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Linear and Incremental Acquisition of Invariant
Shape Models from Image Sequences

Daphna Weinshall and Carlo Tomasi

Abstract—

We show how to automatically acquire a Euclidean shape
representations of objects from noisy image sequences under
weak perspective. The proposed method is linear and incre-
mental, requiring no more than pseudo-inverse. A nonlinear
but numerically sound preprocessing stage is added to im-
prove the accuracy of the results even further. Experiments
show that attention to noise and computational techniques
improve the shape results substantially with respect to pre-
vious methods proposed for ideal images.

Keywords— Structure from motion, linear reconstruction,
factorization method, affine shape, Euclidean shape, weak
perspective, Gramian, affine coordinates.

1 Introduction

In model-based recognition, images are matched against
stored libraries of three-dimensional object representations,
so that a good match implies recognition of the object.
The recognition process is greatly simplified if the quality
of the match can be determined without camera calibra-
tion, namely, without having to compute the pose of each
candidate object in the reference system of the camera.
For this purpose, three-dimensional object representations
have been proposed [15] that are invariant with respect
to similarity transformations, that is, rotations, transla-
tions, and isotropic scaling. These are exactly the trans-
formations that occur in the weak perspective projection
model, where images are scaled orthographic projections
of rotated and translated objects. Because of its linearity,
weak perspective strikes a good balance between mathe-
matical tractability and model generality.

In this paper, we propose a method for acquiring a Eu-
clidean representation from a sequence of images of the
objects themselves. Automatic acquisition from images
avoids the tedious and error prone process of typing three-
dimensional coordinates of points on the objects, and makes
expensive three-dimensional sensors such as laser rangefind-
ers unnecessary. However, model recognition techniques
such as geometric hashing have been shown [2] to produce
false positive matches with even moderate levels of error
in the representations or in the images. Consequently, we
pay close attention to accuracy and numerical soundness of
the algorithms employed, and derive a computationally ro-
bust and efficient counterpart to the schemes that previous
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papers discuss under ideal circumstances.

To be sure, several systems have been proposed for com-
puting depth or shape information from image sequences.
For instance, [14, 9] identify the minimum number of points
necessary to recover motion and structure from two or three
frames, [1] recovers depth from many frames when motion
is known, [8] considers restricted or partially known mo-
tion, [12] solves the complete multiframe problem under
orthographic projection, and [5] proposes multiframe solu-
tions under perspective projection.

Conceivably, one could use one of these algorithms to
determine the complete three-dimensional shape and pose
of the object in a Euclidean reference system, and process
the results to achieve similarity invariance. However, a Eu-
clidean representation is weaker than a full representation
with pose, since it does not include the orientation of the
camera relative to the object. Consequently, the invariant
representation contains less information, and ought to be
easier to compute. This intuition is supported by experi-
ments with complete calibration and reconstruction algo-
rithms, which, given a good initial guess of the shape of the
object, spend a large number of iterations modifying the
parameters of the calibration and pose matrices, without
affecting the shape by much!.

In this paper we show that this is indeed the case. (We
assume weak perspective projection.) Specifically, we com-
pute a similarity-invariant (Euclidean) representation of
shape both linearly and incrementally from a sequence of
weak perspective images. This is a very important gain.
In fact, a linear multiframe algorithm avoids both the in-
stability of two- or three-frame recovery methods and the
danger of local minima that nonlinear multiframe meth-
ods must face. Moreover, the incremental nature of our
method makes it possible to process images one at a time,
moving away from the storage-intensive batch methods of
the past.

Our acquisition method is based on the observation that
the trajectories that points on the object form in weak
perspective image sequences can be written as linear com-
binations of three of the trajectories themselves, and that
the coefficients of the linear combinations represent shape
in an affine-invariant basis. This result is closely related
to, but different from, the statement that any image in the
sequence is a linear combination of three of its images [13].

In this paper, we also show that the optional addition of
a nonlinear but numerically sound stage, which selects the

1B. Boufama, personal communication.
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most suitable basis trajectories, improves the accuracy of
the representation even further. This leads to an image-
to-model matching criterion that better discriminates be-
tween new images that depict the model object and those
that do not. In order to compare our method to existing
model acquisition (or structure from motion) methods, we
describe a simple transformation, by which we compute
a depth representation from the Euclidean representation
computed by our algorithm.

