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A Paraperspective Factorization Method for
Shape and Motion Recovery

Conrad J. Poelman and Takeo Kanade, Fellow, IEEE

Abstract —The factorization method, first developed by Tomasi and Kanade, recovers both the shape of an object and its motion
from a sequence of images, using many images and tracking many feature points to obtain highly redundant feature position
information. The method robustly processes the feature trajectory information using singular value decomposition (SVD), taking
advantage of the linear algebraic properties of orthographic projection. However, an orthographic formulation limits the range of
motions the method can accommodate. Paraperspective projection, first introduced by Ohta, is a projection model that closely
approximates perspective projection by modeling several effects not modeled under orthographic projection, while retaining linear
algebraic properties. Our paraperspective factorization method can be applied to a much wider range of motion scenarios, including
image sequences containing motion toward the camera and aerial image sequences of terrain taken from a low-altitude airplane.

Index Terms —Motion analysis, shape recovery, factorization method, three-dimensional vision, image sequence analysis, singular

value decomposition.

1 INTRODUCTION

ECOVERING the geometry of a scene and the motion of

the camera from a stream of images is an important
task in a variety of applications, including navigation, ro-
botic manipulation, and aerial cartography. While this is
possible in principle, traditional methods have failed to
produce reliable results in many situations [2].

Tomasi and Kanade [13], [14] developed a robust and ef-
ficient method for accurately recovering the shape and mo-
tion of an object from a sequence of images, called the fac-
torization method. It achieves its accuracy and robustness by
applying a well-understood numerical computation, the
singular value decomposition (SVD), to a large number of
images and feature points, and by directly computing
shape without computing the depth as an intermediate
step. The method was tested on a variety of real and syn-
thetic images, and was shown to perform well even for
distant objects, where traditional triangulation-based ap-
proaches tend to perform poorly.

The Tomasi-Kanade factorization method, however, as-
sumed an orthographic projection model. The applicability of
the method is therefore limited to image sequences created
from certain types of camera motions. The orthographic
model contains no notion of the distance from the camera to
the object. As a result, shape reconstruction from image se-
quences containing large translations toward or away from
the camera often produces deformed object shapes, as the
method tries to explain the size differences in the images by
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creating size differences in the object. The method also sup-
plies no estimation of translation along the camera’s optical
axis, which limits its usefulness for certain tasks.

There exist several perspective approximations which
capture more of the effects of perspective projection while
remaining linear. Scaled orthographic projection, sometimes
referred to as “weak perspective” [5], accounts for the scaling
effect of an object as it moves towards and away from the
camera. Paraperspective projection, first introduced by Ohta
[6] and named by Aloimonos [1], accounts for the scaling
effect as well as the different angle from which an object is
viewed as it moves in a direction parallel to the image plane.

In this paper, we present a factorization method based
on the paraperspective projection model. The paraperspec-
tive factorization method is still fast, and robust with re-
spect to noise. It can be applied to a wider realm of situa-
tions than the original factorization method, such as se-
quences containing significant depth translation or con-
taining objects close to the camera, and can be used in ap-
plications where it is important to recover the distance to
the object in each image, such as navigation.

We begin by describing our camera and world reference
frames and introduce the mathematical notation that we use.
We review the original factorization method as defined in
[13], presenting it in a slightly different manner in order to
make its relation to the paraperspective method more appar-
ent. We then present our paraperspective factorization
method, followed by a description of a perspective refine-
ment step. We conclude with the results of several experi-
ments which demonstrate the practicality of our system.

2 PROBLEM DESCRIPTION

In a shape-from-motion problem, we are given a sequence
of F images taken from a camera that is moving relative to
an object. Assume for the time being that we locate P
prominent feature points in the first image, and track these
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points from each image to the next, recording the coordi-
nates (ufp, vfp) of each point p in each image f. Each feature

point p that we track corresponds to a single world point,
located at position s, in some fixed world coordinate sys-
tem. Each image f was taken at some camera orientation,
which we describe by the orthonormal unit vectors i, j,, and
k., where i, and j, correspond to the x and y axes of the cam-
era’s image plane, and k; points along the camera’s line of
sight. We describe the position of the camera in each frame f
by the vector t, indicating the camera’s focal point. This
formulation is illustrated in Fig. 1.

Image
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5 Ve
J imaging ray

Camera -
A
S
f p
world focal
origin length /

Fig. 1. Coordinate system.

The result of the feature tracker is a set of P feature point
coordinates (ufp,vfp) for each of the F frames of the image
sequence. From this information, our goal is to estimate the
shape of the object as ép for each object point, and the mo-
tion of the camera as i, j,, k;, and i, for each frame in the
sequence.

3 THE ORTHOGRAPHIC FACTORIZATION METHOD

This section presents a summary of the orthographic factori-
zation method developed by Tomasi and Kanade. A more
detailed description of the method can be found in [13].

