
IS
S

N
 0

24
9-

63
99

appor t  
de  r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Variational principles, Surface Evolution,
PDE’s, level set methods and the Stereo Problem

Olivier Faugeras Renaud Keriven
INRIA CERMICS / ENPC

MIT AI-Lab

N˚ 3021

26 Octobre 1996
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Abstract: We present a novel geometric approach for solving the stereo problem
for an arbitrary number of images (greater than or equal to 2). It is based upon
the de�nition of a variational principle that must be satis�ed by the surfaces of
the objects in the scene and their images. The Euler-Lagrange equations which are
deduced from the variational principle provide a set of PDE's which are used to
deform an initial set of surfaces which then move towards the objects to be detected.
The level set implementation of these PDE's potentially provides an e�cient and
robust way of achieving the surface evolution and to deal automatically with changes
in the surface topology during the deformation, i.e. to deal with multiple objects.
Results of a two dimensional implementation of our theory are presented on synthetic
and real images.
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Principes variationnels, évolution de surfaces, EDP's,

méthodes de niveaux et le problème de la stéréoscopie

Résumé : Ce rapport expose une nouvelle méthode géométrique de résolution du
problème de la stéréoscopie à partir d'un nombre quelconque d'images (plus grand
ou égal à deux). Elle est basée sur un principe variationnel que doivent satisfaire
les surfaces des objets de la scène ainsi que leurs images. Les équations d'Euler-
Lagrange déduites de ce principe variationnel fournissent un ensemble d'EDP's qu'on
utilise pour déformer un ensemble de surfaces initiales qui vont alors se déplacer
vers les objets à détecter. La résolution de ce système d'EDP's par surfaces de
niveaux permet potentiellement de réaliser de manière e�cace et robuste le processus
d'évolution des surfaces tout en prenant en compte automatiquement les problèmes
de changement de topologie durant la déformation ce qui permet de traiter le cas
d'objets multiples. Les résultats d'une implémentation bidimensionnelle de notre
théorie sont présentés sur des images synthétiques et réelles.

Mots-clé : Principes variationnels, EDP's, évolutions géométriques, Stéréoscopie
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1 Introduction and preliminaries

The idea that is put forward in this paper is that the methods of curve and surface
evolutions which have been developed in computer vision under the name of snakes
[14] and then reformulated by Caselles, Kimmel and Sapiro [1] and Kichenassamy
et al. [15] in the context of PDE driven evolving curves can be used e�ectively for
solving 3D vision problems such as stereo and motion analysis.

As a �rst step in this direction we present a mathematical analysis of the stereo
problem in this context as well as a partial implementation.

The problem of curve evolution driven by a PDE has been recently studied both
from the theoretical standpoint [8, 9, 19] and from the viewpoint of implementation
[16, 21, 22] with the development of level set methods that can e�ciently and robustly
solve those PDE's. A nice recent exposition of the level set methods and of many of
their applications can be found in [20].

The problem of surface evolution has been less touched upon even though some
preliminary results have been obtained [22, 2].

The path we will follow to attack the stereo problem from that angle is, not
surprisingly, a variational one. In a nutshell, we will describe the stereo problem (to
be de�ned more precisely later) as the minimisation of a functional (we will explore
several such functionals) with respect to some parameters (describing the geometry of
the scene); we will compute the Euler-Lagrange equations of this functional, thereby
obtaining a set of necessary conditions, in e�ect a set of partial di�erential equations,
which we will solve as a time evolution problem by a level set method.

Stereo is a problem that has received considerable attention for decades in the
psychophysical, neurophysiological and, more recently, in the computer vision lite-
ratures. It is impossible to cite all the published work here, we will simply refer the
reader to some basic books on the subject [13, 10, 11, 12, 7]. To explain the problem
of stereo from the computational standpoint, we will refer the reader to �gure 1.
Two, may be more, images of the world are taken simultaneously. The problem is,
given those images, to recover the geometry of the scene. Given the fact that the
relative positions and orientations and the internal parameters of the cameras are
known which we will assume in this article (the cameras are then said to be calibra-
ted [7]), the problem is essentially (but not only) one of establishing correspondences
between the views: one talks about the matching problem. The matching problem
is usually solved by setting up a matching functional for which one then tries to �nd
extrema. Once a pixel in view i has been identi�ed as being the image of the same
scene point as another pixel in view j, the 3D point can then be reconstructed by
intersecting the corresponding optical rays (see �gure 1 again).
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Figure 1: The multicamera stereo vision problem is, given a pixel m1 in image 1,
to �nd the corresponding pixel m2 in image 2, : : : , the corresponding pixel mn

in image n, i.e. the ones which are the images of the same 3D point M . Once
such a correspondence has been established, the point M can be reconstructed by
intersecting the optical rays hmi; Cii, i = 1; � � � ; n.

In order to go any further, we need to be a little more speci�c about the process
of image formation. We will assume here that the cameras perform a perpective
projection of the 3D world on the retinal plane as shown in �gure 2. The optical
center, noted C in the �gure, is the center of projection and the image of the 3D
point M is the pixel m at the intersection of the optical ray hC;mi and the retinal
plane R. As described in many recent papers in computer vision, this operation
can be conveniently described in projective geometry by a matrix operation. The
projective coordinates of the pixel m (a 3�1 vector) are obtained by applying a 3�4
matrix P1 to the projective coordinates of the 3D point M (a 4 � 1 vector). This
matrix is called the perspective projection matrix. If we express the matrix P1 in

INRIA



PDE's, level set methods, and Stereo 5

the coordinate system (C; x; y; z) shown in the �gure 2, it then takes a very simple
form:

P1 = [I3 0]

where I3 is the 3� 3 identity matrix. If we now move the camera by applying to it a
rigid transformation described by the rotation matrix R and the translation vector
t, the expression of the matrix P changes accordingly and becomes:

P2 = [RT �RT t]

z
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Figure 2: The focal plane (x; y) is parallel to the retinal plane (x1; y1) and at a
distance of 1 from it.

With these preliminaries in mind we are ready to proceed with our program
which we will do by progressing along two related axes. The �rst axis is that of
object complexity, the second axis is that of matching functional complexity. They
are related in the sense that an increase along one axis usually implies a corresponding
increase along the other.

In the �rst two sections we will consider a simple object model which is well
adapted to the binocular stereo case where it is natural to consider that the objects
in the scene can be considered mathematically as forming the graph of an unknown
smooth function (the depth function in the language of computer vision). In section 2
we consider an extremely simpli�ed matching criterion which will allow us to convey
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6 Olivier Faugeras and Renaud Keriven

to the reader the �avor of the ideas that we are trying to push here. We then move
in section 3 to a more sophisticated albeit classical matching criterion which is at
the heart of the techniques known in computer vision as correlation based methods.
Within the framework of this model we study two related shape models. The �rst
model assumes that at every point in the scene the tangent plane is parallel to the
retinal plane of one of the cameras (the so-called fronto parallel hypothesis). The
second model relaxes this hypothesis by introducing a general tangent plane at every
point. In the section 4 we introduce a more general shape model in which we do not
assume anymore that the objects are the graph of a function and model them as a
set of general smooth surfaces in three space. The next step would of course be to
relax the smoothness assumption but we will postpone this to a future paper.