In the following, we first define the weak perspective
imaging model (Section 2). We review the Euclidean shape
representation and the image-to-model matching measure
(Section 3). We then introduce our linear and incremen-
tal acquisition algorithm, as well as the nonlinear prepro-
cessing procedure (Section 4). Finally, we evaluate per-
formance with some experiments on real image sequences
(Section 5).

2 Multiframe Weak Perspective

Under weak perspective, a point p, = (X, Yn, Z,)? on
an object can be related to the corresponding image point
Wmn = (Emn, Mmn)? in frame m by a scaling, a rotation, a
translation, and a projection:

where R, is an orthonormal 3 x 3 matrix, tym is a three-
dimensional translation vector, s,, is a scalar, and II is the
orthographic projection operator that simply selects the
first two rows of its argument. The two components of
W,,n are thus:

gmn = Smig;pn + Gy, Nmn = Smjg;pn + bm (2)

where the orthonormal vectors il , j are the first two rows
of R,,, and a,,, b,, are the first two components of ty.
In a sequence of images, feature points can be extracted
and tracked (see, e.g., [11]). If N points are tracked in M

frames, the equations (2) are repeated M N times, and can
be written in matrix form as follows:

iT
£11 an Sl.l a
el ond .
s =] Lo e[ [ L]
an“'ﬂMN . bM
smliy
that is,
W =RP+t17 (3)

where 1 is a vector of N ones. Thus, W collects the im-
age measurements, R represents both scaling and rotation
in the M frames, P is shape, and t is translation. In Sec-
tion 4, we show that R and P need not in fact be computed
explicitly in order to compute a Euclidean representation.

3 Review of the Euclidean Repre-
sentation

Starting with Eq. (3) as a multiframe imaging model, we
now describe how to define a shape representation that is
invariant with respect to similarity transformations, that
is, rigid transformations and isotropic scaling [15]. Specifi-
cally, we work towards similarity invariance in three steps:

1. invariance to translation: we use the centroid of the
points as a reference origin in the coordinate system
where P is described. We translate W accordingly,
obtaining the matrix of centered image measurements

W. Eq. (3) becomes
W = RP . (4)

2. invariance to affine transformations (Section 3.1);
3. invariance to similarity transformations (Section 3.2).

For performance evaluation only, we will also discuss the

4. computation of depth (Section 3.3).

3.1 Affine Transformation Invariance

The M x 3 matrix R in Eq. (4) is built from 3 x 3 orthonor-
mal matrices and isotropic scaling factors (see Eq. (2)).
Therefore corresponding rows in the upper and lower halves
of R (that is, rows m and m+ M for m =1,..., M) must
be mutually orthogonal and have the same norm s,,. If
these orthogonality constraints are satisfied, we say that R,
t represent full Euclidean motion, and the corresponding
P represents Euclidean shape. In particular, the columns
of P are the three-dimensional coordinates of the object
points with respect to some orthonormal reference basis.

Invariance with respect to affine transformations is achieved

by replacing this basis by one that is more intimately re-
lated to the shape of the object. Specifically, the basis is
made by three of the object points themselves, that is, by
the vectors from the reference origin to the three points, as-
sumed not to be coplanar with the origin. This basis is no
more orthonormal. The new coordinates were called affine
in [7]. If now the object undergoes some affine transforma-
tion, so do the basis points, and the affine coordinates of
the N object points do not change.

The choice of the three basis points can be important. In
fact, the requirement that the points be noncoplanar with
the origin is not an all-or-nothing proposition. Four points
can be almost coplanar, and with noisy data this is almost
as bad as having ezactly coplanar points. We discuss this
issue in Section 4, where we propose a method that selects
a basis as far away as possible from being coplanar with
the origin.

