
IEEE Transactions on PAMI, vol. 23, no. 11, pp. 1222-1239 p.1

Fast Approximate Energy Minimization via Graph Cuts

Yuri Boykov, Olga Veksler and Ramin Zabih∗

Abstract

Many tasks in computer vision involve assigning a label (such as disparity) to every

pixel. A common constraint is that the labels should vary smoothly almost everywhere

while preserving sharp discontinuities that may exist, e.g., at object boundaries. These

tasks are naturally stated in terms of energy minimization. In this paper we consider

a wide class of energies with various smoothness constraints. Global minimization of

these energy functions is NP-hard even in the simplest discontinuity-preserving case.

Our focus is therefore on efficient approximation algorithms. We present two algo-

rithms based on graph cuts that efficiently find a local minimum with respect to two

types of large moves, namely expansion moves and swap moves. These moves can si-

multaneously change the labels of arbitrarily large sets of pixels. In contrast, many

standard algorithms (including simulated annealing) use small moves where only one

pixel changes its label at a time. Our expansion algorithm finds a labeling within a

known factor of the global minimum, while our swap algorithm handles more general

energy functions. Both algorithms allow important cases of discontinuity preserving

energies. We experimentally demonstrate the effectiveness of our approach for im-

age restoration, stereo and motion. On real data with ground truth we achieve 98%

accuracy.

Index Terms — Energy minimization, graph, minimum cut, maximum flow,

stereo, motion, image restoration, Markov Random Fields, Potts model, multiway cut.

1 Energy minimization in early vision

Many early vision problems require estimating some spatially varying quantity (such as in-

tensity or disparity) from noisy measurements. Such quantities tend to be piecewise smooth;
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they vary smoothly on the surface of an object, but change dramatically at object bound-

aries. Every pixel p ∈ P must be assigned a label in some finite set L. For motion or stereo,

the labels are disparities, while for image restoration they represent intensities. The goal is

to find a labeling f that assigns each pixel p ∈ P a label fp ∈ L, where f is both piecewise

smooth and consistent with the observed data.

These vision problems can be naturally formulated in terms of energy minimization. In

this framework, one seeks the labeling f that minimizes the energy

E(f) = Esmooth(f) + Edata(f).

Here Esmooth measures the extent to which f is not piecewise smooth, while Edata measures

the disagreement between f and the observed data. Many different energy functions have

been proposed in the literature. The form of Edata is typically

Edata(f) =
∑

p∈P

Dp(fp),

where Dp measures how well label fp fits pixel p given the observed data. In image restora-

tion, for example, Dp(fp) is normally (fp − Ip)
2, where Ip is the observed intensity of p.

The choice of Esmooth is a critical issue, and many different functions have been proposed.

For example, in some regularization-based approaches [22, 34], Esmooth makes f smooth

everywhere. This leads to poor results at object boundaries. Energy functions that do

not have this problem are called discontinuity preserving. A large number of discontinuity

preserving energy functions have been proposed (see for example [21, 29, 42]).

The major difficulty with energy minimization lies in the enormous computational costs.

Typically these energy functions have many local minima (i.e., they are non-convex). Worse

still, the space of possible labelings has dimension |P|, which is many thousands.

The energy functions that we consider in this paper arise in a variety of different contexts,

including the Bayesian labeling of first-order Markov Random Fields (see [30] for details).

We consider energies of the form

E(f) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp), (1)

where N is the set of interacting pairs of pixels. Typically N consists of adjacent pixels, but

it can be arbitrary. We allow Dp to be nonnegative but otherwise arbitrary. In our choice of

Esmooth only pairs of pixels interact directly.1 Note that each pair of pixels {p, q} can have

1Pair-wise interactions Vp,q introduce (long range) dependence between all image pixels. This is a dramatic

improvement over models assuming pixel independence. Higher order direct interactions (e.g. between triples

of pixels) can potentially yield even better models but have largely been ignored due to tractability issues.
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its own distinct penalty Vp,q. This turns out to be important in many applications, as shown

in Section 8.2. However, to simplify the notation, we will frequently write V instead of Vp,q.

We develop algorithms that approximately minimize the energy E(f) for an arbitrary

finite set of labels L under two fairly general classes of interaction penalty V : metric and

semi-metric. V is called a metric on the space of labels L if it satisfies

V (α, β) = 0 ⇔ α = β, (2)

V (α, β) = V (β, α) ≥ 0, (3)

V (α, β) ≤ V (α, γ) + V (γ, β), (4)

for any labels α, β, γ ∈ L. If V satisfies only (2) and (3), it is called a semi-metric.2

Note that both semi-metrics and metrics include important cases of discontinuity preserv-

ing interaction penalties. Informally, a discontinuity preserving interaction term should have

a bound on the largest possible penalty. This avoids overpenalizing sharp jumps between

the labels of neighboring pixels; see [46, 30] and our experimental results in Section 8.6.

Examples of discontinuity preserving interaction penalties for a one-dimensional label set L

include the truncated quadratic V (α, β) = min(K, |α − β|2) (a semi-metric) and the trun-

cated absolute distance V (α, β) = min(K, |α− β|) (a metric), where K is some constant. If

L is multidimensional, we can replace | · | by any norm, e.g. || · ||L2
. These models encourage

labelings consisting of several regions where pixels in the same region have similar labels,

and therefore we informally call them piecewise smooth models.

Another important discontinuity preserving function is given by the Potts model V (α, β) =

K ·T (α 6= β) (a metric), where T (·) is 1 if its argument is true, and otherwise 0. This model

encourages labelings consisting of several regions where pixels in the same region have equal

labels, and therefore we informally call it a piecewise constant model.

We begin with a review of previous work on energy minimization in early vision. In

Section 3 we give an overview of our energy minimization algorithms. Our first algorithm,

described in Section 4, is based on α-β-swap moves and works for any semi-metric V . Our

second algorithm, described in Section 5, is based on the more interesting α-expansion moves

but requires V to be a metric. Optimality properties of our algorithms are discussed in

Section 6. For example, we show that our expansion algorithm produces a solution within

a known factor of the global minimum of E. In Section 7 we describe an important special

case of our energy which arises from the Potts interaction penalty. This is a very simple

2In fact, we only assume V (α, β) = V (β, α) in order to simplify the presentation. We can easily generalize

all results in this paper to allow V (α, β) 6= V (β, α). This generalization requires the use of directed graphs.
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type of discontinuity preserving smoothness penalty, yet we prove that computing the global

minimum is NP-hard. Experimental data is presented in Section 8.

2 Related work

The energy functions that we are interested in, given in equation (1), arise quite naturally in

early vision. Energy based methods attempt to model some global image properties that can

not be captured, for example, by local correlation techniques. The main problem, however,

is that interesting energies are often difficult to minimize. We show in the appendix that

one of the simplest discontinuity preserving cases of our energy function minimization is

NP-hard; it is therefore impossible to rapidly compute the global minimum unless P=NP.

Due to the inefficiency of computing the global minimum, many authors have opted for

a local minimum. However, in general a local minimum can be arbitrarily far from the

optimum. It thus may not convey any of the global image properties that were encoded in

the energy function. In such cases it is difficult to determine the cause of an algorithm’s

failures. When an algorithm gives unsatisfactory results, it may be due either to a poor

choice of the energy function, or to the fact that the answer is far from the global minimum.

There is no obvious way to tell which of these is the problem.3 Another common issue is

that local minimization techniques are naturally sensitive to the initial estimate.

In general, a labeling f is a local minimum of the energy E if

E(f) ≤ E(f ′) for any f ′ “near to” f. (5)

In case of discrete labeling, the labelings near to f are those that lie within a single move of

f . Many local optimization techniques use what we will call standard moves, where only one

pixel can change its label at a time (see Fig. 2(b)). For standard moves, equation (5) can

be read as follows: if you are at a local minimum with respect to standard moves then you

cannot decrease the energy by changing a single pixel’s label. In fact, this is a very weak

condition. As a result, optimization schemes using standard moves frequently generate low

quality solutions. For instance, consider the local minimum with respect to standard moves

shown in Fig. 1(c).

An example of a local method using standard moves is Iterated Conditional Modes (ICM),

3In special cases where the global minimum can be rapidly computed, it is possible to separate these

issues. For example, [20] points out that the global minimum of a special case of Ising energy function is not

necessarily the desired solution for image restoration. [9, 20] analyze the performance of simulated annealing

in cases with a known global minimum.
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which is a greedy technique introduced in [4]. For each pixel, the label which gives the largest

decrease of the energy function is chosen, until convergence to a local minimum.