Let us decide on some de�nitions and notations. Images are denoted by Ik, k
taking some integer values which indicate the camera with which the image has been
acquired. They are considered as smooth (i.e. C2, twice continuously di�erentiable)
functions of pixels mk whose coordinates are de�ned in some orthonormal image
coordinate systems (xk; yk) which are assumed to be known. We note Ik(mk) or
Ik(xk; yk) the intensity value in image k at pixel mk. We will use the �rst and
second order derivatives of these functions, i.e. the gradient rIk, a 2 � 1 vector
equal to [ @Ik

@xk
; @Ik
@yk

]T , and the Hessian Hk, a 2� 2 symmetric matrix.
The pixels in the images are considered as functions of the 3D geometry of the

scene, i.e. of some 3D point M on the surface of an object in the scene, and of the
unit normal vector N to this surface.

Vectors and matrixes will generally be indicated in boldfaces, e.g. x. The dot
or inner product of two vectors x and y is denoted by x � y. The cross-product of
two 3 � 1 vectors x and y is noted x � y or [x]�y, where [x]� is an antisymmetric
matrix.

We will make extensive use of di�erential calculus and of the chain rule for com-
puting the derivatives of the composition of functions. We remind the reader that
the derivative of a scalar function with respect to an n� 1 vector is a 1� n vector,
i.e. a linear form on Rn, the second order derivative of a scalar function with res-
pect to this vector is also called its Hessian, it is a symmetric bilinear form which
is represented by a symmetric n� n matrix. The derivative of an n� 1 vector with
respect to a p� 1 vector is a n� p matrix. We will also need derivatives of matrices
with respect to vectors and matrices which are tensors but we will be able to avoid
using tensor calculus altogether. Partial derivatives will be indicated either using
the @ symbol, e.g. @f

@x
, or as a lower index, e.g. fx.

INRIA



PDE's, level set methods, and Stereo 7

Our approach is an extension of previous work by Robert et al. and Robert
and Deriche, [18, 17], where the idea of using a variational approach for solving the
stereo problem was proposed �rst in the classical Tikhonov regularization framework
and then by using regularization functions more proper to preserve discontinuities.
We di�er from this work because we do not assume that the depth is the graph
of a function de�ned in the focal plane of the �rst camera which allows us to deal
with an arbitrary number of cameras, because we take into account the projective
deformation due to the orientation of the tangent plane to the object, as in [5],
because we use a deformable surface approach based on a measurement criterion
which is intrinsic, i.e. does not depend upon the parametrization of the objects, and
therefore we can cope automatically with discontinuities, e.g. with multiple objects.
Our work can be seen as a 3D extension of the approach proposed in [4] where we
limit ourselves to the binocular case, to �nding cross-sections of the objects with a
�xed plane, and do not take into account the orientation of the tangent plane to the
object.

2 A simple object and matching model

This section introduces in a simpli�ed framework some of the basic ideas of this paper.
We assume, and it is the �rst important assumption, that the objects which are being
imaged by the stereo rig (a binocular stereo system) are modelled as the graph of
an unknown smooth function z = f(x; y) de�ned in the �rst retinal plane which we
are trying to estimate. A point M of coordinates [x; y; f(x; y)]T is seen as two pixels
m1 and m2 whose coordinates (gi(x; y); hi(x; y)); i = 1; 2, can be easily computed as
functions of x; y; f(x; y) and the coe�cients of the perspective projection matrices
P1 and P2. Let I1 and I2 be the intensities of the two images. Assuming, and
it is the second important assumption, that the objects are perfectly Lambertian,
we must have I1(m1) = I2(m2) for all pixels in correspondence, i.e. which are the
images of the same 3D point.

This reasoning immediately leads to the variational problem of �nding a suitable
function f de�ned, to be rigorous, over an open subset of the focal plane of the �rst
camera which minimizes the following integral:

C1(f) =

Z Z
(I1(m1(x; y)) � I2(m2(x; y))

2dxdy =

Z Z
1�(f; x; y)dxdy;

(1)

computed over the previous open subset. Our �rst variational problem is thus to
�nd a function f in some suitable functional space that minimizes the error measure
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8 Olivier Faugeras and Renaud Keriven

C1(f). The corresponding Euler-Lagrange equation is readily obtained:

(I1 � I2)(rI1 � @m1

@f
�rI2 � @m2

@f
) = 0 (2)

The values of @m1

@f
and @m2

@f
are functions of f which are easily computed. The terms

involving I1 and I2 are computed from the images. In order to solve (2) one can
adopt a number of strategies.

One standard strategy is to consider that the function f is also a function f(x; y; t)
of time and to solve the following PDE:

ft = '(f)

where '(f) is equal to the left hand side of equation (2), with some initial condition
f(x; y; 0) = f0(x; y). We thus see appear for the �rst time the idea that the shape of
the objects in the scene, described by the function f , is obtained by allowing a surface
of equation z = f(x; y; t) to evolve over time, starting from some initial con�guration
z = f(x; y; 0), according to some PDE, to hopefully converge toward the real shape
of the objects in the scene when time goes to in�nity. This convergence is driven
by the data, i.e. the images, as expressed by the error criterion (1) or the Euler-
Lagrange term '(f). It is known that if care is not taken, for example by adding
a regularizing term to (1), the solution f is likely not to be smooth and therefore
any noise in the images may cause the solution to di�er widely from the real objects.
This is more or less the approach taken in [18, 17]. We will postpone the solution of
this problem until section 4 and in fact solve it di�erently from the usual way which
consists of adding a regularization term to C1(f).

Another strategy is to apply the level set idea [16, 20]. Consider the family of
surfaces S de�ned by S(x; y; t) = [x; y; f(x; y; t)]T . The parameters x and y are used
to parameterize the surface, t is the time. The unit normal to this surface is the
vector N = � 1p

1+jrf j2
[rfT ; 1]T , the velocity vector is St = [0; 0; ft]

T and hence the

evolution of the surface can be written

St =
'(f)p

1+ j rf j2N (3)

This expression of the evolution of the surface directly leads to a straightforward
application of the level set methods. Consider a function u(x; y; z; t) whose zero
level set is the surface S, i.e. at each time instant t, the set of points (x; y; z) such
that u(x; y; z; t) = 0 is identical to the surface S. Note that the function u can be
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PDE's, level set methods, and Stereo 9

considered a temporal sequence of volumetric images. The next question is, given
the fact that the time evolution of S is given by (3), what should the evolution of u
be? this question has been answered in [16] and the answer is:

ut =
'(f)p

1+ j rf j2 j ru j

where ru is the gradient of u with respect to the �rst three variables. There are
a couple of subtle points here. The �rst is that the level set methods have been
designed for closed manifolds (curves or surfaces, say) but here the surface S is
not closed in general, being a graph. This problem can be solved, as described for
example in [3, 20]. The second point is that the coe�cient of the term j ru j in
the previous equation is de�ned only on the surface S and not in the whole (x; y; z)
volume. But this term is needed at all points to solve for u.

We will not delve further into the last issue because it will be solved as we proceed
toward better models.