Notice that in the new affine basis the three selected basis
points have coordinates (1,0,0), (0,1,0), and (0,0, 1), so
that the new 3 x NV matrix A of affine coordinates is related
to the Euclidean matrix P of Eq. (4) by the 3 x 3 linear
transformation:

PA=P (5)
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where Py, = [p; p; px] is the submatrix of P that collects
the three selected basis points.
If we substitute Eq. (5) into Eq. (4), we obtain

W =W;A (6)

where Wi = RP;,. However, because the submatrix 4; =
[a; a; ag)] is the identity matrix, we see that W3 is a sub-
matrix of W:

Wb:[wi w; Wk]

In more geometric terms, Eq. (6) expresses the following
key result:

all the image trajectories (W) of the object points
can be written as a linear combination of the im-
age trajectories (W) of three of the points. The
coefficients (A) of the linear combinations are the
three-dimensional coordinates of the correspond-
ing points in space in the affine three-dimensional
basis of the points themselves.

Notice the analogy and difference between this result and
the statement, made in [13], that under weak perspective
any image of an object is a linear combination of three of its
views. We are saying that any trajectory is a linear combi-
nation of three trajectories, while they are saying that any
snapshot is a linear combination of three snapshots. The
concise matrix equation in (6) contains these two state-
ments in a symmetric form: Ullman and Basri read the
equation by rows, we read it by columns.

3.2 Similarity Invariance

To achieve invariance with respect to similarity transfor-
mations, we augment the affine representation introduced
above with metric information about the three basis points.
Of course, we cannot simply list the coordinates of the three
basis points in a fixed reference system, since these coordi-
nates would not be invariant with respect to rotation and
scaling. Instead, we introduce the Gramian matrix of the
three basis points, defined as follows [15]:

pgpi pgpj pépk
G= P Pi PPj PP |- (7
Pr.P:i PpP; PiPk

In Section 4.2 we normalize G to make it invariant to scal-
ing.

The Gramian is a symmetric matrix, and is defined in
terms of the Fuclidean coordinates of the basis points.
However, we show in Section 4 that G can be computed
linearly from the images, without first computing the depth
or pose of the object.

The pair of matrices (A, G) is our target representation.
We next show constructively that the pair (A4, G) contains
complete information about the object’s shape, but not
directly about its pose in each image.

3.3 Depth Map

Determining the depth of the object requires to express
its shape in an orthonormal system of reference, that is,
to compute the matrix P of Eq. (4). We now show that
the shape Gramian G of Eq. (7) contains all the necessary
information. In fact, let W3 be the matrix of the basis
trajectories introduced in Eq. (6), and let P be the co-
ordinates of the corresponding basis points in space in an
orthonormal reference system (see Eq. (5)). Then, the def-
inition (7) of the Gramian can be rewritten as

G=P/P;. (8)

Suppose now that 7" is the Cholesky factor of the Gramian
G. We recall that the Cholesky factor of a symmetric posi-
tive definite matrix G is the unique upper triangular matrix
T with positive diagonal entries such that

G=T1"T. (9)

Eq. (8) and Eq. (9) are formally similar factorizations of
G. We claim that Py can differ from 7" only by a rotation
or a mirror transformation, so that T is in fact the repre-
sentation of the three selected basis points on the object in
an orthonormal frame of reference. The projection equa-
tion (4) does not specify the particular orientation of the
orthonormal axes of the underlying reference system, so P
and T can be taken to be the same matrix up to mirror
transformation: P, = 7.

In summary, we have the following method for comput-
ing the shape matrix P of Eq. (4): determine the Gramian
G by the linear method of Section 4, take its Cholesky
factorization T' = Py, and let T" be the transformation of
the affine shape matrix A into the new orthonormal basis.
Namely:

P=TA

Notice that the three basis points ¢, j, k&, whose coordi-
nates in A are the identity matrix, are transformed into
the columns of T

We emphasize once more that this last decomposition
stage need not be performed for the computation of the
Euclidean shape representation. Furthermore, this stage
can fail in the presence of noise. In fact, the matrix G can
be Cholesky-decomposed only if it is positive definite. Bad
data can cause this condition to be violated.

3.4 Relations governing the representations

Once the Euclidean representation (A, G) has been deter-
mined from a given sequence of images, it can be used on
new, unfamiliar views to determine whether they contain
the object represented by (A4, G). In fact, from Eq. (4) and
Eq. (8) we obtain

WyG=*W! = RPy(PI Py)"'PI'RT = RRT .