Another example of an algorithm using standard moves is simulated annealing, which was

popularized in computer vision by [19]. Annealing is popular because it is easy to implement,

and it can optimize an arbitrary energy function. Unfortunately, minimizing an arbitrary

energy function requires exponential time, and as a consequence simulated annealing is very

slow. Theoretically, simulated annealing should eventually find the global minimum if run for

long enough. As a practical matter, it is necessary to decrease the algorithm’s temperature

parameter faster than required by the theoretically optimal schedule. Once annealing’s

temperature parameter is sufficiently low, the algorithm will converge to a local minimum

with respect to standard moves. In fact, [20] demonstrate that practical implementations

of simulated annealing give results that are very far from the global optimum even in the

relatively simple case of binary labelings.

Trying to improve the rate of convergence of simulated annealing [39, 3] developed sam-

pling algorithms for the Potts model that can make larger moves similar to our α-β-swaps.

The main difference is that we find the best move among all possible α-β-swaps, while [39, 3]

randomly select connected subsets of pixels that change their label from α to β. Like simu-

lated annealing, these algorithms have only convergence “at infinity” optimality properties.

The quality of the solutions that these algorithms produce in practice under realistic cooling

schedules is not clear.

If the energy minimization problem is phrased in continuous terms, variational methods

can be applied. These methods were popularized by [22]. Variational techniques use the Euler

equations, which are guaranteed to hold at a local minimum.4 To apply these algorithms to

actual imagery, of course, requires discretization.

Another alternative is to use discrete relaxation labeling methods; this has been done by

many authors, including [12, 36, 41]. In relaxation labeling, combinatorial optimization is

converted into continuous optimization with linear constraints. Then some form of gradi-

ent descent which gives the solution satisfying the constraints is used. Relaxation labeling

techniques are actually more general than energy minimization methods, see [23] and [32].

There are also methods that have optimality guarantees in certain cases. Continuation

methods, such as graduated non-convexity [8], are an example. These methods involve

approximating an intractable (non-convex) energy function by a sequence of energy functions,

beginning with a tractable (convex) approximation. There are circumstances where these

4Note that in continuous cases the labels near to f in equation (5) are normally defined as ||f − f ′|| ≤ ε

where ε is a positive constant and || · || is a norm, e.g. L2, over some appropriate functional space.
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methods are known to compute the optimal solution (see [8] for details). Continuation

methods can be applied to a large number of energy functions, but except for these special

cases nothing is known about the quality of their output.

Mean field annealing is another popular minimization approach. It is based on esti-

mating the partition function, from which the minimum of the energy can be deduced.

However computing the partition function is computationally intractable, and saddle point

approximations [31] are used. [17] provides an interesting connection between mean field

approximation and other minimization methods like graduated non-convexity.

There are a few interesting energy functions where the global minimum can be rapidly

computed via dynamic programming [2]. However, dynamic programming is restricted essen-

tially to energy functions in one-dimensional settings. This includes some important cases,

such as snakes [26]. In general, the two-dimensional energy functions that arise in early

vision cannot be solved efficiently via dynamic programming.

Graph cut techniques from combinatorial optimization5 can be used to find the global

minimum for some multidimensional energy functions. When there are only 2 labels, equa-

tion (1) is a special case of the Ising model. Greig, Porteous, and Seheult [20] showed how

to find the global minimum in this case by a single graph cut computation. Note that the

Potts model we discuss in Section 7 is a natural generalization of the Ising model to the case

of more than 2 labels. [14] develop a method optimal to within a factor of two for the Potts

model; however the data energy they use is very restrictive. Recently [37, 24, 11] used graph

cuts to find the exact global minimum of a certain type of energy functions. However, these

methods apply only if the labels are one-dimensional. Most importantly they require V to

be convex [25], and hence their energies are not discontinuity preserving, see Section 8.6.

Note that graph cuts have also been used for segmentation based on clustering [47, 16,

44]. Unlike clustering, we assume that there is a natural set of labels (e.g. intensities or

disparities), and a data penalty function Dp(·) which makes some pixel-label assignments

more likely than others.

The main contribution of this paper are two new algorithms for multidimensional energy

minimization that use graph cuts iteratively. We generalize the previous results by allowing

arbitrary label sets, arbitrary data terms Dp and a very wide class of pair-wise interactions

V that includes discontinuity preserving cases. We achieve approximate solutions to this NP

hard minimization problem with guaranteed optimality bounds.

5Throughout this paper we informally use graph cuts to refer to the min-cut/max-flow algorithms that

are standard in combinatorial optimization [1]. See Section 3.3 for more details on graph cuts.
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(a) original image (b) observed image (c) local min w.r.t.

standard moves

(d) local min w.r.t.

α-expansion moves

Figure 1: Comparison of local minima with respect to standard and large moves in case

of image restoration. We use energy (1) with quadratic data terms penalizing deviations

from the observed intensities (b). The smoothness term is truncated L2 metric. Both local

minima in (c) and (d) were obtained using labeling (b) as an initial solution.

3 Overview of our algorithms

The NP-hardness result given in the appendix effectively forces us to compute a local min-

imum. However, our methods generate a local minimum with respect to very large moves.

We show that this approach overcomes many of the problems associated with local minima.

The algorithms introduced in this section generate a labeling that is a local minimum

of the energy in (1) for two types of large moves: α-expansion and α-β-swap. In contrast

to the standard moves described in Section 2 these moves allow large number of pixels to

change their labels simultaneously. This makes the set of labelings within a single move

of a locally optimal f exponentially large, and the condition in (5) very demanding. For

example, α-expansion moves are so strong that we are able to prove that any labeling locally

optimal with respect to these moves is within a known factor of the global minimum (see

Section 6). Fig. 1 compares local minima for standard moves (c) and for α-expansion moves

(d) obtained from the same initial solution (b). This and other experiments also show that

in practice our solutions do not change significantly by varying the initial labelings. In most

cases starting from a constant labeling (where all pixels have the same label) is good enough.

In Section 3.1 we discuss the moves we allow, which are best described in terms of

partitions. In Section 3.2 we sketch the algorithms and list their basic properties. The main

computational step of our algorithms is based on graph cut techniques from combinatorial

optimization, which we summarize in Section 3.3.
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(a) initial labeling (b) standard move (c) α-β-swap (d) α-expansion

Figure 2: Examples of standard and large moves from a given labeling (a). The number of

labels is |L| = 3. A standard move (b) changes a label of a single pixel (in the circled area).

Strong moves (c-d) allow large number of pixels to change their labels simultaneously.

3.1 Partitions and move spaces

Any labeling f can be uniquely represented by a partition of image pixels P = {Pl | l ∈ L}

where Pl = {p ∈ P | fp = l} is a subset of pixels assigned label l. Since there is an obvious

one to one correspondence between labelings f and partitions P, we can use these notions

interchangingly.

Given a pair of labels α, β, a move from a partition P (labeling f) to a new partition

P′ (labeling f ′) is called an α-β swap if Pl = P ′
l for any label l 6= α, β. This means that

the only difference between P and P′ is that some pixels that were labeled α in P are now

labeled β in P′, and some pixels that were labeled β in P are now labeled α in P′. A special

case of an α-β swap is a move that gives the label α to some set of pixels previously labeled

β. One example of α-β swap move is shown in Fig. 2(c).

Given a label α, a move from a partition P (labeling f) to a new partition P′ (labeling

f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl for any label l 6= α. In other words, an

α-expansion move allows any set of image pixels to change their labels to α. An example of

an α-expansion move is shown in Fig. 2(d).

Recall that ICM and annealing use standard moves allowing only one pixel to change its

intensity. An example of a standard move is given in Fig. 2(b). Note that a move which

assigns a given label α to a single pixel is both an α-β swap and an α-expansion. As a

consequence, a standard move is a special case of both a α-β swap and an α-expansion.
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1. Start with an arbitrary labeling f

2. Set success := 0

3. For each pair of labels {α, β} ⊂ L

3.1. Find f̂ = arg min E(f ′) among f ′ within one α-β swap of f

3.2. If E(f̂) < E(f), set f := f̂ and success := 1

4. If success = 1 goto 2

5. Return f

1. Start with an arbitrary labeling f

2. Set success := 0

3. For each label α ∈ L

3.1. Find f̂ = arg min E(f ′) among f ′ within one α-expansion of f

3.2. If E(f̂) < E(f), set f := f̂ and success := 1

4. If success = 1 goto 2

5. Return f

Figure 3: Our swap algorithm (top) and expansion algorithm (bottom).