3 A better functional for matching

It is clear that the error measure (1) is a bit simple for practical applications. We
can extend in at least two ways. The �rst is to replace the di�erence of intensities
by a measure of correlation, the hypothesis being that the scene is made of fronto
parallel planes. The second is to relax this hypothesis and to take into account the
orientation of the tangent plane to the surface of the object. In the �rst case we
move along the matching criterion axis, in the second we move both along the shape
and matching criterion complexity axes.

We explore those two avenues in the next sections.

3.1 Fronto parallel correlation functional

To each pair of values (x; y), corresponds a 3D point M , M = [x; y; f(x; y)]T which
de�nes two image points m1 and m2 as in the previous section. We can then clas-
sically de�ne the unnormalized cross-correlation between I1 and I2 at the pixels m1

and m2. We note this cross-correlation hI1; I2i(f; x; y) to acknowledge its analogy
with an inner product and the fact that it depends on M :

hI1; I2i(f; x; y) =
1

4pq

Z +p

�p

Z +q

�q
(I1(m1 +m)� I1(m1))(I2(m2 +m)� I2(m2))dm;(4)

RR n�3021



10 Olivier Faugeras and Renaud Keriven

equation where the averages I1 and I2 are classically de�ned as:

Ik(mk) =
1

4pq

Z +p

�p

Z +q

�q
Ik(mk +m0)dm0 k = 1; 2 (5)

Finally, we note j I j2 the quantity hI; Ii.
Note that hI1; I2i = hI2; I1i.
To simplify notations we write

R � instead of 1
4pq

R+p
�p

R+q
�q and de�ne a matching

functional which is the integral with respect to x and y of minus the normalized
cross-correlation score � hI1;I2i

jI1j�jI2j
:

C2(f) = �
Z Z hI1; I2i

j I1 j � j I2 jdxdy =

Z Z
2�(f; x; y)dxdy (6)

the integral being computed, as in the previous section, over an open set of the focal
plane of the �rst camera. The functional 2� is � hI1;I2i

jI1j�jI2j
(f; x; y). This quantity varies

between -1 and +1, -1 indicating the maximum correlation. We have to compute its
derivative with respect to f in order to obtain the Euler-Lagrange equation of the
problem. The computations are simple but a little fastidious. It can �rst be seen
that 2�f is a sum of two terms:

(j I1 j � j I2 j)f
j I1 j2 � j I2 j2 hI1; I2i �

1

j I1 j � j I2 j hI1; I2if

The results needed to compute hI1; I2if and (j I1 j � j I2 j)f are summarized in the
following lemma which is proved in Appendix A.

Lemma 1 The partial derivatives hI1; I2if and j Ik jf k = 1; 2 are given by the

following formulas:

hI1; I2if =
@m1

@f
� hrI1; I2i+ @m2

@f
� hI1;rI2i (7)

j Ik j � j Ik jf= @mk

@f
� hrIk; Iki k = 1; 2 (8)

where the values of the quantities hrI1; I2i, hI1;rI2i and hrIk; Iki, k = 1; 2 can be

found in Appendix A.

We can then proceed to solve the Euler-Lagrange equation as described in the pre-
vious section. But we will not pursue this task and explore rather a better functional.

INRIA
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Figure 3: The square window (1234)1 in the �rst image is back projected onto the
tangent plane to the object S at point M and reprojected in the retinal plane of
the second camera where it is generally not square. The observation is that the
distortion between (1234)1 and (1234)2 can be described by a collineation which is
function of M and the normal N to the surface of the object.

3.2 Taking into account the tangent plane to the object

We now take into account the fact that the rectangular window centered at m2

is not rectangular but is the image in the second retina of the backprojection on
the tangent plane to the object at the point M = (x; y; f(x; y)) of the rectangular
window centered at m1 (see �gure 3). In esssence, we approximate the object S in a
neighbourhood of M by its tangent plane but without assuming, as in the previous
section, that this plane is fronto parallel, and in fact also that the retinal planes of
the two cameras are identical. Let us �rst study the correspondence induced by this
plane between the two images.

3.2.1 Image correspondences induced by a plane

Let us consider a plane of equation NTM�d = 0 in the coordinate system of the �rst
camera. d is the algebraic distance of the origin of coordinates to that plane and N
is a unit vector normal to the plane. This plane induces a projective transformation

RR n�3021



12 Olivier Faugeras and Renaud Keriven

between the two image planes. This correspondence plays an essential role in the
sequel.

To see why we obtain a projective transformation, let M be a 3D point in that
plane, M1 and M2 be the two 3D vectors representing this point in the coordinate
systems attached to the �rst and second cameras, respectively. These two 3�1 vectors
are actually coordinate vectors of the two pixels m1 and m2 seen as projective points
(see section 1). Furthermore, they are related by the following equation:

M2 = RT (M1 � t)

Since M belongs to the plane, NTM1 = d, and we have:

M2 = (RT � R
T tNT

d
)M1

which precisely expresses the fact that the two pixels m1 and m2 are related by a
collineation, or projective transformation K. The 3 � 3 matrix representing this
collineation is (RT � RT tNT

d
). This transformation is one to one except when the

plane goes through one of the two optical centers when it becomes degenerate. We
will assume that it does not go through either one of those two points and since the
matrix of K is only de�ned up to a scale factor we might as well take it equal to:

K = dRT �RT tNT (9)

3.2.2 The new criterion and its Euler-Lagrange equations

We just saw that a plane induces a collineation between the two retinal planes. This
is the basis of the method proposed in [4] although for a very di�erent purpose. The
window alluded to in the introduction to this section is therefore the image by the
collineation induced by the tangent plane of the rectangular window in image 1. This
collineation is a function of the point M and of the normal to the object at M . It
is therefore a function of f and rf that we denote by K. It satis�es the condition
K(m1) = m2. The inner product (4) must be modi�ed as follows:

hI1; I2i(f;rf; x; y) =Z �

(I1(m1 +m)� I1(m1))(I2(K(m1 +m))� I2(m2))dm; (10)

INRIA



PDE's, level set methods, and Stereo 13

Note that, the de�nition of hI1; I2i is no longer symmetric, because of K. In order
to make it symmetric, we should de�ne it as:

hI1; I2i(f;rf; x; y) =
Z �

(I1(m1 +m)� I1(m1))(I2(K(m1 +m))� I2(m2))dm+Z �

(I1(K
�1(m2 +m0))� I1(m1))(I2(m2 +m0)� I2(m2))dm

0 (11)

The de�nition (5) of I1 (resp. of I2) is not modi�ed in the �rst (resp. second) integral
of the right hand side, that of I2 (resp. of I1), on the other hand, must be modi�ed
as follows:

I2(m2) =

Z �

I2(K(m1 + p))dp I1(m1) =

Z �

I1(K
�1(m2 + p0))dp0 (12)

Since this new de�nition does not modify the fundamental ideas exposed in this
paper but makes the computations signi�cantly more complex, we will assume the
de�nition (10) in what follows, acknowledging the fact that in practice (11) should
be used.