3.1 Orthographic Projection

The orthographic projection model assumes that rays are
projected from an object point along the direction parallel
to the camera’s optical axis, so that they strike the image
plane orthogonally, as illustrated in Fig. 2. A point p whose
location is s, will be observed in frame f at image coordi-

nates (ufp, vfp), where

ufp=if-(sp—tf) vfp=jf~(sp—tf) Q)

These equations can be rewritten as

U, = Mg =S+ X; Vi = N¢ =S, + Yy 2)

where
Xp = _(tf If) Y¢ = _(tf ‘jf) 3
m; =i ne = j; 4

Image
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Fig. 2. Orthographic projection in two dimensions. Dotted lines indicate
perspective projection.

3.2 Decomposition
All of the feature point coordinates (ufp, vfp) are entered in a
2F x P measurement matrix W.

Uy Upp
u ... u
_ | Uk FP
W = v v (5)
1 1P
VE1 Vep

Each column of the measurement matrix contains the ob-
servations for a single point, while each row contains the
observed u-coordinates or v-coordinates for a single frame.
Equation (2) for all points and frames can now be combined
into the single matrix equation

W =MS+T[1...1] (6)

where M is the 2F x 3 motion matrix whose rows are the m,
and n, vectors, S is the 3 x P shape matrix whose columns
are the s, vectors, and T is the 2F x 1 translation vector
whose elements are the x, and y,.

Up to this point, Tomasi and Kanade placed no restric-
tions on the location of the world origin, except that it be
stationary with respect to the object. Without loss of gener-
ality, they position the world origin at the center of mass of
the object, denoted by c, so that

1 P
c=325p=0 @)
p=1

Because the sum of any row of S is zero, the sum of any
row i of W is PT,. This enables them to compute the ith

element of the translation vector T directly from W, simply
by averaging the ith row of the measurement matrix. The
translation is the subtracted from W, leaving a “registered”

measurement matrix W' =W — T[1 ... 1). Because W* is the
product of a 2F x 3 motion matrix M and a 3 x P shape
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matrix S, its rank is at most three. When noise is present in
the input, the W* will not be exactly of rank three, so the
Tomasi-Kanade factorization method uses the SVD to find
the best rank three approximation to W*, factoring it into
the product

*

W' = MS (8)

3.3 Normalization

The decomposition of (8) is only determined up to a linear
transformation. Any non-singular 3 x 3 matrix A and its
inverse could be inserted between M and §, and their
product would still equal W*. Thus the actual motion and
shape are given by

M=MA S=A"S 9)

with the appropriate 3 x 3 invertible matrix A selected. The
correct A can be determined using the fact that the rows of
the motion matrix M (which are the m, and n, vectors) repre-
sent the camera axes, and therefore they must be of a certain
form. Since i, and j; are unit vectors, we see from (4) that

2

‘mfr:l In| =1 (10)

and because they are orthogonal,

me-n,=0 (11)

Equations (10) and (11) give us 3F equations which we call
the metric constraints. Using these constraints, we solve for

the 3 x 3 matrix A which, when multiplied by M, produces
the motion matrix M that best satisfies these constraints.
Once the matrix A has been found, the shape and motion
are computed from (9).

4 THE PARAPERSPECTIVE FACTORIZATION METHOD

The Tomasi-Kanade factorization method was shown to be
computationally inexpensive and highly accurate, but its
use of an orthographic projection assumption limited the
method’s applicability. For example, the method does not
produce accurate results when there is significant transla-
tion along the camera’s optical axis, because orthography
does not account for the fact that an object appears larger
when it is closer to the camera. We must model this and
other perspective effects in order to successfully recover
shape and motion in a wider range of situations. We choose
an approximation to perspective projection known as
paraperspective projection, which was introduced by Ohta
et al. [6] in order to solve a shape from texture problem.
Although the paraperspective projection equations are
more complex than those for orthography, their basic form
is the same, enabling us develop a method analogous to
that developed by Tomasi and Kanade.

4.1 Paraperspective Projection

Paraperspective projection closely approximates perspec-
tive projection by modeling both the scaling effect (closer
objects appear larger than distant ones) and the position
effect (objects in the periphery of the image are viewed
from a different angle than those near the center of projec-
tion [1]) while retaining the linear properties of ortho-

graphic projection. Paraperspective projection is related to,
but distinct from, the affine camera model, as described in
Appendix A. The paraperspective projection of an object
onto an image, illustrated in Fig. 3, involves two steps.

1) An object point is projected along the direction of the
line connecting the focal point of the camera to the
object’s center of mass, onto a hypothetical image
plane parallel to the real image plane and passing
through the object’s center of mass.

2) The point is then projected onto the real image plane
using perspective projection. Because the hypothetical
plane is parallel to the real image plane, this is
equivalent to simply scaling the point coordinates by
the ratio of the camera focal length and the distance
between the two planes.