3.2 Algorithms and properties

We have developed two minimization algorithms. The swap algorithm finds a local minimum

when swap moves are allowed and the expansion algorithm finds a local minimum when

expansion moves are allowed. Finding such a local minimum is not a trivial task. Given a

labeling f , there is an exponential number of swap and expansion moves. Therefore, even

checking for a local minimum requires exponential time if performed näıvely. In contrast

checking for a local minimum when only the standard moves are allowed is easy since there

is only a linear number of standard moves given any labeling f .

We have developed efficient graph based methods to find the optimal α-β-swap or α-

expansion given a labeling f (see Sections 4 and 5). This is the key step in our algorithms.

Once these methods are available, it is easy to design variants of the “fastest descent”

technique that can efficiently find the corresponding local minima. Our algorithms are

summarized in Fig. 3.

The two algorithms are quite similar in their structure. We will call a single execution of

steps 3.1–3.2 an iteration, and an execution of steps 2–4 a cycle. In each cycle, the algorithm

performs an iteration for every label (expansion algorithm) or for every pair of labels (swap

algorithm), in a certain order that can be fixed or random. A cycle is successful if a strictly

better labeling is found at any iteration. The algorithms stop after the first unsuccessful
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cycle since no further improvement is possible. Obviously, a cycle in the swap algorithm

takes |L|2 iterations, and a cycle in the expansion algorithm takes |L| iterations.

These algorithms are guaranteed to terminate in a finite number of cycles. In fact, under

the assumptions that V and Dp in equation (1) are constants independent of the image

size P we can easily prove termination in O(|P|) cycles [43]. These assumptions are quite

reasonable in practice. However, in the experiments we report in Section 8, the algorithm

stops after a few cycles, and most of the improvements occur during the first cycle.

We use graph cuts to efficiently find f̂ for the key part of each algorithm in step 3.1.

Step 3.1 uses a single graph cut computation. At each iteration the corresponding graph has

O(|P|) pixels. The exact number of pixels, topology of the graph and its edge weights vary

from iteration to iteration. The details of the graph are quite different for the swap and the

expansion algorithms, and are described in details in Sections 4 and 5.

3.3 Graph cuts

Before describing the key step 3.1 of the swap and the expansion algorithms, we will review

graph cuts. Let G = 〈V, E〉 be a weighted graph with two distinguished vertices called the

terminals. A cut C ⊂ E is a set of edges such that the terminals are separated in the induced

graph G(C) = 〈V, E −C〉. In addition, no proper subset of C separates the terminals in G(C).

The cost of the cut C, denoted |C|, equals the sum of its edge weights. The minimum cut

problem is to find the cheapest cut among all cuts separating the terminals. Note that we

use standard terminology from the combinatorial optimization community.6

Sections 4 and 5 show that step 3.1 in Fig. 3 is equivalent to solving the minimum cut

problem on an appropriately defined two-terminal graph. Minimum cuts can be efficiently

found by standard combinatorial algorithms with different low-order polynomial complexities

[1]. For example, a minimum cut can be found by computing the maximum flow between

the terminals, according to a theorem due to Ford and Fulkerson [15]. Our experimental

results make use of a new max-flow algorithm that has the best speed on our graphs over

many modern algorithms [10]. The running time is nearly linear in practice.

6To avoid confusion, we would like to mention that some clustering based segmentation techniques in vision

use different graph cut terminology. For example, [47] computes a globally minimum cut. The minimum

is computed among all cuts that sever the graph into two non-empty parts. The terminals need not be

specified. [38] introduces normalized cuts by proposing a new definition of the cut cost. Although normalized

cuts are formulated as a graph partitioning problem the actual approximate optimization is performed via

non-combinatorial methods.
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Figure 4: An example of the graph Gαβ for a 1D image. The set of pixels in the image is

Pαβ = Pα ∪ Pβ where Pα = {p, r, s} and Pβ = {q, . . . , w}.

4 Finding the optimal swap move

Given an input labeling f (partition P) and a pair of labels α, β, we wish to find a labeling

f̂ that minimizes E over all labelings within one α-β swap of f . This is the critical step in

the swap move algorithm given at the top of Fig. 3. Our technique is based on computing

a labeling corresponding to a minimum cut on a graph Gαβ = 〈Vαβ, Eαβ〉. The structure of

this graph is dynamically determined by the current partition P and by the labels α, β.

This section is organized as follows. First we describe the construction of Gαβ for a given

f (or P). We show that cuts C on Gαβ correspond in a natural way to labelings fC which are

within one α-β swap move of f . Theorem 4.4 shows that the cost of a cut is |C| = E(fC) plus

a constant. A corollary from this theorem states our main result that the desired labeling f̂

equals fC where C is a minimum cut on Gαβ .

The structure of the graph is illustrated in Fig. 4. For legibility, this figure shows the

case of a 1D image. For any image the structure of Gαβ will be as follows. The set of vertices

includes the two terminals α and β, as well as image pixels p in the sets Pα and Pβ (that is

fp ∈ {α, β}). Thus, the set of vertices Vαβ consists of α, β, and Pαβ = Pα ∪ Pβ . Each pixel

p ∈ Pαβ is connected to the terminals α and β by edges tαp and tβp , respectively. For brevity,

we will refer to these edges as t-links (terminal links). Each pair of pixels {p, q} ⊂ Pαβ

which are neighbors (i.e. {p, q} ∈ N ) is connected by an edge e{p,q} which we will call an

n-link (neighbor link). The set of edges Eαβ thus consists of
⋃

p∈Pαβ
{tαp , tβp} (the t-links) and

⋃

{p,q}∈N
p,q∈Pαβ

e{p,q} (the n-links). The weights assigned to the edges are
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edge weight for

tαp Dp(α) +
∑

q∈Np
q 6∈Pαβ

V (α, fq) p ∈ Pαβ

tβp Dp(β) +
∑

q∈Np
q 6∈Pαβ

V (β, fq) p ∈ Pαβ

e{p,q} V (α, β) {p,q}∈N
p,q∈Pαβ

Any cut C on Gαβ must sever (include) exactly one t-link for any pixel p ∈ Pαβ : if neither

t-link were in C, there would be a path between the terminals; while if both t-links were

cut, then a proper subset of C would be a cut. Thus, any cut leaves each pixel in Pαβ with

exactly one t-link. This defines a natural labeling fC corresponding to a cut C on Gαβ ,

fC
p =























α if tαp ∈ C for p ∈ Pαβ

β if tβp ∈ C for p ∈ Pαβ

fp for p ∈ P , p /∈ Pαβ .

(6)

In other words, if the pixel p is in Pαβ then p is assigned label α when the cut C separates

p from the terminal α; similarly, p is assigned label β when C separates p from the terminal

β. If p is not in Pαβ then we keep its initial label fp. This implies

Lemma 4.1 A labeling fC corresponding to a cut C on Gαβ is one α-β swap away from the

initial labeling f .

It is easy to show that a cut C severs an n-link e{p,q} between neighboring pixels on Gαβ

if and only if C leaves the pixels p and q connected to different terminals. Formally

Property 4.2 For any cut C and for any n-link e{p,q}:

(a) If tαp , tαq ∈ C then e{p,q} 6∈ C.

(b) If tβp , tβq ∈ C then e{p,q} 6∈ C.

(c) If tβp , tαq ∈ C then e{p,q} ∈ C.

(d) If tαp , tβq ∈ C then e{p,q} ∈ C.

Properties (a) and (b) follow from the requirement that no proper subset of C should separate

the terminals. Properties (c) and (d) also use the fact that a cut has to separate the terminals.

These properties are illustrated in Fig. 5.

The next lemma is a consequence of property 4.2 and equation 6.

Lemma 4.3 For any cut C and for any n-link e{p,q}

|C ∩ e{p,q}| = V (fC
p , fC

q ).
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Figure 5: Properties of a cut C on Gαβ for two pixels p, q ∈ N connected by an n-link e{p,q}.

Dotted lines show the edges cut by C and solid lines show the edges remaining in the induced

graph G(C) = 〈V, E − C〉.

Proof: There are four cases with similar structure; we will illustrate the case where tαp , tβq ∈

C. In this case, e{p,q} ∈ C and, therefore, |C ∩ e{p,q}| = |e{p,q}| = V (α, β). As follows from

equation (6), fC
p = α and fC

q = β.

Note that this proof assumes that V is a semi-metric, i.e. that equations 2 and 3 hold.

Lemmas 4.1 and 4.3 plus property 4.2 yield

Theorem 4.4 There is a one to one correspondence between cuts C on Gαβ and labelings

that are one α-β swap from f . Moreover, the cost of a cut C on Gαβ is |C| = E(fC) plus a

constant.