We now want to minimize the following error measure:

C3(f;rf) = �
Z Z hI1; I2i

j I1 j � j I2 j(f;rf; x; y)dxdy =

Z Z
3�(f;rf; x; y)dxdy

(13)

Since the functional 3� now depends on both f andrf , its Euler-Lagrange equations
have the form 3�f � div( 3�rf ) = 0. We must therefore recompute 3�f to take
into account the new dependency of K upon f and compute 3�rf .

We will simplify the computations by assuming that the collineationK can be well
approximated by an a�ne transformation. Because of the condition K(m1) = m2,
this transformation can be written:

K(m1 +m) � m2 +Am

where A is a 2� 2 matrix depending upon f and rf .
In practice this approximation is often su�cient and we will assume that it is

valid in what follows.
Under these assumptions, j I1 jf is not modi�ed but hI1; I2if , and j I2 jf are,

because of the new dependency in A. The results are summarized in the following
lemma which is proved in Appendix A:

RR n�3021



14 Olivier Faugeras and Renaud Keriven

Lemma 2 The partial derivatives hI1; I2if and j I2 jf are given by the following

formulas:

hI1; I2if =
@m1

@f
� hrI1; I2i+ @m2

@f
� hI1; rI2i+Z �

(I1(m1 +m)� I1(m1))rI2(m2 +Am)TAfmdm (14)

j I2 j � j I2 jf= @m2

@f
� hrI2; I2i+Z �

(I2(m2 +Am)� I2(m2))rI2(m2 +Am)TAfmdm (15)

where the values of the quantities hrI1; I2i, hI1;rI2i and hrI2; I2i can be found in

Appendix A.

Note that, not surprisingly, equations (14) and (15) are similar to (7) and (8) with
correction terms which are caused by the added complexity of our matching func-
tional. This allows us to compute the �rst part of the Euler-Lagrange equation, �f .
The expression for Af is found in the next section.

Concerning the second part, we have j I1 j2rf= 0 since I1 is not a function of rf .
The following lemma yields the needed results:

Lemma 3 The partial derivatives hI1; I2irf and j I2 jrf are given by the following
formulas:

hI1; I2irf =

Z �

(I1(m1 +m)� I1(m1))rI2(m2 +Am)T (Am)rfdm;

and,

j I2 j � j I2 jrf=
Z �

(I2(m2 +Am)� I2(m2))rI2(m2 +Am)T (Am)rfdm;

expressions in which the quantity (Am)rf denotes the 2� 2 matrix de�ned as

[A(rf)xm;A(rf)ym].

The proof is similar to those given in Appendix A.
These expressions allow us to compute the second part div( 3�rf ) of the Euler-

Lagrange equations as soon as we will have made explicit the relationship between
A and f and rf which is the object of the next section.
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3.2.3 The matrix A and its derivatives

We have to compute the derivatives of the matrix A with respect to f and rf . We
will use a mixed projective-a�ne approach and �rst compute the matrix K of the
collineation K. Let (x1; y1) be the a�ne (image) coordinates ofm1, (x; y) those ofm.
We denote by m1+m the point of a�ne coordinates (x1+x; y1+ y) or of projective
coordinates (x1 + x; y1 + y; 1). Let K be the 3� 3 matrix of the collineation K with
row vectors ki; i = 1; 2; 3. The a�ne coordinates of the point K(m1 +m) are thus
equal to

X2 =
k1(m1 +m)

k3(m1 +m)
Y2 =

k2(m1 +m)

k3(m1 +m)
(16)

where m1 is the vector of projective coordinates (x1; y1; 1) and m the vector of
coordinates (x; y; 0).

According to the section 3.2.1, we know that the matrix K can be written as:

K = dRT �TNT

where

d = xfx + yfy + f

T = RT t

NT = (fx; fy; 1)
(17)

We have used the fact that K is de�ned up to a scale factor to get rid of the term
1p

1+jrf j2
. We have therefore established the dependency between the collineation

K and f and rf . We deduce easily that:

@K
@f

= RT

@K
@fx

= xRT � [T00]
@K
@fx

= yRT � [0T0]

(18)

Let us now look at the a�ne approximation. We can assume in general that the
point m2, image of m1 by K, is not at in�nity (can you see why?), hence one divides
the numerators and the denominator of X2 and Y2 in equation (16) by k3m1 and we
introduce the a�ne coordinates x2 and y2 of m2:

K(m1 +m) =

8>>><
>>>:

x2+
k1m

k3m1

1+
k3m

k3m1

y2+
k2m

k3m1

1+
k3m

k3m1
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16 Olivier Faugeras and Renaud Keriven

The a�ne approximation is obtained by assuming that k3m

k3m1
� 1, k1m

k3m1
� x2 and

k2m

k3m1
� y2. Expanding X2 et Y2 up to the �rst order with respect to these quantities,

we obtain the following expression for the matrix A:

A =
1

k3m1

"
k1 � k3
k2 � k3

#
(19)

This expression, combined with (18) allow us to compute the partial derivatives of
A with respect to f and rf and, eventually, div(3�rf ). But we will not pursue this
computation since we present in section 4 a more elaborate model that encompasses
this one and for which we will perform the corresponding computation.

4 An even more re�ned model

In this section we consider the case when the objects in the scene are not de�ned
as the graph of a function of x and y as in the previous sections, but as the zero
level set of a function û : R3 ! R which we assume to be smooth, i.e. C2. The
coordinates (x; y; z) of the points in the scene which are on the surface of the objects
present are thus de�ned by the equation û(x; y; z) = 0. This approach has at least
two advantages. First, by relaxing the graph assumption, it potentially allows us to
use an arbitrary number of cameras to analyze the scene and second, it leads very
naturally to an implementation of a surface evolution scheme through the level set
method as follows.

Let us consider a family of smooth surfaces S : (v; w; t) ! S(v; w; t) where
(v; w) parametrize the surface and t is the time. It is in general not possible to �nd
a single mapping S from R2 to R3 that describes the entire surface of the objects
(think of the sphere for example where we need at least two) but we do not have to
worry about this since our results will in fact be independent of the parametrization
we choose. The objects in the scene correspond to a surface Ŝ(v; w) and our goal is,
starting from an initial surface S0(v; w), to derive a partial di�erential equation

St = �N; (20)

where N is the unit normal to the surface, which, when solved with initial conditions
S(v; w; 0) = S0(v; w), will yield a solution that closely approximates Ŝ(v; w). The
function � is determined by the matching functional that we minimize in order to
solve the stereo problem. We de�ne such a functional in the next paragraph. An
interesting point is that the evolution equation (20) can be solved using the level
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PDE's, level set methods, and Stereo 17

set method which has the advantage of coping automatically with several objects in
the scene. In detail, the surfaces S are at each time instant the zero level sets of a
function u : R4 ! R:

u(S; t) = 0

Taking derivatives with respect to u; v; t, noticing that N can be chosen such that
N = � ru

jruj , where r is the gradient operator for the �rst three coordinates of u, one
�nds easily that the evolution equation for u is:

ut = � j ru j (21)

Using the same ideas as in the section 3.2, we can de�ne the following error
measure:

C4(S;N) = �
nX

i;j=1;i6=j

Z Z
1

j Ii j � j Ij j hIi; Ijid� =

Z Z
4�(S;N; v; w)d�

(22)

In this equation, the indexes i and j range from 1 to n, the number of views. In
practice it is often not necessary to consider all possible pairs but it does not change
our analysis of the problem. In equation (22), the integration is carried over with
respect to the area element d� on the surface S. With the previous notations, we
have

d� =j Sv � Sw j dvdw
d� plays the role of dx dy in our previous analysis, S that of f , and N = Sv�Sw

jSv�Swj
,

the unit normal vector to the surface S, that of rf .
Note that this is a signi�cant departure from what we had before because we are

multiplying our previous normalized cross-correlation score with the term j Sv�Sw j.
This has two dramatic consequences

1. It automatically regularizes the variational problem like in the geodesic snakes
approach [1], and

2. it makes the problem intrinsic, i.e. independent of the parametrization of the
objects in the scene.