If we write out the relevant terms of this equation, we have

Vm:

yTEG_lym = Srzn (10)
x2 G ly, = 0

T -1 _
X, GT Xy =
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where the vectors x2, = (Zm1, Zm2, Tm3) and

Y = (Ym1, Ym2, Ym3) are the rows of the upper and lower

half of the centered image measurement matrix W3. Namely,
X, and y,, are the centered image measurement of the ba-

sis points in frame m.

Eq. (10) provides strong constraints, capturing all the in-
formation that can be obtained from a single image, since
all the images that satisfy Eq. (10) are a possible instance of
the object represented by G. The two equations in Eq. (10)
can be used in two ways: during recognition, the given G
can be used to check whether new image measurements x|
yL represent the same three basis points as in the famil-
iar views, thus yielding a key for indexing into the object
library. During acquisition of the shape representation, on
the other hand, G is the unknown, and Eq. (10) can be
solved for G.

4 The Algorithm

In this section, we show how to compute the affine shape
matrix A (Section 4.1) and the Gramian G of the basis
points (Section 4.2) linearly and incrementally from a se-
quence of images. We then show how to choose three good
basis points 7, j, k (Section 4.3). This algorithm can use as
little as two frames and five points for computing matrix
A, and as little as three frames and four points for comput-
ing matrix G. More data can be added to the computation
incrementally, if and when available.

4.1 The Affine Shape Matrix

The affine shape matrix A is easily computed as the so-
lution of the overconstrained linear system (6), which we
repeat for convenience: W = Wy A. Recall that W is the
matrix of centered image measurements, and Wj is the ma-
trix of centered image measurements of the basis points.

It is well known from the literature of Kalman filtering
that linear systems can be solved incrementally one row at
a time. The idea is to realize that the expression for the
solution

A=Wirw
where Wb+ is the pseudoinverse of Wj:
Wb = Wi wy)~twy

is composed of two parts whose size is independent of the
number of image frames, namely, the so-called covariance
matrix

Q=W W)~
of size 3 x 3, and the 3 x M matrix
S=wlw.

Both @ and S can be updated incrementally every time
a new row w’ is added to W (so the corresponding row
wa is also added to W;). Specifically, the matrices @4 and

St after the update are given by

Qwyw!
= (] - "W
Q+ ( 1 + WbTQWb )Q
Sy = S+wyw!

where [ is the 3 x 3 identity matrix. For added efficiency,
this pair of equations can be manipulated into the following
update rule for A:

Qwy

Ay = A+ —————
+ +1—|—wawa

(WT — WbTA) .
Note that the computation of A requires at least two
frames.

4.2 The Gramian

For each frame m, the two equations in (10) define linear
constraints on the entries of the inverse Gramian H = G,
so H can be computed as the solution of a linear system.
This system, however, is homogeneous, so H can only be
computed up to a scale factor.

To write this linear system in the more familiar form
Ch = 0, we first notice that H is a symmetric 3 x 3 matrix,
so it has six distinct entries h;;, 1 <7 < j < 3. Let us
gather those entries in the vector

h = [hll h12 h13 h22 h23 h33 ]T .

Furthermore, given two 3-vectors a and b, define the oper-
ator

z7(a,b)=[a1by arby + azby arbs +asby asby asbz + asby asbsl.

Then, the equations in (10) are readily verified to be equiv-
alent to the 2M X 6 system

Ch=0 (11)
where
ZT(X1,X1) - ZT(Yl,)ﬁ)

2! (xar,x0) — 27 (ym, ym)
ZT(XlaY1)

L ZT(XMayM) |

A unit norm solution to this linear system is reliably and
efficiently obtained from the singular value decomposition

of C' = UcEch as
h=vcs,

the sixth column of V. Because this linear system is over-
constrained as soon as M > 3, the computation of H, and
therefore of the Gramian G = H~!, can be made insensi-
tive to noise if sufficiently many frames are used. Notice
that the fact that the vector h has unit norm automatically
normalizes the Gramian.
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Alternatively, in order to obtain an incremental algo-
rithm for the computation of the Gramian G, Eq. (11) can
be solved with pseudo-inverse. (The incremental imple-
mentation of pseudo-inverse was discussed in Section 4.1.)
However, the method of choice for solving homogeneous lin-
ear systems, which avoids rare singularities, is the method
outlined above using SVD.