Proof: The first part follows from the fact that the severed t-links uniquely determine the

labels assigned to pixels p and the n-links that must be cut. We now compute the cost of a

cut C, which is

|C| =
∑

p∈Pαβ

|C ∩ {tαp , tβp}| +
∑

{p,q}∈N
{p,q}⊂Pαβ

|C ∩ e{p,q}|. (7)

Note that for p ∈ Pαβ we have

|C ∩ {tαp , tβp}| =











|tαp | if tαp ∈ C

|tβp | if tβp ∈ C
= Dp(f

C
p ) +

∑

q∈Np
q 6∈Pαβ

V (fC
p , fq).

Lemma 4.3 gives the second term in (7). Thus, the total cost of a cut C is

|C| =
∑

p∈Pαβ

Dp(f
C
p ) +

∑

p∈Pαβ

∑

q∈Np
q 6∈Pαβ

V (fC
p , fq) +

∑

{p,q}∈N
{p,q}⊂Pαβ

V (fC
p , fC

q )
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=
∑

p∈Pαβ

Dp(f
C
p ) +

∑

{p,q}∈N
p or q ∈Pαβ

V (fC
p , fC

q ).

This can be rewritten as |C| = E(fC) − K where

K =
∑

p 6∈Pαβ

Dp(fp) +
∑

{p,q}∈N
{p,q}∩Pαβ=∅

V (fp, fq)

is the same constant for all cuts C.

Corollary 4.5 The lowest energy labeling within a single α-β swap move from f is f̂ = fC,

where C is the minimum cut on Gαβ.

5 Finding the optimal expansion move

Given an input labeling f (partition P) and a label α, we wish to find a labeling f̂ that

minimizes E over all labelings within one α-expansion of f . This is the critical step in

the expansion move algorithm given at the bottom of Fig. 3. In this section we describe a

technique that solves the problem assuming that (each) V is a metric, and thus satisfies the

triangle inequality (4). Our technique is based on computing a labeling corresponding to a

minimum cut on a graph Gα = 〈Vα, Eα〉. The structure of this graph is determined by the

current partition P and by the label α. As before, the graph dynamically changes after each

iteration.

This section is organized as follows. First we describe the construction of Gα for a given

f (or P) and α. We show that cuts C on Gα correspond in a natural way to labelings fC

which are within one α-expansion move of f . Then, based on a number of simple properties,

we define a class of elementary cuts. Theorem 5.4 shows that elementary cuts are in one to

one correspondence with those labelings that are within one α-expansion of f , and also that

the cost of an elementary cut is |C| = E(fC). A corollary from this theorem states our main

result that the desired labeling f̂ is fC where C is a minimum cut on Gα.

The structure of the graph is illustrated in Fig. 6. For legibility, this figure shows the

case of a 1D image. The set of vertices includes the two terminals α and ᾱ, as well as all

image pixels p ∈ P. In addition, for each pair of neighboring pixels {p, q} ∈ N separated in

the current partition (i.e. such that fp 6= fq), we create an auxiliary node a{p,q}. Auxiliary

nodes are introduced at the boundaries between partition sets Pl for l ∈ L. Thus, the set of

vertices is

Vα = { α , ᾱ , P ,
⋃

{p,q}∈N
fp 6=fq

a{p,q} }.
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Figure 6: An example of Gα for a 1D image. The set of pixels in the image is P = {p, q, r, s}

and the current partition is P = {P1,P2,Pα} where P1 = {p}, P2 = {q, r}, and Pα =

{s}. Two auxiliary nodes a = a{p,q}, b = a{r,s} are introduced between neighboring pixels

separated in the current partition. Auxiliary nodes are added at the boundary of sets Pl.

Each pixel p ∈ P is connected to the terminals α and ᾱ by t-links tαp and tᾱp , respectively.

Each pair of neighboring pixels {p, q} ∈ N which are not separated by the partition P (i.e.

such that fp = fq) is connected by an n-link e{p,q}. For each pair of neighboring pixels

{p, q} ∈ N such that fp 6= fq we create a triplet of edges E{p,q} =
{

e{p,a}, e{a,q}, tᾱa
}

where

a = a{p,q} is the corresponding auxiliary node. The edges e{p,a} and e{a,q} connect pixels p

and q to a{p,q} and the t-link tᾱa connects the auxiliary node a{p,q} to the terminal ᾱ. So we

can write the set of all edges as

Eα = {
⋃

p∈P

{tαp , tᾱp} ,
⋃

{p,q}∈N
fp 6=fq

E{p,q} ,
⋃

{p,q}∈N
fp=fq

e{p,q} }.

The weights assigned to the edges are
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edge weight for

tᾱp ∞ p ∈ Pα

tᾱp Dp(fp) p 6∈ Pα

tαp Dp(α) p ∈ P

e{p,a} V (fp, α)

e{a,q} V (α, fq) {p, q} ∈ N , fp 6= fq

tᾱa V (fp, fq)

e{p,q} V (fp, α) {p, q} ∈ N , fp = fq

As in Section 4, any cut C on Gα must sever (include) exactly one t-link for any pixel

p ∈ P. This defines a natural labeling fC corresponding to a cut C on Gα. Formally,

fC
p =











α if tαp ∈ C

fp if tᾱp ∈ C
∀p ∈ P. (8)

In other words, a pixel p is assigned label α if the cut C separates p from the terminal α,

while p is assigned its old label fp if C separates p from ᾱ. Note that for p 6∈ Pα the terminal

ᾱ represents labels assigned to pixels in the initial labeling f . Clearly we have

Lemma 5.1 A labeling fC corresponding to a cut C on Gα is one α-expansion away from

the initial labeling f .

It is also easy to show that a cut C severs an n-link e{p,q} between neighboring pixels

{p, q} ∈ N such that fp = fq if and only if C leaves the pixels p and q connected to different

terminals. In other words, property 4.2 holds when we substitute “ᾱ” for “β”. We will refer

to this as property 4.2(ᾱ). Analogously, we can show that property 4.2 and equation (8)

establish lemma 4.3 for the n-links e{p,q} in Gα.

Consider now the set of edges E{p,q} corresponding to a pair of neighboring pixels {p, q} ∈

N such that fp 6= fq. In this case, there are several different ways to cut these edges even

when the pair of severed t-links at p and q is fixed. However, a minimum cut C on Gα is

guaranteed to sever the edges in E{p,q} depending on what t-links are cut at the pixels p and

q.

The rule for this case is described in property 5.2 below. Assume that a = a{p,q} is an

auxiliary node between the corresponding pair of neighboring pixels.
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Figure 7: Properties of a minimum cut C on Gα for two pixel p, q ∈ N such that fp 6= fq.

Dotted lines show the edges cut by C and solid lines show the edges in the induced graph

G(C) = 〈V, E − C〉.

Property 5.2 If {p, q} ∈ N and fp 6= fq then a minimum cut C on Gα satisfies:

(a) If tαp , tαq ∈ C then C ∩ E{p,q} = ∅.

(b) If tᾱp , tᾱq ∈ C then C ∩ E{p,q} = tᾱa .

(c) If tᾱp , tαq ∈ C then C ∩ E{p,q} = e{p,a}.

(d) If tαp , tᾱq ∈ C then C ∩ E{p,q} = e{a,q}.

Property (a) results from the fact that no subset of C is a cut. The others follow from the

minimality of |C| and the fact that |e{p,a}|, |e{a,q}| and |tᾱa | satisfy the triangle inequality

so that cutting any one of them is cheaper than cutting the other two together. These

properties are illustrated in Fig. 7.

Lemma 5.3 If {p, q} ∈ N and fp 6= fq then the minimum cut C on Gα satisfies

|C ∩ E{p,q}| = V (fC
p , fC

q ).

Proof: The equation follows from property 5.2, equation (8), and the edge weights. For

example, if tᾱp , tᾱq ∈ C then |C ∩ E{p,q}| = |tᾱa | = V (fp, fq). At the same time, (8) implies that

fC
p = fp and fC

q = fq. Note that the right penalty V is imposed whenever fC
p 6= fC

q , due to

the auxiliary pixel construction.

Property 4.2(ᾱ) holds for any cut, and property 5.2 holds for a minimum cut. However,

there can be other cuts besides the minimum cut that satisfy both properties. We will define

an elementary cut on Gα to be a cut that satisfies properties 4.2(ᾱ) and 5.2.
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Theorem 5.4 Let Gα be constructed as above given f and α. Then there is a one to one

correspondence between elementary cuts on Gα and labelings within one α-expansion of f .