Note also that each integral that appears in (22) is only computed for those points
of the surface S which are visible in the two concerned images. Thus, visibility and

occlusion are modelled in this approach (see section 5 for more details).
The rest of the derivation is extremely similar, although technically more compli-

cated, to the derivations in the previous section, namely we write the Euler-Lagrange
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18 Olivier Faugeras and Renaud Keriven

equations of the variational problem (22), consider their component � along the nor-
mal to the surface, set up a surface evolution equation (20) and implement it by a
level-set method. This is all pretty straightforward except for the announced result
that the resulting value of � is intrinsic and does not depend upon the parametriza-
tion of the surface S.

We will in fact prove a more general result. Let � : R3�R3 �! R be a smooth
function of class at least C2 de�ned on the surface S and depending upon the point
S(v; w) and the unit normal N(v; w) at this point, which we denote by �(X; Y).
Let us now consider the following error measure:

C(S;Sv;Sw) =

Z Z
�(S(v; w); N(v; w))h(v; w)dv dw (23)

where the integral is taken over the surface S and h(v; w) =j Sv � Sw j.
We prove in Appendix B the following theorem:

Theorem 1 Under the assumptions of smoothness that have been made for the func-

tion � and the surface S, the component of the Euler-Lagrange equations for criterion

(23) along the normal to the surface is the product of h with an intrinsic factor, i.e.

which does not depend upon the parametrization (v; w). Furthermore, this component
is equal to

h(��XN+ 2H(�� �YN)� Trace((�XY)TS + dN � (�YY)TS )) (24)

where all quantities are evaluated at the point S of normal N of the surface, TS is

the tangent plane to the surface at the point S. dN is the di�erential of the Gauss

map of the surface, H is its mean curvature, �XY and �YY are the second order

derivatives of �, (�XY)TS and (�YY)TS their restrictions to the tangent plane TS of

the surface at the point S.

Note that the error criterion (22) is of the form (23) if we de�ne � to be

�
nX

i;j=1;i6=j

1

j Ii j � j Ij j hIi; Iji

According to the theorem 1, in order to compute the velocity � along the normal
in the evolution equations (20) or (21) we only need to compute �S, �N, �SN and
�NN as well as the second order intrinsic di�erential properties of the surface S.
Using the fact that the function � is a sum of functions �ij = � 1

jIij�jIjj
hIi; Iji, the

problem is broken down into the problem of computing the corresponding derivatives
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of the �ij's, which, for the �rst order derivatives is extremely similar to what we have
done in the section 3.2. The computations are carried out in Appendix C.

In terms of the level set implementation, we ought to make a few remarks. The
�rst is to explain how we compute � in equation (21) at each point (x; y; z) rather
than on the surface S. It should be clear that we do not have any problem for
computing N = � ru

jruj and 2H = div( ru
jruj) and dN which is the di�erential of the

Gauss map of the level set surface going through the point (x; y; z). The vectors �X,
�Y, the matrices �XY, �YY are computed as explained in the Appendix C.

The second remark is that we can now write equation (21) as follows:

ut =j ru j div(� ru
j ru j)� div(

ru
j ru j )r1� � ru�

Trace((�XY )TS + dN � (�YY)TS ) j ru j (25)

where at each point (x; y; z) the tangent plane TS is that of the level set surface
u = constant going through that point. The operator r indicates derivatives with
respect to the space variables (x; y; z) whereas r1 indicates derivatives with respect
to the coordinates of the normal.

The �rst term j ru j div(� ru
jruj) is identical to the one in the work of Caselles,

Kimmel, Sapiro and Sbert [2] on the use of minimal surfaces or geodesic snakes
to segment volumetric images. Our other terms come from the particular process
that we are modelling, i.e. stereo. Because these terms involve only second order
di�erential quantities, we would like to make the following conjecture which we hope
can be proved in the near future.

Conjecture 1 Under some reasonable smoothness assumptions on the image inten-

sity functions, the equation (25) admits a unique stable viscosity solution in

C(R3 � [0;1[) \L1(0; T ;W 1;1(R3)) for all T <1. W 1;1 is the space of bounded

Lipschitz functions in R3.

5 Two-dimensional implementation

We now present an implementation in two dimensions of the theory that has been
described in the previous section. The situation is described in �gure 5 which depicts
a planar object S with two connected components. This object is observed by the
�ve cameras numbered from 1 to 5 and the level set corresponding to some value k
has been drawn to illustrate how the visibility condition is taken into account when
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S
S

1

2

3

4

5

u(x; y; t) = k

M

Figure 4: The 2D implementation of the algorithm described in the previous section.
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solving equation (25): the point M on the level set is seen only by the cameras 3 to
5 and not by 1 and 2.

Planar objects are viewed by linear cameras. Pixels and images are functions of
only one variable. The inner product (10) is:

hIi; Iji(S;N) =
1

2p

Z p

�p
(Ii(mi +m)� Ii(mi))(Ij(Kij(mi +m))� Ij(mj))dm

We use the a�ne approximation: Kij(mi +m) = mj +�ijm. The surface S(v; w) is
a plane curve S(v) and the error measure:Z

�(S(v);N(v))h(v)dv

where h(v) = jSvj and � is still �Pn
i;j=1;i6=j

1
jIij�jIjj

hIi; Iji. Let � be the arc-length

parameter of S (d� = h(v)dv), T the unit tangent, and � its curvature, the normal
component � of the Euler-Lagrange equation simpli�es to the intrinsic quantity:

� = ��+ [�S + �(TTT �NNT )�T
N] �N+TT (�SN + ��NN)T

In order to implement the evolution equation (21) of u(x; y; t), the following steps
are required to get � at point M = (x; y) at time t:

� Considering the level set S(v) of ' passing through point M, determine from
which cameras is M visible, let us call them the S-cameras. They are deter-
mined by assuming that the level curve going through the point is opaque.

� Compute the normal N and the curvature � of S at M.

� For each S-camera, compute mi;
@mi

@S
and d

d�
mi.

� For each pair of S-cameras, compute �ij; �ijS; �ijN;
d
d�
�ij , and

d
d�
�ijN .

� Compute hIi; Iji; hIi; IjiS; hIi; IjiN; d
d�
hIi; Iji and d

d�
hIi; IjiN

� Compute �;�S;�N and d
d�

�N hence �.

This scheme has been tested with synthetic noisy images of 2D objects viewed
from a number of cameras located around them and on a number of real images.
Some implementation details are discussed in the Appendix E.

