter
grays indicate higher elevations. (d) The initial surface estimate derived by
smoothing and interpolation of the disparity map. It is shown as a shaded
surface viewed by an observer located above the upper left corner of the scene.
(e,f) Shaded views of the mesh after optimization. Note that the ridge has
become very sharp and that the shadow casting cli�s visible in the top portion
of the image are recovered. They are clearly visible at the top of (e) and the
bottom right corner of (f).

of the stereo term of our objective function by �rst high-pass �ltering each image. Here, we
use the di�erence between the image and its gaussian convolution.
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We then optimize the mesh using the continuation method schedule described in section
4.4, that is, starting with �0

D = �0

C = 0:5; �0

S = 0:0 and then progressively reducing �0

D to
0.3 and increasing �0

C to 0.7. Note that the recovered ridge is much sharper than in the
original stereo result and that details in the upper part of the image are well recovered. The
di�erence in the ridge elevation in the original and �nal estimate is approximately 40 feet,
which translates to 2 pixels in disparity. Turning on the shape-from-shading term yields a
result that is visually indistinguishable from the one shown here: the images are textured
enough for stereo alone to be e�ective.

(a) (b) (c)

(d) (e) (f)

Figure 7: (a) (b) Two of a series of images of a semi-urban site. The images were taken
with di�erent light source directions. (c) A rough estimate of the ground-level
surface (d) Surface after optimization using stereo alone. (e) Surface after
optimization using both stereo and hand-entered buildings to mask occluded
areas. (e) Surface after optimization using both stereo and shape from shading.
In this case, the illuminations of the di�erent images are di�erent and there are
very few bland, untextured areas. As a result, stereo alone performs better.

In Figure 7, we demonstrate a possible application of our technique to semiautomated
cartography in a semiurban environment. We use images of a model board, each of them
being taken with a di�erent light-source direction. By �tting 3{D snakes to some of the
roads in the scene and �tting a surface to them, we have generated a rough terrain model
that we have then optimized using the same schedule as before. Because of the presence of
buildings that cannot be well described by our mesh model and even though we use relatively
large facets, the resulting surface model is too bumpy. We can improve upon this situation
by manually specifying the locations of the buildings, modeling them as extruded objects,
and using them to mask out occluded areas during the optimization. For comparison's sake,
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we also show the result of simultaneously using stereo and shape from shading. In this case,
because the illumination in each image is di�erent and there are very few bland areas, the
shape-from-shading term actually degrades the result.

5.2.2 Face Images

In Figure 8 we show two triplets of images of faces. They have been produced using the
INRIA three-camera system (Faugeras and Toscani 1986) that provides us with the camera
models we need to perform our computations. In this case it is essential to have more than
two images to be able to reconstruct both sides of the face because of self-occlusions. For each
triplet, we have computed disparity maps corresponding to images 1 and 2 and to images 1
and 3 and combined them to produce the depth maps shown in the rightmost column of the
�gure using the algorithms described in (Fua 1993).

Triplet 1 Disparities

Triplet 2 Disparities

Figure 8: Triplets of face images and corresponding disparity maps (courtesy of INRIA).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Results for the �rst triplet of Figure 8. (a) Shaded view of the mesh generated
by smoothing and triangulating the computed disparity map. We use it as
the starting condition for our optimization procedure. (b,c,d) The mesh after
optimization using only the stereo term, with progressively less smoothing.
(e,f,g) Several views of the mesh after optimization using both stereo and
shading. (h) The recovered albedo map. The albedo of the nose appears fairly
similar to that of the other skin areas, showing that its geometry has been
well recovered. The main problem with this map is the dark streak caused
by the self-shadowing crease on the right side of the face. Our algorithm does
not currently handle shadows and incorrectly models them as areas of lower
albedo.

The depth maps have then been smoothed and triangulated to produce the initial surfaces
shown in the upper left corner of Figures 9 and 10. In the �rst row of these two �gures,
we show the result of the optimization using stereo alone as we progressively decrease the
smoothness constraint and allow all three vertex coordinates to be adjusted. Note that in
the �rst triplet (Figure 9), we recover more and more detail until the surface eventually
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Results for the second triplet of Figure 8 presented in the same fashion as in
Figure 9. There are strong specularities on the nose and the stereo term alone
performs poorly. However, by using the shading term, the algorithm takes
advantage of the monocular information present around the specularities and
yields a much better result.

starts to wrinkle, without apparent improvement in accuracy. The second triplet poses an
even more di�cult problem: there are strong specularities on both the forehead and the
nose that strongly violate our Lambertian model. Because there are very few other points
that can be matched on the nose, the algorithm latches on to these specularities and yields
a poor result. These two sets of images therefore present our algorithm with problems that
are very similar to those discussed in Section 5.1.

In the bottom row of Figures 9 and 10, we show our �nal results obtained by turning
on the shading term and reoptimizing the meshes. In Figure 12, we show the corresponding
values of the ck coe�cients of Equation 7 and the contribution of each facet to the overall
energy. For these images we did not know a priori the light-source direction; we therefore
estimated it by choosing the direction that minimized the shading component of the objective
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Figure 11: Values of the stereo (a) and shading (b) components of the objective function
for the face images. The y axis represents the value of the components, and
the x axis represents the various stages of the optimization. From left to right,
we �rst use only stereo and decrease the smoothness and, to the right of the
thick dotted line, we turn on the shading term. Each curve is labeled with the
number of the corresponding image triplet, and all values have been scaled so
that the initial ones are equal to 1.0.

function given the surface optimized using only the stereo component. The main features
of both faces|nose, mouth, and eyes|have been correctly recovered. The improvement is
particularly striking in the case of the face in Figure 10. The shading component was able to
achieve this result because it uses the monocular information around the specularities. The
stereo component cannot take advantage of the information around the specularities because
very few points are visible in at least two images simultaneously, and because there is little
texture. Of course, the e�ect of the specularities has not completely disappeared (there
is indeed still a small artifact on the nose), but has been outweighed by the surrounding
information. A more principled approach to solving this problem would be to explicitly
include a specularity term in our shading model.