Moreover, for any elementary cut C we have |C| = E(fC).

Proof: We first show that an elementary cut C is uniquely determined by the correspond-

ing labeling fC. The label fC
p at the pixel p determines which of the t-links to p is in C.

Property 4.2(ᾱ) shows which n-links e{p,q} between pairs of neighboring pixels {p, q} such

that fp = fq should be severed. Similarly, property 5.2 determines which of the links in E{p,q}

corresponding to {p, q} ∈ N such that fp 6= fq should be cut.

The cost of an elementary cut C is

|C| =
∑

p∈P

|C ∩ {tαp , tᾱp}| +
∑

{p,q}∈N
fp=fq

|C ∩ e{p,q}| +
∑

{p,q}∈N
fp 6=fq

|C ∩ E{p,q}|. (9)

It is easy to show that for any pixel p ∈ P we have |C ∩ {tαp , tᾱp}| = Dp(f
C
p ). Lemmas 4.3

and 5.3 hold for elementary cuts, since they were based on properties 4.2 and 5.2. Thus, the

total cost of a elementary cut C is

|C| =
∑

p∈P

Dp(f
C
p ) +

∑

{p,q}∈N

V (fC
p , fC

q ) = E(fC).

Therefore, |C| = E(fC).

Our main result is a simple consequence of this theorem, since the minimum cut is an

elementary cut.

Corollary 5.5 The lowest energy labeling within a single α expansion move from f is f̂ =

fC, where C is the minimum cut on Gα.

6 Optimality properties

Here we discuss optimality properties of our algorithms. In Section 6.1 we show that any

local minimum generated by our expansion moves algorithm is within a known factor of the

global optimum. This algorithm works in case of metric V . The swap move algorithm can be

applied to a wider class of semi-metric V ’s but, unfortunately, it does not have any (similar)

guaranteed optimality properties. In Section 6.2 we show that a provably good solution can

be obtained even for semi-metric V by approximating such V ’s with a simple Potts metric.
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6.1 The expansion move algorithm

We now prove that a local minimum when expansion moves are allowed is within a known

factor of the global minimum. This factor, which can be as small as 2, will depend on V .

Specifically, let

c =
maxα6=β∈L V (α, β)

minα6=β∈L V (α, β)

be the ratio of the largest non zero value of V to the smallest non zero value of V . Note

that c is well defined since V (α, β) 6= 0 for α 6= β according to the metric properties (2) and

(3). If Vp,q’s are different for neighboring pairs p, q then c = maxp,q∈N

(

maxα6=β∈L V (α,β)

minα6=β∈L V (α,β)

)

.

Theorem 6.1 Let f̂ be a local minimum when the expansion moves are allowed and f ∗ be

the globally optimal solution. Then E(f̂) ≤ 2cE(f ∗).

Proof: Let us fix some α ∈ L and let

Pα =
{

p ∈ P | f ∗
p = α

}

. (10)

We can produce a labeling fα within one α-expansion move from f̂ as follows:

fα
p =







α if p ∈ Pα

f̂p otherwise
(11)

The key observation is that since f̂ is a local minimum if expansion moves are allowed,

E(f̂) ≤ E(fα). (12)

Let S be a set consisting of any number of pixels in P and any number of pairs of

neighboring pixels in N . We define E(f |S) to be a restriction of the energy of labeling f to

the set S:

E(f |S) =
∑

p∈S

Dp(fp) +
∑

{p,q}∈S

V (fp, fq).

Let Iα be the set of pixels and pairs of neighboring pixels contained inside Pα. Also, let Bα

be the set of pairs of neighboring pixels on the boundary of Pα and Oα be the set of pixels

and pairs of neighboring pixels contained outside of Pα. Formally,

Iα = Pα ∪ {{p, q} ∈ N : p ∈ Pα, q ∈ Pα},

Bα = {{p, q} ∈ N : p ∈ Pα, q 6∈ Pα},

Oα = (P − Pα) ∪ {{p, q} ∈ N : p 6∈ Pα, q 6∈ Pα}.
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The following three facts hold:

E(fα|Oα) = E(f̂ |Oα), (13)

E(fα|Iα) = E(f ∗|Iα), (14)

E(fα|Bα) ≤ cE(f ∗|Bα). (15)

Equations (13) and (14) are obvious from the definitions in (11) and (10). Equation (15)

holds because for any {p, q} ∈ Bα we have V (fα
p , fα

q ) ≤ cV (f ∗
p , f ∗

q ) 6= 0.

Since Iα ∪ Bα ∪ Oα includes all pixels in P and all neighboring pairs of pixels in N , we

can expand both sides of (12) to get:

E(f̂ |Iα) + E(f̂ |Bα) + E(f̂ |Oα) ≤ E(fα|Iα) + E(fα|Bα) + E(fα|Oα)

Using (13), (14) and (15) we get from the equation above:

E(f̂ |Iα) + E(f̂ |Bα) ≤ E(f ∗|Iα) + cE(f ∗|Bα). (16)

To get the bound on the total energy, we need to sum equation (16) over all labels α ∈ L:

∑

α∈L

(

E(f̂ |Iα) + E(f̂ |Bα)
)

≤
∑

α∈L

(E(f ∗|Iα) + cE(f ∗|Bα)) (17)

Let B =
⋃

α∈L Bα. Observe that for every {p, q} ∈ B, the term V (f̂p, f̂q) = E(f̂ |{p, q})

appears twice on the left side of (17), once in E(f̂ |Bα) for α = f ∗
p and once in E(f̂ |Bα) for

α = f ∗
q . Similarly every V (f ∗

p , f ∗
q ) = E(f ∗|{p, q}) appears 2c times on the right side of (17).

Therefore equation (17) can be rewritten to get the bound of 2c:

E(f̂) + E(f̂ |B) ≤ E(f ∗) + (2c − 1)EB(f ∗) ≤ 2cE(f ∗).

Note that Kleinberg and Tardos [27] develop an algorithm for minimizing E which also has

optimality properties. For the Potts model V discussed in the next section, their algorithm

has a bound of 2. This is the same bound as we obtain in Theorem 6.1 for the Potts model.7

For a general metric V , they have a bound of O(log k log log k) where k is the number of

labels. However, their algorithm uses linear programming, which is impractical for the large

number of variables occurring in early vision.
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Figure 8: The image consists of three pixels P = {1, 2, 3}. There are two pairs of neighbors

N = {{1, 2}, {2, 3}}. The set of labels is L = {a, b, c}. Dp is shown in (c). V (a, b) =

V (b, c) = K
2

and V (a, c) = K. It is easy to see that configuration in (a) is a local minimum

with the energy of K, while the optimal configuration (b) has energy 4.

6.2 Approximating a semi-metric

A local minimum when the swap moves are allowed can be arbitrarily far from the global

minimum. This is illustrated by an example in Fig. 8.

In fact, we can use the expansion algorithm to get an answer within a factor of 2c from the

optimum of energy (1) even when V is a semi-metric. Here c is the same as in Theorem 6.1.

This c is still well defined for a semi-metric. Suppose that penalty V inside the definition of

energy E in (1) is a semi-metric. Let r be any real number in the interval [m, M ] where

m = min
α6=β∈L

V (α, β) and M = max
α6=β∈L

V (α, β).

Define a new energy based on the Potts interaction model

EP (f) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

r · T (fp 6= fq).

Theorem 6.2 If f̂ is a local minimum of EP given the expansion moves and f ∗ is the global

minimum of E(f) then E(f̂) ≤ 2cE(f ∗).

Proof: Suppose f o is the global minimum of EP . Then

r

M
E(f̂) ≤ EP (f̂) ≤ 2EP (f o) ≤ 2EP (f ∗) ≤ 2

r

m
E(f ∗)

where the second inequality follows from Theorem 6.1. Note that c = M/m.

7In fact, it can be shown that any algorithm that is within a factor of 2 for the Potts model is within a

factor of 2c for an arbitrary metric V .
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Thus to find an answer within a fixed factor from the global minimum for a semi-metric

V , one can take a local minimum f̂ given the expansion moves for EP as defined above.

Note that such an f̂ is not a local minimum of E(f) given the expansion moves. In practice

however we find that local minimum given the swap moves gives empirically better results

than using f̂ . In fact, the estimate f̂ can be used as a good starting point for the swap

algorithm. In this case the swap move algorithm will also generate a local minimum whose

energy is within a known factor from the global minimum.