We �rst present our results on three synthetic objects, each one being meant to
demonstrate one feature of the algorithm. All those results have been obtained with
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18 cameras observing the scene and are presented in an homogeneous manner: on
the left hand side of the �gure we show the views from some of the cameras, on the
right hand side we show the convergence of the zero level set.

We start with �gure 5 which demonstrates that the algorithm works for non
convex objects. Notice that the background is dark.

Figure 5: 2D case � Detection of a non convex object.

Figure 6 shows the stereovision process for two circles viewed on a random back-
ground. This example shows that our algorithm can deal with multiple objects (note
the change in topology at time t2) and can cope with a textured background without
being fooled.

Figure 7 shows the results for two squares viewed on a black background. This
example shows that our modelling can cope somewhat with non smooth objects.

Figure 8 shows a real example in the case of two cameras. The stereo pair of a
human face is shown on the left hand side of the �gure, the trace of the epipolar
plane (vertical in this case) being shown in red. On the right hand side of the �gure
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Figure 6: 2D case � Detection of two circular objects.

we show the evolution of the zero level set at four time instants. The red curve is the
result of the correlation algorithm described in [5] while the blue curve is the level
set. It can be seen that the convergence is satisfactory.

In terms of computing time, it takes between �ve and ten minutes on a fast
workstation to achieve convergence in the examples shown. We are clearly still far
from real time video but reaching this goal was clearly not the purpose of this paper.

6 Conclusion

We have presented a novel geometric approach for solving the stereo problem from
an arbitrary number of views which degrades gracefully with the number of views. It
is based upon writing a variational principle that must be satis�ed by the surfaces of
the objects to be detected. The design of the variational principle allows us to clearly
and cleanly incorporate the hypotheses we make about the objects in the scene and
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Figure 7: 2D case � Detection of two squares.

how we obtain correspondences between image points. The Euler-Lagrange equations
which are deduced from the variational principle provide a set of PDE's which are
used to deform an initial set of surfaces which then move towards the objects to
be detected. The level set implementation of these PDE's potentially provides an
e�cient and robust way of achieving the surface evolution and to deal automatically
with changes in the surface topology during the deformation.

Our implementation is so far only two-dimensional, i.e. it works only in epipolar
planes but the results we have obtained on synthetic noisy planar images look pro-
mising enough to lead us into thinking that the approach will also be successful in
3D.

As far as the theory goes, we conjecture that the PDE that we have obtained in
the most general case that we have considered has, under some technical smooth-
ness assumptions, a unique solution in the viscosity sense. Issues of stability and
correctness of the solution should also be explored.
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Figure 8: 2D case � Detection of a human face in an epipolar plane (in red).

To �nish on a methodological note, we believe that it is by working in such well
de�ned conceptual or mathematical frameworks, as the calculus of variations or the
theory of PDE's, where the tools exist to prove (or disprove) the correctness of algo-
rithms, that we will be able to bring computer vision up to the level of predictability
where it can be used reliably in real applications and interfaced to other components
to build complex systems.
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A Proofs of lemmas 1 and 2

We �rst prove lemma 1. Using the de�nitions it can be seen that the derivative of
hI1; I2i is given by:

hI1; I2if =

Z �

(rI1(m1 +m) � @m1

@f
� @I1

@f
(m1))(I2(m2 +m)� I2(m2))dm+

Z �

(I1(m1 +m)� I1(m1))(rI2(m2 +m) � @m2

@f
� @I2

@f
(m2))dm; (26)

while the derivative of j Ik j k = 1; 2 can be easily obtained from that of j Ik j2:

j Ik j � j Ik jf=
Z �

(rIk(mk +m) � @mk

@f
� @Ik

@f
(mk))(Ik(mk +m)� Ik(mk))dm

(27)

The derivatives @Ik
@f

k = 1; 2 do not need to be computed since they cancel out from
the integrals, for example:

Z � @Ik

@f
(mk)(Ik(mk+m)� Ik(mk))dm =

@Ik

@f
(mk)

Z �

(Ik(mk+m)� Ik(mk))dm = 0

This last remark allows us to rewrite (26) and (27) in a simpler manner:

hI1; I2if =
@m1

@f
�
Z �

rI1(m1 +m)(I2(m2 +m)� I2(m2))dm+

@m2

@f
�
Z �

(I1(m1 +m)� I1(m1))rI2(m2 +m)dm (28)

j Ik j � j Ik jf= @mk

@f
�
Z �

rIk(mk +m)(Ik(mk +m)� Ik(mk))dmk = 1; 2 (29)

These are the expressions of lemma 1.
We now prove lemma 2. Similarly to lemma 1, the derivatives of Ik; k = 1; 2

with respect to f are not needed.
A computation alike the one that led to (28) yields:

@hI1; I2i
@f

=
@m1

@f
�
Z �

rI1(m1 +m)(I2(m2 +Am)� I2(m2))dm+

+

Z �

(I1(m1 +m)� I1(m1))rI2(m2 +Am)T (
@m2

@f
+
@A

@f
m)dm
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which immediatly yields (14). We also need:

j I2 j � j I2 jf=
Z �

(I2(m2 +Am)� I2(m2))rI2(m2 +Am)T (
@m2

@f
+
@A

@f
m)dm

which yields (15. where we have written:

hrI2; I2i =
Z �

rI2(m2 +Am)(I2(m2 +Am)� I2(m2))dm

B Proof of theorem 1

We assume for simplicity but without loss of generality that the parametrization of
S is orthogonal, i.e. that Sv � Sw = 0.

Let us write  (S; Sv; Sw) for h(Sv ; Sw)�(S; N) where

h(Sv; Sw) =j Sv � Sw j
N =

Sv � Sw
h

The Euler-Lagrange equations of the error criterion (23) can be written

 S � d

dv
 Sv �

d

dw
 Sw

Since h does not depend upon S, we have  S = h�S and

 Sv = �hSv + h�YNSv

There is a similar expression for  Sw . We �rst prove the following lemma:

Lemma 4 The derivatives of h with respect to Sv and Sw are given by

hSv =
j Sw j2
h

STv hSw =
j Sv j2
h

STw (30)

Proof : We use the fact that h2 =j Sv � Sw j2. From this it follows that

hhSv = (Sv � Sw)T (Sv � Sw)Sv
It is easy to verify that (x � y)x = �[y]� for all vectors x and y of R3. From this
follows the result that

hhSv = �(Sv � Sw)T [Sw]�
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But the matrix [Sw]� is antisymmetric, hence �[Sw]� = [Sw]
T
�. From this it follows

that:
hhSv = [[Sw]�(Sv � Sw)]T

The vector in bracket is:

Sw � (Sv � Sw) =j Sw j2 Sv � (Sv � Sw)Sw
The result follows from the assumption that the parametrization of S is orthogonal.
�

Let us now attack the computation of NSv and NSw . We have the following lemma:

Lemma 5 The derivatives of N with respect to Sv and Sw are given by:

NSv = �1

h
hTSvN

N NSw = �1

h
hTSwN

T (31)