The graphs of Figure 11 depict the behavior of the stereo and shading components of the
objective function for the two triplets. The four values of the scores to the left of the thick
dotted line, St0 to St3, correspond to the results shown in the top row of Figures 9 and 10.
The �fth value, St+ Sh, corresponds to the �nal results when shading is turned on. These
values have been scaled so that St0 is equal to one for both triplets. As in the synthetic case,
when using stereo alone, the stereo component always improves, but as the recovered surface
becomes rougher the shading term degrades dramatically, indicating excessive wrinkling of
the surface. However, when we turn on the shading component, the overall results improve
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(a) (b) (c)

Figure 12: (a) Values of the ck coe�cients of Equation 7 for the �nal face result of Figure
9. The stereo term is dominant in areas where albedo changes rapidly such as
the mouth and the eyes, and the shading term elsewhere. (b) The contribution
of each facet to the stereo term. (c) The contribution of each facet to the shape
from shading term.

signi�cantly, even though the stereo component degrades slightly. For both faces, the major
di�erences between the initial and �nal estimates occur in the nose area. In the original
meshes, the nose tends to be oversmoothed resulting in di�erences of up to 15mm in terms
of distance to the camera planes, or approximately six pixels in terms of disparity.

5.2.3 Ground-level Scene

In our �nal example, shown in Figure 13, we reconstruct a ground-level scene using three
triplets of images acquired by the INRIA mobile robot. For each triplet, we have computed
a correlation map. We have then used the technique described in (Fua and Sander 1992)
to merge the resulting 3{D points and generate a Delaunay triangulation. Because the tops
of some of the rocks are sharply slanted, the result is relatively rough and can be re�ned
using our technique. As before, stereo alone with little smoothing yields a surface that is
too wrinkly. However, by combining stereo and shape from shading, we compute a surface
model in which the rock silhouettes are well de�ned.

6 Summary and Conclusion

We have presented a surface reconstruction method that uses an object-centered represen-
tation (a triangulated mesh) to recover geometry and reectance properties from multiple
images. It allows us to handle self-occlusions while merging information from several view-
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(a) (b) (c)

(d) (e) (f)

Figure 13: (a,b,c) The �rst images of three triplets taken by a mobile robot at di�erent
locations. (d) Rough ground level surface computed by combining correlation-
based results from each triplet. (e) Optimized surface using stereo alone (f)
Optimized surface using both stereo and shape from shading. (Courtesy of
INRIA)

points, thereby allowing us to eliminate blindspots and make the reconstruction more robust
where more than one view is available. The reconstruction process relies on both monocular
shading cues and stereoscopic cues. We use these cues to drive an optimization procedure
that takes advantage of their respective strengths while eliminating some of their weaknesses.

Speci�cally, stereo information is very robust in textured regions but potentially un-
reliable elsewhere. We therefore use it mainly in textured areas by weighting the stereo
component most strongly for facets of the triangulation that project into textured image
areas. The stereo component compares the gray-levels of the points in all of the images
for which the projection of a given point on the surface is visible, as determined using a
hidden-surface algorithm. This comparison is done for a uniform sampling of the surface.
This method allows us to deal with arbitrarily slanted regions and to discount occluded areas
of the surface.

On the other hand, shading information is mostly helpful in textureless areas. Thus, we
weight the shading component most strongly for facets that project into textureless areas.
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For utilizing shading information, the component uses a new method that does not invoke
the traditional assumption of constant albedo. Instead, it attempts to minimize the variation
in albedo across the surface, and can therefore deal with both constant albedo surfaces as
well as surfaces whose albedo varies slowly. However, it does require the boundary conditions
that are provided by the stereo information.

We have developed a weighting scheme that allows our system to use each source of
information where it is most appropriate. As a result, for the large class of surfaces that
roughly satisfy the Lambertian model, it performs signi�cantly better than if it were using
either source of information alone.

Here we have concentrated on Lambertian surfaces, where the image intensity of a surface
point is independent of the direction fromwhich it is viewed. Consequently, we have been able
to directly use the intensity in both the stereo component of our algorithm, by using image-
intensity correlation, and in the shape-from-shading component, by averaging the intensity
at one surface point across all of the input images. Non-Lambertian surfaces cannot be dealt
with in this manner.

In future work, we wish to extend our algorithm to the class of non-Lambertian surfaces
for which it is possible to unambiguously compute the parameter(s) of the surface reectance
function given the image intensity, viewing direction, light-source direction, and surface
normals (all of which are available during our optimization procedure, either directly or
from the current estimate of the surface). An example of such a reectance function is
the model proposed by Oren and Nayar (1993) for known values of the surface roughness
parameter. For this class of surfaces, we can use the estimated parameters to compute
our objective function. For example, we can replace our intensity-correlation term by the
variance of the estimated parameters across the input images at one surface point, and our
shape-from-shading term by the average of these parameters across the input images at one
surface point. This approach has the added advantage that it can be used in situations where
the light-source direction is di�erent for each image (as is often the case with aerial images).

Also in future work, we intend to investigate more complex topologies than the ones
shown here, multiple resolutions and the shrinking or growing of the surface of interest. We
have concentrated so far on a better understanding of the behavior of the objective function,
but we believe that our approach can naturally support these extensions.
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