7 The Potts model

An interesting special case of the energy in equation (1) arises when V is given by the Potts

model [35]

EP (f) =
∑

{p,q}∈N

u{p,q} · T (fp 6= fq) +
∑

p∈P

Dp(fp). (18)

Geman et al. [18] were the first to use this model in computer vision. In this case, disconti-

nuities between any pair of labels are penalized equally. This is in some sense the simplest

discontinuity preserving model and it is especially useful when the labels are unordered or

the number of labels is small. The Potts interaction penalty Vp,q = u{p,q} · T (fp 6= fq) is a

metric; in this case c = 1 and our expansion algorithm gives a solution that is within a factor

of 2 of the global minimum. Note that by definition c ≥ 1, so this is the energy function

with the best bound.

Interestingly, the Potts model energy minimization problem is closely related to a known

combinatorial optimization problem called the multiway cut problem. In this section we

investigate this relationship and its consequences. We will first show (Section 7.1) that the

Potts model energy minimization problem can be reduced to the multiway cut problem. More

precisely, we prove that the global minimum of the Potts model energy EP can be computed

by finding the minimum cost multiway cut on an appropriately constructed graph. We prove

(in the appendix) that if we could efficiently compute the global minimum of EP we could

also solve a certain class of multiway cut problems that are known to be NP-hard. This in

turn implies that minimizing EP is NP-hard, and so is minimizing the energy in (1).

The multiway cut problem is defined on a graph G = 〈V, E〉 with non-negative edge

weights, with a set of terminal vertices L ⊂ V. A subset of the edges C ⊂ E is called a

multiway cut if the terminals are completely separated in the induced graph G(C) = 〈V, E−C〉.

We will also require that no proper subset of C separates the terminals in G(C). The cost

of the multiway cut C is denoted by |C| and equals the sum of its edge weights. The

multiway cut problem is to find the minimum cost multiway cut [13]. In [13] they also show
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that the multiway cut problem is NP-complete. Note that the multiway cut problem is a

generalization of the standard two-terminal graph cut problem described in Section 3.3.

7.1 The Potts model and the multiway cut problem

We now show that the problem of minimizing the Potts energy EP (f) can be solved by

computing a minimum cost multiway cut on a certain graph. We take V = P∪L. This means

that G contains two types of vertices: p-vertices (pixels) and l-vertices (labels). Note that

l-vertices will serve as terminals for our multiway cut problem. Two p-vertices are connected

by an edge if and only if the corresponding pixels are neighbors in the neighborhood system

N . The set EN consists of the edges between p-vertices, which we will call n-links. Each

n-link {p, q} ∈ EN is assigned a weight w{p,q} = u{p,q}.

Each p-vertex is connected by an edge to each l-vertex. An edge {p, l} that connects a

p-vertex with a terminal (an l-vertex) will be called a t-link and the set of all such edges will

be denoted by ET . Each t-link {p, l} ∈ ET is assigned a weight w{p,l} = Kp − Dp(l), where

Kp > maxl Dp(l) is a constant that is large enough to make the weights positive. The edges

of the graph are E = EN ∪ ET . Fig. 9(a) shows the structure of the graph G.

It is easy to see that there is a one-to-one correspondence between multiway cuts and

labelings. A multiway cut C corresponds to the labeling fC which assigns the label l to all

pixels p which are t-linked to the l-vertex in G(C). An example of a multiway cut and the

corresponding image partition (labeling) is given in Fig. 9(b).

Theorem 7.1 If C is a multiway cut on G, then |C| = EP (fC) plus a constant.

The proof of theorem 7.1 is given in [11].

Corollary 7.2 If C is a minimum cost multiway cut on G, then fC minimizes EP .

While the multiway cut problem is known to be NP-complete if there are more than 2

terminals, there is a fast approximation algorithm [13]. This algorithm works as follows.

First, for each terminal l ∈ L it finds an isolating two-way minimum cut C(l) that separates

l from all other terminals. This is just the standard graph cut problem. Then the algorithm

generates a multiway cut C = ∪l 6=lmax
C(l) where lmax = arg maxl∈L |C(l)| is the terminal

with the largest cost isolating cut. This “isolation heuristic” algorithm produces a cut which

is optimal to within a factor of 2 − 2
|L|

. However, the isolation heuristic algorithm suffers

from two problems that limits its applicability to our energy minimization problem.

• The algorithm will assign many pixels a label that is chosen essentially arbitrarily.

Note that the union of all isolating cuts ∪l∈LC(l) may leave some vertices disconnected
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Figure 9: An example of the graph G = 〈V, E〉 with terminals L = {1, . . . , k} is given in (a).

The pixels p ∈ P are shown as white squares. Each pixel has an n-link to its four neighbors.

Each pixel is also connected to all terminals by t-links (some of the t-links are omitted from

the drawing for legibility). The set of vertices V = P ∪ L includes all pixels and terminals.

The set of edges E = EN ∪ ET consists of all n-links and t-links. In (b) we show an induced

graph G(C) = 〈V, E−C〉 corresponding to some multiway cut C. A multiway cut corresponds

to a unique partition (labeling) of image pixels.
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from any terminal. The multiway cut C = ∪l 6=lmax
C(l) connects all those vertices to

the terminal lmax.

• While the multiway cut C produced is close to optimal, this does not imply that

the resulting labeling fC is close to optimal. Formally, let us write theorem 7.1 as

|C| = EP (C) + K (the constant K results from the Kp’s, as described in [11]). The

isolation heuristic gives a solution Ĉ such that |Ĉ| ≤ 2|C∗|, where C∗ is the minimum

cost multiway cut. Thus, EP (Ĉ) + K ≤ 2(EP (C∗) + K), so EP (Ĉ) ≤ 2EP (C∗) + K. As

a result, the isolation heuristic algorithm does not produce a labeling whose energy is

within a constant factor of optimal. Note that the K used in the construction given in

[11] is so large that this bound is nearly meaningless.

8 Experimental results

In this section we present experimental results on visual correspondence for stereo, motion

and image restoration. In image restoration we observe an image corrupted by noise. The

task is to restore the original image. Thus the labels are all possible intensities or colors.

The restored intensity is assumed to lie around the observed one, and the intensities are

expected to vary smoothly everywhere except at object boundaries.

In visual correspondence we have two images taken at the same time from different view

points for stereo, and at different times for motion. For most pixels in the first image

there is a corresponding pixel in the second image which is a projection along the line

of sight of the same real world scene element. The difference in the coordinates of the

corresponding points is called the disparity. In stereo the disparity is usually one-dimensional

because corresponding points lie along epipolar lines. In motion the disparity is usually

two-dimensional. Thus for correspondence the label set is a discretized set of all possible

disparities, and the task is to estimate the disparity label for each pixel in the first image.8

Note that here P contains the pixels of the first image. The disparity varies smoothly

everywhere except at object boundaries, and corresponding points are expected to have

similar intensities.

We can formulate the image restoration (Section 8.6) and correspondence problems (Sec-

tions 8.3-8.5) as energy minimization problem of the type in equation (1). We describe our

8This simple approach does not treat the images symmetrically and allows inconsistent disparities. For

example, two pixels in the first image may be assigned to one pixel in the second image. Occlusions are also

ignored. [28] presents a stereo algorithm based on expansion moves that addresses these problems.



IEEE Transactions on PAMI, vol. 23, no. 11, pp. 1222-1239 p.26

data terms Dp(fp) in Section 8.1. We use different interactions Vp,q(fp, fq) and we state them

for each example. Section 8.2 explains static cues that help to set Vp,q’s.

The corresponding energies are minimized using our swap and expansion algorithms given

in Fig. 3. Optimal swap and expansion moves (step 3.1 in Fig. 3) are found by computing

minimum cost cuts on graphs designed in Sections 4 and 5. Our implementation computes

minimum cuts using a new max-flow algorithm [10]. Running times presented below were

obtained on a 333MHz Pentium III.

8.1 Data term

For image restoration our data term is straightforward. Suppose I is the observed image,

and Ip is the intensity observed at pixel p ∈ P. Then Dp(fp) = min(|fp − Ip|2, const), which

says that the restored intensity label fp should be close to the observed intensity Ip. We set

parameter const = 20, and it is used to make the data penalty more robust against outliers,

i.e. pixels which do not obey the assumed noise model. The algorithm is very stable with

respect to const which simply helps to smooth out the few outlying pixels. For example if

we set const to infinity, the results are mostly the same except they become speckled by a

few noisy pixels.