Proof : By de�nition we have

NSv =
1

h
(Sv � Sw)Sv �

1

h2
(Sv � Sw)hSv

Replacing (Sv � Sw)Sv and hSv by their values in this expression, we obtain

NSv = �1

h
[Sw]� � j Sw j2

h3
(Sv � Sw)STv

and similarly for NSw :

NSw =
1

h
[Sv]� � j Sv j2

h3
(Sv � Sw)STw

Now do the following rewriting:

(Sv � Sw)STv = �([Sw]�Sv)S
T
v = �[Sw]�(SvS

T
v )

and similarly:
(Sv � Sw)STw = [Sv]�(SwS

T
w)

Replacing now in NSv and NSw we obtain

NSv = �1

h
[Sw]�(I� j Sw j2

h2
SvS

T
v )

NSw =
1

h
[Sv ]�(I� j Sv j2

h2
SwS

T
w)
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Let us now use the fact that h2 =j Sv j2j Sw j2. The term I � jSvj2

h2
SwS

T
w can be

rewritten as

� 1

j Sv j2 (SvS
T
v� j Sv j2 I)

But SvS
T
v� j Sv j2 I is equal to [Sv]

2
�. We obtain a new expression for NSv :

NSv =
1

h j Sv j2 [Sw]�[Sv ]
2
�

Because the parametrization is orthogonal, we can �nd a simpler form for [Sw]�[Sv]
2
�.

Indeed we have
Sw � (Sv � (Sv � x)) = �(x; Sv; Sw)Sv

for all vectors x of R3. Thus

[Sw]�[Sv ]
2
� = �Sv(Sv � Sw)T

Combining this with equations (30), the results follows for NSv and a similar com-
putation yields the result for NSw . �

Returning to our original goal, we have now discovered that

 Sv = �hSv � �Yh
T
Sv
NT

and
 Sw = �hSw � �Yh

T
Sw
NT

We encourage the reader to make sure that he agrees with the dimensions of the
various matrices appearing in these two expressions.

We now have to compute d
dv
 Sv +

d
dw
 Sw . Applying the chain rule for derivation,

we obtain the following terms:

�(
d

dv
hSv +

d

dw
hSw ) + �X(SvhSv + SwhSw ) +

�Y[NvhSv +NwhSw � hTSvN
T
v � hTSwN

T
w �

(
d

dv
hSv +

d

dw
hSw )

TNT ]�
(STv �XYh

T
Sv

+ STw�XYh
T
Sw

+NT
v �YYh

T
Sv

+NT
w�YYh

T
Sw

)NT

(32)

Remember that we are only interested in the terms along the normal N. This allows
to eliminate a number of terms, according to the following lemma:
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Lemma 6 In equation (32), the following term belongs to the tangent plane and can

therefore be discarded:

�X(SvhSv + SwhSw ) + �Y[NvhSv +NwhSw � hTSvN
T
v � hTSwN

T
w]

Proof : Indeed, �YNv and �XSv (resp. �YNw and �XSw) are scalars and hSv
(resp. hSw) is the tangent plane to S according to (30). Similarly �Yh

T
Sv

(resp.
�Yh

T
Sw

) is a scalar and Nv (resp. Nw) is the derivative of the unit vector N and is
therefore orthogonal to N, hence is in the tangent plane. �

We now study the vector ( d
dv
hSv + d

dw
hSw )

T and show that it is directed along the
normal N to the surface.

Lemma 7 The vector ( d
dv
hSv + d

dw
hSw)

T is in the direction of the normal N to

the surface. Its component in that direction is equal to 2hH, where H is the mean

curvature of the surface.

Proof : Let us �rst compute the normal component. According to equations (30),
we have

d

dv
hTSv =

j Sw j2
h

Svv +
d

dv
(
j Sw j2
h

)Sv
d

dw
hTSw =

j Sv j2
h

Sww +
d

dw
(
j Sv j2
h

)Sw

Taking the inner product with the normal N, and using the fact that h2 =j Sv j2j
Sw j2 we obtain:

(
d

dv
hSv +

d

dw
hSw )

T �N = h(
Svv �N
j Sv j2 +

Sww �N
j Sw j2 ) = 2hH

as shown in Appendix D.
Let us now consider the component of our vector ( d

dv
hSv+

d
dw
hSw )

T in the tangent

plane to the surface. This is the sum of four contributions. The terms d
dv
( jSwj

2

h
)Sv ,

d
dw

( jSv j
2

h
)Sw and the projections of jSwj2

h
Svv and jSvj2

h
Sww onto the tangent plane

which are given by, given the fact that Sv and Sw are orthogonal:

j Sw j2
h

Svv � Sv
j Sv j2 Sv +

j Sw j2
h

Svv � Sw
j Sw j2 Sw;

and
j Sv j2
h

Sww � Sv
j Sv j2 Sv +

j Sv j2
h

Sww � Sw
j Sw j2 Sw
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Let us use the notations of Appendix D) and let E =j Sv j2 and G =j Sw j2. The
component along Sv is equal to:

((
G

E
)
1

2 )v +
G

E
p
EG

(Svv � Sv) + 1p
EG

(Sww � Sv)

But we have Svv �Sv = 1
2Ev and, because Sv �Sw = 0, Sww �Sv = �Svw �Sw = �1

2Gv.
Substituting in the previous expression, we �nd:

1

2

GvE �GEv

E2
(
G

E
)�

1

2 +
1

2

GEv

E
p
EG

� 1

2

Gvp
EG

= 0

It can be veri�ed that this is also true for the component along Sw. �

Let us now consider the term containing �XY in equation (32). We prove the follo-
wing lemma:

Lemma 8 The term STv �XYh
T
Sv

+ STw�XYh
T
Sw

is equal to the product of h by the

trace of the restriction to TS of the linear map R3 �! R3 de�ned by �XY.

Proof : Just replace hSv and hSw by their values (30). We obtain:

STv �XYh
T
Sv

+ STw�XYh
T
Sw

= h(t1�XYt1 + t2�XYt2)

Introducing the two unit vectors t1 = Sv

jSvj
and t2 = Sw

jSwj
which form an orthonormal

basis of TS , we obtain the result. �

Let us now consider the term containing �YY in equation (32). We prove the follo-
wing proposition:

Proposition 1 The expression NT
v �YYh

T
Sv

+NT
w�YYh

T
Sw

is equal to the product of

h by the trace of the product of the composition of the di�erential dN of the Gauss

map of the surface S with the restriction to the tangent plane TS of the surface of

the endomorphism de�ned by the Hessian �YY of �, respectively.