4.3 Selecting a Good Basis

The computation of the Euclidean representation (A, G) is
now complete. However, no criterion has yet been given
to select the three basis points 7, j, k. The only require-
ment so far has been that the selected points should not
be coplanar with the origin. However, a basis can be very
close to coplanar without being strictly coplanar, and in
the presence of noise this is almost equally troublesome.

To make this observation more quantitative, we define a
basis to be good if for any vector v the coordinates a in
that basis do not change much when the basis is slightly
perturbed. Quantitatively, we can measure the quality of
the basis by the norm of the largest perturbation of a that
is obtained as v ranges over all unit-norm vectors. The
size of this largest perturbation turns out to be equal to
the condition number of Wy, that is, to the ratio between
its largest and smallest singular values.

The problem of selecting three columns W of W that
are as good as possible in this sense is known as the subset
selection problem in the numerical analysis literature. In
the following, we summarize the standard solution to this
problem:

1. compute the singular value decomposition of W, W =
vy’

2. apply QR factorization with column pivoting to the
right factor V7, VT = QRHT

The first three columns of the permutation matrix II are
all zero, except for one entry in each column, which is equal
to one. The row subscripts of those three nonzero entries
are the desired subscripts ¢, j, k.

The rationale of this procedure is that singular value
decomposition preconditions the shape matrix, and then
QR factorization with column pivoting brings a well con-
ditioned submatrix in front of QR

Although heuristic in nature, this procedure has proven
to work well in all the cases we considered (see analysis of
real sequences in [16]). Both the singular value decompo-
sition and the QR factorization of a M x N matrix can
be performed in time O(M N?), so this heuristical algo-
rithm is much more efficient than the O(M N?3) brute-force
approach of computing the condition numbers of all the
possible bases.

4.4 Summary of the Algorithm

The following steps summarize the algorithm for the ac-
quisition of the Euclidean representation (A4, G) from a se-
quence W of images under weak perspective (see Eq. (3)).

1. Center the measurement matrix with respect to one of
its columns or the centroid of all its columns:

wW=w-—+t17

where t is either the first column of W or the average
of all its columns.

2. (optional) Find a good basis ¢, j, k for the columns of
W as follows:

(a) compute the singular value decomposition of W,
wW=vuxvT

(b) apply QR factorization with column pivoting to
the right factor V7, VT = QRII”

The row subscripts of the three nonzero entries in the
first three columns of II are i, j, k. These are the
indices of the chosen basis points.

3. Compute the solution A to the overconstrained system
W = Wy A by adding one row at a time. Specifically,
initialize A to a 3 x N matrix of zeros. Let w” be a
new row, let wa collect entries i, j, k of w, and let
Q = (WIW,)~1. The matrix A is updated to

Qwy

Ay =A+ —————
+ +1—|—WbTQWb

(WT — waA) .
4. Determine the Gramian G as follows:

(a) construct the 2M x 6 matrix

ZT(X1,X1)—ZT()’1;Y1)

2 (xpr, x01) — 25 (Y, ym)
ZT(Xl,h)

7l (XM ) YM)
where

z7(a,b) = [a1b1 a1by + asby aybs + asby asby azbs + azby asbs];

(b) solve the system
Ch=0
which yields the distinct entries of the symmetric

matrix H. Compute G as the inverse of H.

In order to compute a depth map P from the Euclidean
representation (A, ), another optional step is added to
the algorithm:

5. (optional) Take the Cholesky factorization of matrix
G = TTT, and let T be the transformation of the
affine shape matrix A into an orthonormal basis:

P=TA
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5 Experiments

We applied our algorithm, including the depth computa-
tion, to two sequences of images, originally taken by Rakesh
Kumar and Harpreet Singh Sawhney at UMASS-Amherst
(see Fig. 1). The data was provided by J. Inigo Thomas
from UMass, who also provided the solution to the corre-
spondence problem (namely, a list of the coordinates of the
tracked points in all the frames).