Now we turn to the data term for the stereo correspondence problem. Suppose the first

image is I and the second is I ′. If the pixels p and q correspond, they are assumed to have

similar intensities Ip and I ′
q. However there are special circumstances when corresponding

pixels have very different intensities due to the effects of image sampling. Suppose that the

true disparity is not an integer, and the disparity range is discretized to one pixel accuracy,

as we do here. If a pixel overlaps a scene patch with high intensity gradient, then the

corresponding pixels may have significantly different intensities.

For stereo we use the technique of [6] to develop a Dp that is insensitive to image sampling.

First we measure how well p fits into the real valued range of disparities (d − 1
2
, d + 1

2
) by

Cfwd(p, d) = min
d− 1

2
≤x≤d+ 1

2

|Ip − I ′
p+x|.

We get fractional values I ′
p+x by linear interpolation between discrete pixel values. For

symmetry we also measure

Crev(p, d) = min
p− 1

2
≤x≤p+ 1

2

|Ix − I ′
p+d|.

Cfwd(p, d) and Crev(p, d) can be computed with just a few comparisons. The final measure is

C(p, d) = (min {Cfwd(p, d), Crev(p, d), const})2. We set const = 20 for all experiments, and

its purpose and effect is the same as those described for the image restoration.
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For motion we developed Dp(fp) similar to stereo, except interpolation is done in two

dimensions since labels are now two dimensional. Details are given in [43].

8.2 Static cues

In the visual correspondence there is contextual information which we can take advantage

of. For simplicity we will consider the case of the Potts model, i.e. Vp,q = u{p,q} · T (fp 6= fq).

The intensities of pixels in the first image contain information that can significantly influence

our assessment of disparities without even considering the second image. For example, two

neighboring pixels p and q are much more likely to have the same disparity if we know that

I(p) ≈ I(q). Most methods for computing correspondence do not make use of this kind of

contextual information. Some exceptions include [5, 33, 45].

We can easily incorporate contextual information into our framework by allowing u{p,q}

to vary depending on the intensities Ip and Iq. Let

u{p,q} = U(|Ip − Iq|). (19)

Each u{p,q} represents a penalty for assigning different disparities to neighboring pixels p and

q. The value of the penalty u{p,q} should be smaller for pairs {p, q} with larger intensity

differences |Ip − Iq|. In practice we found the following simple function to work well:

U(|Ip − Iq|) =











2K if |Ip − Iq| ≤ 5

K if |Ip − Iq| > 5
(20)

Here K is the Potts model parameter. Note that instead of (19) we could also set the

coefficients u{p,q} according to an output of an edge detector on the first image. For example,

u{p,q} can be made small for pairs {p, q} where an intensity edge was detected and large

otherwise. Segmentation results can also be used.

The following example shows the importance of contextual information. Consider the pair

of synthetic images below, with a uniformly white rectangle in front of a black background.

First image Second image

There is a one pixel horizontal shift in the location of the rectangle, and there is no noise.

Without noise, the problem of estimating f is reduced to minimizing the smoothness term

Esmooth(f) under the constraint that pixel p can be assigned disparity d only if Ip = I ′
p+d.
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If u{p,q} is the same for all pairs of neighbors {p, q} then Esmooth(f) is minimized at one

of the labeling shown in the picture below. Exactly which labeling minimizes Esmooth(f) de-

pends on the relationship between the height of the square and the height of the background.

Suppose now that the penalty u{p,q} is much smaller if Ip 6= Iq than it is if Ip = Iq. In

this case the minimum of Esmooth(f) is achieved at the disparity configuration shown in the

picture below. This result is much closer to human perception.

d=0

d=1

Static cues help mostly in areas of low texture. Application on real images show that the

static cues give improvement, but not as extreme as the example above. See Section 8.3 for

the improvements that the static cues give on real images.

8.3 Real stereo imagery with ground truth

In Fig. 10 we show results from a real stereo pair with known ground truth, provided by

Dr. Y. Ohta and Dr. Y. Nakamura from the University of Tsukuba. The left image is in

Fig. 10(a), and the ground truth is in Fig. 10(b). The maximum disparity for this stereo pair

is 14, so our disparity label set is {0, 1, . . . , 14}. The ground truth image actually has only 7

distinct disparities. The objects in this scene are fronto-parallel to the camera, so the Potts

model, i.e. Vp,q(fp, fq) = u{p,q} · T (fp 6= fq) works well. Since there are textureless regions in

the scene, the static cues help, and the coefficients u{p,q} are given by equations (19) and (20).

We compared our results against annealing and normalized correlation. For normalized

correlation we chose parameters which give the best statistics. We implemented several dif-

ferent annealing variants, and used the one that gave the best performance. This was the

Metropolis sampler with a linearly decreasing temperature schedule. To give it a good start-

ing point, simulated annealing was initialized with the results from normalized correlation.

In contrast for our algorithms the starting point is unimportant. The results differ by less

than 1% of image pixels from any starting point that we have tried. We also run 100 tests

with randomly generated initial labelings. Final solutions produced by our expansion and
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(a) Left image: 384x288, 15 labels (b) Ground truth

(c) Swap algorithm (d) Expansion algorithm

(e) Normalized correlation (f) Simulated annealing

Figure 10: Real imagery with ground truth
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Figure 11: Energy versus time (in seconds) of expansion, swap, and simulated annealing

algorithms for the problem in Fig. 10(a). Starting energy is equal for all algorithms.

swap algorithms had the average energy of 252, 157 and 252, 108, correspondingly, while the

standard deviations were only 1308 and 459.

Figs. 10(c), and (d) show the results of the swap and expansion algorithms for K =

20, where K is the parameter in equation (20). Figs. 10(e) and (f) show the results of

normalized correlation and simulated annealing. Comparisons with other algorithms can

be found in [40]. Note, however, that [40] confirms that for this imagery the best previous

algorithm is simulated annealing, which outperforms (among others) correlation, robust

estimation, scanline-based dynamic programming, and mean-field techniques.

The table below summarizes the errors made by the algorithms. In approximately 20

minutes simulated annealing reduces the total errors normalized correlation makes by about

one fifth and it cuts the number of ±1 errors in half. It makes very little additional progress

in the rest of 4 hours. Our expansion and swap algorithms make approximately 5 times fewer

±1 errors and approximately 3 times fewer total errors compared to normalized correlation.

The expansion and swap algorithms perform similarly to each other. The observed dif-

ference in errors is insignificant, less than 1%. At each cycle the order of labels to iterate

over is chosen randomly. Another run of the algorithm might give slightly different results,

and on average about 1% of pixels change their labels between different runs. The expansion
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algorithm % total errors % of errors > ±1 time

expansion algorithm (after iteration) 7.9 2.7 8 sec
expansion algorithm (at convergence) 7.2 2.1 25 sec
expansion algorithm (no static cues) 7.6 2.5 25 sec
swap algorithm (at convergence) 7.0 2.0 35 sec
simulated annealing 20.3 5.0 1200 sec
normalized correlation 24.7 10.0 2 sec

Figure 12: Comparison of accuracy and running times.

algorithm total E Esmooth Edata

expansion algorithm 253,700 157,740 95,960
swap algorithm 251,990 158,660 93,330
simulated annealing 442,000 332,100 109,900

Figure 13: Energies at convergence for our algorithms and simulated annealing.

algorithm converges 1.4 times faster than the swap algorithm, on average.

Fig. 11 shows the graph of Esmooth versus time (in seconds) for our algorithms and sim-

ulated annealing. Note that the time axis is on a logarithmic scale. We do not show the

graph for Edata because the difference in the Edata among all algorithms is insignificant, as

expected from the following argument. Most pixels in real images have nearby pixels with

similar intensities. Thus for most pixels p there are several disparities d for which Dp(d)

is approximately the same and small. For the rest of d’s, Dp(d) is quite large. This latter

group of disparities is essentially excluded from consideration by energy minimizing algo-

rithms. The remaining choices of d are more or less equally likely. Thus the Edata term of

the energy function has very similar values for our methods and simulated annealing. Our

methods quickly reduce the smoothness energy to around 160, 000, while the best simulated

annealing can produce in 4 hours is around 330, 000, which is twice as bad. The expansion

algorithm gives a convergence curve significantly steeper than the other curves. In fact the

expansion algorithm makes 99% of the progress in the first iteration which takes 8 seconds.

Final energies are given in Fig. 13.