Proof : Using again the notations of Appendix D, we express Nv and Nw, which
are in the tangent plane to S, as linear combinations of Sv and Sw:

�Nv =
e

j Sv j2Sv +
f

j Sw j2Sw

�Nw =
f

j Sv j2Sv +
g

j Sw j2Sw
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Replacing Nv and Nw by those values and hSv and hSw by their values in equations
(30), and taking once again into account the fact that h2 =j Sv j2j Sw j2, we obtain
the following expression:

�h[ e

j Sv j4S
T
v �YYSv +

2f

j Sv j2j Sw j2S
T
w�YYSv +

g

j Sw j4S
T
w�YYSw]

Using the vectors t1 and t2 de�ned in the previous lemma, we obtain for the term
within the bracket:

e

E
tT1�YYt1 +

2f

h
tT2�YYt1 +

g

G
tT2 �YYt2

Considering the two symmetric matrices

B =

"
e
E

f
h

f
h

g
G

#
C =

"
tT1 �YYt1 tT1 �YYt2
tT2 �YYt1 tT2 �YYt2

#
;

we verify that our expression is the trace of the productBC. The matrixC represents
the restriction of the endomorphism de�ned by the Hessian �YY of � to the tangent
plane of the surface expressed in the orthonormal basis t1; t2 of that plane. The
matrix B represents the di�erential of the Gauss map of the surface S expressed in
the same basis. �

If we put together the results of lemmas 6, 7 and proposition 1, we obtain a proof of
theorem 1.

C Computation of the derivatives �S, �N, �SN and �NN

We compute in this Appendix the necessary ingredients in order to apply theorem
1 to our case. As shown in section 4 it is su�cient to focus on one of the �ij,
say �12 which we call �. This is a function of the point S = (S1; S2; S3) on the
surface through the corresponding pixels m1 and m2 and the matrix A induced by
the tangent plane at the point S, and of the unit normal N to the surface at that
point through the matrix A. In e�ect, the equation (9) still holds and the equations
(17) de�ning K can be written in terms of S and N:

d = �S �N
T = RT t

N = (N1; N2; N3)
(33)
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The derivatives of K with respect to S and N are therefore quite simple:

KSi = dSiR
T = �NiR

T

KNi
= dNi

RT �TNT
Ni

= SiRT � [0 T 0]
(34)

Using the expression (19) giving the a�ne approximation A of the collineation K,
we can now compute AS and AN and ANN which are needed in order to compute
relation (24). These entities are tensors which we will actually not need for reasons
that will become clear in the sequel.

We arrange the results as a series of lemmas.

Lemma 9 The row vector �S is computed from the following quantities:

hI1; I2iS = hrI1; I2iT @m1

@S
+ hI1; rI2iT @m2

@S
+Z �

(I1(m1 +m)� I1(m1))rI2(m2 +Am)T (Am)Sdm

j I2 j � j I2 jS= hrI2; I2i@m2

@S

T

+Z �

(I2(m2 +Am)� I2(m2))rI2(m2 +Am)T (Am)Sdm

Proof : The proof is just a matter of applying the chain rule to the de�nitions
of hI1; I2i and j Ik j; k = 1; 2. Note that @mk

@S
; k = 1; 2 is a 2 � 3 matrix and that

(Am)S is the 2� 3 matrix [AS1m; AS2m; AS3m]. �

A similar result holds for �N, as stated in the following lemma:

Lemma 10 The row vector �N is computed from the following quantities:

hI1; I2iN =

Z �

(I1(m1 + m) � I1(m1))rI2(m2 + Am)T (Am)Ndm

Proof : Again, this is just a matter of applying the chain rule. Note that (Am)N
is the 2� 3 vector [AN1

m; AN2
m; AN3

m]. �

For the matrix �SN or �XY, we have the following lemma:
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Lemma 11 The matrix �SN can be computed from the following quantities:

hI1; I2iSN =

Z � @m1

@S

T

rI1(m1 +m)rIT2 (m2 +Am)(Am)Ndm�

@I1

@S

T

(m1)

Z �

rIT2 (m2 +Am)(Am)Ndm+Z �

(I1(m1 +m)� I1(m1))[Am)TSHI2(Am)N +rIT2 ASNm]dm

@I1

@S
=

Z �

rIT1 (m1 +m0)dm0@m1

@S

Proof : Again, it is just a matter of applying the chain rule. The quantity
(Am)T

S
HI2(Am)N is the 3�3matrix [mTAT

Si
HI2ANj

m] and the quantityrIT2 ASNm
is the 3�3 matrix [rIT2 ASiNj

m]. Note that rI2 and HI2 are evaluated at the image
point m2 +Am. �

Finally, for the Hessian �NN or �YY, we have the following result:

Lemma 12 The 3� 3 symmmetric matrix �YY can be computed from the following

expressions:

hI1; I2iNN =

Z �

(I1(m1 +m)� I1(m1))[(Am)TNHI2(Am)N +rIT2 ANNm] dm

Proof : Again, it is just a matter of applying the chain rule. The quantity
(ANm)THI2(ANm) is the 3� 3 symmetric matrix [mTAT

Ni
HI2ANj

m]. The matrix

is symmetric because if we transpose its ijth element we obtain mTAT
Nj
HT

I2
ANi

m

which, because the HessianHI2 is symmetric, is also equal to the jith term. Similarly,
rIT2 ANNm is the 3 � 3 symmetric matrix whose ijth element is rIT2 ANiNj

m. It
is symmetric because of the Schwarz equality (ANiNj

= ANjNi
). Note that rI2 and

HI2 are evaluated at the image point m2 +Am. �

D Results on the di�erential geometry of surfaces

We use the notations of [6]. Let U be an open set of R2 and S : �! S be a
parametrization of the surface S. The vectors Sv and Sw span the tangent plane
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TM (S) at the point M of S. The �rst fundamental form of S at point M is the
quadratic form Ip de�ned in TM (S) by the 2� 2 symmetric matrix:"

E F

F G

#

The unit normal at point M is N = Sv�Sw
jSv�Swj

and de�nes a mapping from S into
the unit sphere, called the Gauss map. The di�erential of this mapping is a linear
mapping from TM (S) into the tangent plane to the unit sphere at the point N. Since
this plane is parallel to TM (S) by construction, we think of this linear mapping as
one from TM (S) into TM (S). The second order intrinsic properties of the surface at
point M , such as the principal directions and the principal curvatures are obtained
from this linear mapping expressed in the basis Sv; Sw of TM (S). The 2� 2 matrix
B = [bij ]; i; j = 1; 2 is given by the equations of Weingarten:

b11 = fF�eG
EG�F 2 b12 = gF�fG

EG�F 2

b21 = eF�fE
EG�F 2 b22 = fF�gE

EG�F 2

where

e = �Nv � Sv
f = �Nw � Sv = �Nv � Sw
g = �Nw � Sw

The principal curvatures k1 and k2 are the eigenvalues of the matrix B and the mean
curvature H = 1

2(k1 + k2) is easily shown to be equal to:

H =
1

2

eG� 2fF + gE

EG� F 2

which reduces to 1
2(

e
E
+ g

G
) when the parametrization is orthogonal, i.e. F = 0.

E Bells and whistles for the 2D implementation

In practice, � has been corrected with two terms: we used � � �1� � �2G�max(�)
where �i are positive constants and G�max is an increasing function, null for values
less than �max (�1 < �max).

� The term ��1� makes the solution smoother, allowing to take greater time
steps thus accelerating the convergence.
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� Assuming � has been normalized with respect to the number of cameras used
for each particular point, so that � is equal to �1 where the correlation is
maximum, the term ��2G�max(�) leads to an inward evolution where the cor-
relation is not good enough. (�max < �). This also accelerates the convergence
and avoids local minima. The initial curve can be chosen far from the objects
(but must not intersect them).
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