Figure 1: (a) One frame from the box sequence, (b) one
frame from the room sequence.

For comparison, we received the 3D coordinates of the
points in the first frame as ground truth. We used the al-
gorithm described in [3] to compute the optimal similarity
transformation between the invariant depth map represen-
tation computed by our algorithm (step 5), and the given
data in the coordinate system of the first frame. We ap-
plied the transformation to our depth reconstruction to
obtain z.s; at each point, and compared this output with
the ground truth data z,.q;. We report the relative error
at each point, namely, %

We evaluated the affine shape reconstruction separately.
We computed the optimal affine transformation between
the invariant affine representation computed by our algo-
rithm (matrix A computed in step 3), and the given depth
data in the coordinate system of the first frame. We ap-
plied the transformation to the affine shape representation

to obtain z?sftf at each point, and compared this output

with the ground truth data z,.q4;.

5.1 Box sequence:

This sequence includes 8 images of a rectangular chequered
box rotating around a fixed axis (one frame is shown in
Fig. la). 40 corner-like points on the box were tracked. The
depth values of the points in the first frame ranged from
550 to 700 mms, therefore weak perspective provided a
good approximation to this sequence. (See a more detailed
description of the sequence in [10] Fig. 5, or [6] Fig. 2.)

We compared the relative errors of our algorithm to the
errors reported in [10]. Three results were reported in [10]
and copied to Table 1: column “Rot.” — depth computation
with their algorithm, which assumes perspective projection
and rotational motion only; column “2-frm” — depth com-
putation using the algorithm described in [4], which uses
2-frames only; and column “2-frm, Ave.” — depth com-
putation using the 2-frames algorithm, where the depth
estimates were averages over six pairs of frames. Table 1
summarizes these results, as well as the results using our
affine algorithm (column “Aff. Invar.”) and similarity al-
gorithm (column “Rigid Invar.”).

5.2 Room sequence

This sequence, which was used in the 1991 motion work-
shop, includes 16 images of a robotic laboratory, obtained
by rotating a robot arm 1207 (one frame is shown in Fig. 1b).
32 corner-like points were tracked. The depth values of the
points in the first frame ranged from 13 to 33 feet, therefore
weak perspective does not provide a good approximation
to this sequence. Moreover, a wide-lens camera was used,
causing distortions at the periphery which were not com-
pensated for. (See a more detailed description in [10] Fig. 4,
or [6] Fig. 3.)

Table 2 summarizes the results of our invariant algo-
rithm for the last 8 points. Due to the noise in the data
and the large perspective distortions, not all the frames
were consistent with rigid motion. (Namely, when all the
frames were used, the computed Gramian was not positive-
definite). We therefore used only the last 8 frames from the
available 16 frames.

We compared in Table 3 the average relative error of the
results of our algorithm to the average relative error of a
random set of 3D points, aligned to the ground truth data
with the optimal similarity or affine transformation.

5.8 Discussion

Not surprisingly, our results (Section 5.2 in particular)
show that affine shape can be recovered more reliably than
depth. We expect this to be the case since the compu-
tation of affine shape does not require knowledge of the
aspect-ratio of the camera, and since it does not require
the computation of the square root of the Gramian matrix

G.
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Pt. Pose Rigid Invar. Aff. Invar.
L% 15 [ et | e |
1 14.4 16.8 16.3 14.4 0.2
2 15.1 15.1 -0.0 15.1 -0.1
3 14.5 16.3 12.5 14.3 -1.1
4 13.5 16.0 18.4 12.3 -9.1
5 21.7 23.7 9.6 21.8 0.9
6 18.8 20.1 7.0 18.4 -2.3
7 21.5 20.7 -4.0 22.0 2.3
8 20.0 23.7 18.0 19.8 -1.3
9 21.6 21.5 -0.5 22.3 2.9
10 21.0 225 7.3 21.8 4.1
11 21.6 20.1 -7.0 22.7 4.9
12 21.0 21.0 0.3 22.2 6.0
ave. 8.4% 2.9%

Table 2: The relative errors in depth computation using
our invariant algorithm, for affine and rigid shape.