Static cues help in the upper right textureless corner of the image. Without the static

cues, a corner of size approximately 800 pixels gets broken off and is assigned to the wrong

disparity. This is reflected in the error count shown in Fig. 12, which worsens without the

static cues. The percentage improvement may not seem too significant, however visually it

is very noticeable, since without the static cues a large block of pixels is misplaced. We omit

the actual image due to space constraints.
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K % of total errors % of errors > ±1 Absolute average error

5 13.0 4.5 0.27
10 7.0 2.3 0.15
20 7.6 2.1 0.15
30 7.9 2.3 0.17
50 8.8 2.3 0.18
100 10.4 2.9 0.21
500 16.3 8.2 0.37

Figure 14: Table of errors for the expansion algorithm for different values of K.

# labels 1 iteration convergence % of total errors % of errors > ±1

15 8 sec 27 sec 7.3 2.1
30 19 sec 78 sec 7.5 2.3
45 25 sec 78 sec 7.9 2.5
60 31 sec 101 sec 7.4 2.4
75 35 sec 122 sec 8.3 2.3

Figure 15: Dependence of the running time and accuracy on different number of labels

(disparities) for the expansion algorithm. Error percentages are given at the convergence.

The only parameter of the this energy function is K in equation (20). The algorithms

appear stable in the choice of K. The table in Fig. 14 gives the errors made by the ex-

pansion algorithm for different K’s. For small K there are many errors because the data

term is overemphasized, for large K there are many errors because the smoothness term is

overemphasized. However for a large interval of K values the results are good.

Another important test is to increase the number of labels and evaluate the effects on the

running time and the accuracy of our algorithms. Fig. 15 summarizes the test results for the

expansion algorithm (those for the swap algorithm are similar). The first column shows the

number of integer disparities that we use. The second and third columns show the time it

took to complete one iteration and to converge, correspondingly. The last two columns give

the error counts at convergence. The second and third columns confirm that the running

time is linear on average. Note that the number of cycles to convergence varies, explaining

higher variability in the third column. The last two columns show that the accuracy worsens

slightly with the increase in the number of labels.
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(a) Left image: 256x233, 29 labels (b) Piecewise constant model (c) Piecewise smooth model

Figure 16: Tree stereo pair.

(a) First image, 352x240, 8 labels (b) Horizontal movement

Figure 17: Flower garden sequence

8.4 SRI tree stereo pair

In the SRI stereo pair whose left image is shown in Fig. 16(a) the ground is a slanted surface,

and therefore a piecewise constant model (Potts model) does not work as well. For this image

pair, we choose Vp,q(fp, fq) = 15 ·min(3, |fp − fq|), which is a piecewise smooth model. It is a

metric and so we use the expansion algorithm for minimization. This scene is well textured,

so static cues are not used. Fig. 16(b) and (c) compares the results of minimizing with the

Potts and piecewise smooth model. The running times to convergence are 94 seconds and

79 seconds respectively. Notice that there are fewer disparities found in Fig. 16(b), since the

Potts model tends to produce large regions with the same disparity.
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(a) First image: 256x223, 40 labels (b) Horizontal movement (c) Vertical movement

Figure 18: Moving cat

8.5 Motion

Fig. 17 shows the output from the well-known flower garden sequence. Since the camera

motion is nearly horizontal, we have simply displayed the camera motion. The motion in

this sequence is large, with the foreground tree moving 6 pixels in the horizontal direction.

We used the Potts model in this example because the number of labels is small. This image

sequence is relatively noisy, so we took K = 80. Determining the motion of the sky is a very

hard problem in this sequence. Even static cues do not help, so we didn’t use them. The

running time is 15 seconds to convergence.

Fig. 18(a) shows one image of a motion sequence where a cat moves against moving

background. The motion is large, with maximum horizontal displacement of 4 pixels and

maximum vertical displacement of 2 pixels. We tested 8 horizontal and 5 vertical displace-

ments, thus the label set has size 40. This is a difficult sequence because the cat’s motion is

non-rigid. The scene is well-textured, so the static cues are not used. In this case we chose

Vp,q(fp, fq) = 40 ·min(8, (fh
p −fh

q )2 +(f v
p −f v

q )2), where fh
p and f v

p are horizontal and vertical

components of the label fp (recall that the labels have two dimensions for motion). This is

not a metric, so we used the swap algorithm for minimization. Figs. 18(b) and (c) show the

horizontal and vertical motions detected with our swap algorithm. Notice that the cat has

been accurately localized. Even the tail and parts of the legs are clearly separated from the

background motion. The running time was 24 seconds to convergence.

8.6 Image Restoration

In this section we illustrate the importance of discontinuity preserving energy functions

on the task of image restoration. Fig. 19 shows image consisting of several regions with
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(a) noisy image (b) truncated abs. diff. (c) abs. diff.

Figure 19: Image restoration. The results in (b,c) are histogram equalized to reveal over-

smoothing in (c), which does not happen in (b).

constant intensities after it was corrupted by N(0, 100) noise. Fig. 19(b) shows our image

restoration results for the truncated absolute difference model V (fp, fq) = 80·min(3, |fp−fq|),

which is discontinuity preserving. Since it is a metric, we used the expansion algorithm.

For comparison, Fig. 19(c) shows the result for the absolute difference model V (fp, fq) =

15 · |fp− fq|, which is not discontinuity preserving. For the absolute difference model we can

find the exact solution using the graph-cut method in [37, 24, 11]. For both models we chose

parameters which minimize the average absolute error from the original image intensities.

These average errors were 0.34 for the truncated and 1.8 for the absolute difference model,

and the running times were 38 and 237 seconds, respectively. The results in Fig. 19(b,c) were

histogram equalized to reveal oversmoothing in (c), which does not happen in (b). Similar

oversmoothing for the absolute difference model occurs in stereo, see [43, 7].

9 Conclusions

We consider a wide class of energy functions with various discontinuity preserving smooth-

ness constraints. While it is NP-hard to compute the exact minimum, we developed two

algorithms based on graph cuts that efficiently find a local minimum with respect to two

large moves, namely α-expansion and α-β-swap. Our α-expansion algorithm finds a labeling

within a known factor of the global minimum, while our α-β-swap algorithm handles more

general energy functions. Empirically, our algorithms performs well on a variety of computer

vision problems such as image restoration, stereo, and motion. We believe that combinato-

rial optimization techniques, such as graph cuts, will prove to be powerful tools for solving

many computer vision problems.
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Appendix: Minimizing the Potts energy is NP-hard

In Section 7 we showed that the problem of minimizing the energy in equation (18) over

all possible labelings f can be solved by computing a minimum multiway cut on a certain

graph. Now we make the reduction in the opposite direction. Let EP (f) denote the energy

in equation (18). For an arbitrary fixed graph G = 〈V, E〉 we will construct an instance of

minimizing EP (f) where the optimal labeling f ∗ determines a minimum multiway cut on G.

This will prove that a polynomial-time method for finding f ∗ would provide a polynomial-

time algorithm for finding the minimum cost multiway cut, which is known to be NP-hard

[13]. This NP-hardness proof is based on a construction due to Jon Kleinberg.

The energy minimization problem we address takes as input a set of pixels P, a neighbor-

hood relation N and a label set L, as well as a set of weights u{p,q} and a function Dp(l). The

problem is to find the labeling f ∗ that minimizes the energy EP (f) given in equation (18).

Let G = 〈V, E〉 be an arbitrary weighted graph with terminal vertices {t1, . . . , tk} ⊂ V

and edge weights w{p,q}. We will do the energy minimization using P = V, N = E , and

u{p,q} = w{p,q}. The label set will be L = {1, . . . , k}. Let K be a constant such that

K > EP (f ∗); for example, we can select K to be the sum of all w{p,q}. Our function Dp(l)

will force f ∗(tj) = j; if p = tj is a terminal vertex,

Dp(l) =
{

0 l = j,

K otherwise.

For a non-terminal vertex p we set Dp(l) = 0 for all l, which means all labels are equally

good. We define a labeling f to be feasible if the set of pixels labeled j by f forms a

connected component that includes tj. Feasible labelings obviously correspond one-to-one

with multiway cuts.

Theorem 9.1 The labeling f ∗ is feasible, and the cost of a feasible labeling is the cost of the

corresponding multiway cut.

Proof: To prove that f ∗ is feasible, suppose that there were a set S of pixels that f ∗

labeled j which were not part of the component containing tj. We could then obtain a

labeling with lower energy by switching this set to the label of some pixel on the boundary

of S. The energy of a feasible labeling f is
∑

{p,q}∈N u{p,q} ·T (f(p) 6= f(q)), which is the cost

of the multiway cut corresponding to f .

This shows that minimizing the Potts model energy EP (f) on an arbitrary P and N is

intractable. It is possible to extend this proof to the case when P is a planar grid, see [43].
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