[[ Rigid Invar. | Rigid random [ Aff. Invar [ Aff. random ||
I 8.4% | 27.6% [ 29% | 23.3% I

Table 3: The mean relative errors in depth computation.

The sequence discussed in Section 5.1 was taken at a
relatively large distance between the camera and the ob-
ject (the depth values of the points varied from 550 to 700
mms). The weak perspective assumption therefore gave a
good approximation. This sequence is typical of a recogni-
tion task. Under these conditions, which lend themselves
favorably to the weak perspective approximation, our al-
gorithm clearly performs very well. When compared with
the other two algorithms, our algorithm is more efficient in
its time complexity, it is simpler to implement, and it does
not make any assumption on the type of motion (namely, it
does not use the knowledge that the motion is rotational).

The sequence discussed in Section 5.2 had very large per-
spective distortions (the depth values of the points varied
from 13 to 33 feet). Moreover, the sequence was obtained
with a wide-lens camera, which lead to distortions in the
image coordinates of points at the periphery. This sequence
is more typical of a navigation task. Under these condi-
tions, which do not lend themselves favorably to the weak
perspective approximation, our algorithm is not accurate.
The accuracy is sufficient for tasks which require only rel-
ative depth (e.g., obstacle avoidance), or less precise re-
construction of the environment. Note, however, that even
algorithms which use the perspective projection model do
not necessarily perform better with such sequences (com-
pare with the results for a similar sequence reported in
[10]).

In this last sequence, the computation of invariant shape
using 8 frames or 16 frames lead to rather similar results
for the affine shape matrix and the Gramian matrix. How-
ever, in the second case the computed Gramian matrix was
not positive-definite, and therefore we could not compute
depth. This demonstrates how the computation of depth
is more sensitive to errors than the computation of the
Euclidean representation. For the same reason, the affine
reconstruction was an order of magnitude closer to the
ground truth values than a set of random points, whereas

the depth reconstruction had an average error only 3 times
smaller than a set of random points.
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Pt. | Pose Rigid Invar. Aff. Invar. Rot. 2-frm 2-frm, Ave.
# Z Z |E(%) Z |E(%) Z |E(%) Z |E(%) Z |E(%)
1 591.4 ||| 587.8 | -0.6 591.3 | -0.0 588.9 | -0.4 613.9 3.8 591.7 0.1
2 | 666.3 ||| 669.7 | 0.5 662.0 | -0.7 665.8 | -0.1 694.4 4.2 666.4 0.0
3 | 621.8 ||| 618.3 | -0.6 621.9 0.0 617.8 | -0.6 648.4 4.3 624.9 0.5
4 | 640.7 ||| 642.2 0.2 640.2 | -0.1 635.0 | -0.9 667.5 4.2 641.5 0.1
5 | 637.7 ||| 633.7 | -0.6 637.0 | -0.1 637.7 0.0 665.0 4.3 639.6 0.3
6 | 647.9 || 647.6 | -0.1 647.0 | -0.1 650.9 0.5 679.2 4.8 651.7 0.6
7 | 656.6 ||| 656.5 | -0.0 654.3 | -0.3 661.9 0.8 687.5 4.7 658.8 0.3
§ | 640.0 ||| 640.2 0.0 639.7 | -0.0 653.8 2.2 668.0 4.4 642.3 0.4
9 | 709.7 ||| 708.8 | -0.1 706.5 | -0.5 700.7 | -1.3 744.8 5.0 714.4 0.7
10 | 614.8 ||| 6154 | 0.1 618.2 0.5 603.6 | -1.8 644.1 4.8 618.5 0.6
11 | 602.3 ||| 602.6 0.0 601.5 | -0.1 606.2 0.6 626.9 4.1 604.8 0.4
12 | 628.9 ||| 631.2 0.4 626.3 | -04 636.5 1.2 655.3 4.2 630.5 0.2
ave. 0.27% 0.23% 0.86% 4.4% 0.35%

Table 1: Comparison of the relative errors in depth com-
putation using our algorithm (rigid and affine shape sep-
arately), with two other algorithms. The average of the
absolute value of the relative errors is listed at the bottom
for each algorithm.