In general, the projection of a point p along direction r, onto
the plane with normal n and distance from the origin d, is
given by the equation

p-n-d

PP=p-—Fp T

r-n (12)

In frame f, each object point s, is projected along the direc-
tion ¢ - t; (which is the direction from the camera’s focal

point to the object’s center of mass) onto the plane defined
by normal k; and distance from the origin ¢ - k;. The result

st, of this projection is
(sp . kf)— (c . kf) (c—tf)

(c—tf)-kf

The perspective projection of this point onto the image
plane is given by subtracting t, from s, to give the position

Stp =Sp (13)

of the point in the camera’s coordinate system, and then
scaling the result by the ratio of the camera’s focal length |
to the depth to the object’s center of mass z. Adjusting for

the aspect ratio a and projection center (ox,oy) yields the
coordinates of the projection in the image plane,

li
ufp :Z(S tf)+0
lajg ;
pr = _Zf (Sfp - f)+ 0y

where z; = (c - tf) K (14)

Substituting (13) into (14) and simplifying gives the general
paraperspective equations for U and Vi

1. The scaled orthographic projection model (also known as “weak per-
spective”) is similar to paraperspective projection, except that the direction
of the initial projection in Step 1 is parallel to the camera’s optical axis
rather than parallel to the line connecting the object’s center of mass to the
camera’s focal point. This model captures the scaling effect of perspective
projection, but not the position effect, as explained in Appendix B.
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Up, =
1 I.-[c—t

z if— f (zf f)kf -(sp—c)+(c—tf)-if +0,

Vp =

| Ji (et

5 jf_#ff)kf .(sp—c)+(c—tf).jf o, (45

We simplify these equations by assuming unit focal length,
unit aspect ratio, and (0, 0) center of projection. This re-

quires that the image coordinates (ufp,vfp) be adjusted to

account for these camera parameters before commencing
shape and motion recovery.

world
origin

length

Fig. 3. Paraperspective projection in two dimensions. Dotted lines indi-
cate perspective projection. — indicates parallel lines.

In [3] the factorization approach is extended to handle
multiple objects moving separately, which requires each
object to be projected based on its own mass center. How-
ever, since this paper addresses the single object case, we
can further simplify our equations by placing the world
origin at the object’s center of mass so that by definition

1 P
c=323p =0 (16)
p=1
This reduces (15) to
1. it )
U, = Z—f{|:lf + Z, kf]sp —(tf : |f)}
1 . jf 'tf .
pr Z_H:Jf +Z_fkf ‘Sp —(tf Jf) (17)

These equations can be rewritten as

U = Mg Sy + X Vg =Ng =S, + Y (18)
where

z; = —t; - k; (19)

Ll t b
X; =— == 20
A ar? (20)

i —xk i —yik

A kL B _Je YKy 1)

Zf Z

Notice that (18) has a form identical to its counterpart for
orthographic projection, (2), although the corresponding
definitions of x;, y;, m,, and n, differ. This enables us to

perform the basic decomposition of the matrix in the same
manner that Tomasi and Kanade did for orthographic
projection.

4.2 Paraperspective Decomposition

We can combine (18), for all points p from 1 to P, and all
frames f from 1 to F, into the single matrix equation

U ... Up m, X,
u u m X
F1 FP F F
= S;...Sp |+ 1...1 (22)
Vi Vip n, [ ! P] Y1 [ ]
Veg o Ve ng Ye
or in short

W = MS +T[1...1] (23)

where W is the 2F x P measurement matrix, M is the
2F x 3 motion matrix, S is the 3 x P shape matrix, and T is
the 2F x 1 translation vector.

Using (16) and (18), we can write

p=1 p=1 p=1

P P P

Zpr =Z(nf-sp+yf)=nf-23p+ny=ny (24)
p=1 p=1 p=1

Therefore we can compute x; and y,, which are the ele-

ments of the translation vector T, immediately from the
image data as

18 12
Xy = ﬁz Up  ¥¢ = ﬁzvfp (25)
p=1 p=1
Once we know the translation vector T, we subtract it from
W, giving the registered measurement matrix

W =W -T[1...1] = MS (26)

Since W* is the product of two matrices each of rank at most
three, W* has rank at most three, just as it did in the ortho-
graphic projection case. If there is noise present, the rank of
W+ will not be exactly three, but by computing the SVD of
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W* and only retaining the largest three singular values, we
can factor it into

W' =MS (27)
where M is a 2F x 3 matrix and $ is a 3 x P matrix. Using
the SVD to perform this factorization guarantees that the
product MS is the best possible rank three approximation
to W*, in the sense that it minimizes the sum of squares dif-

ference between corresponding elements of W* and MS.

4.3 Paraperspective Normalization

Just as in the orthographic case, the decomposition of W*
into the product of M and S by (27) is only determined up
to a linear transformation matrix A. Again, we determine
this matrix A by observing that the rows of the motion ma-
trix M (the m; and n; vectors) must be of a certain form.

Taking advantage of the fact that i, j,, and k, are unit
vectors, from (21) we observe that

1+xf2

2

2 1+y;

—_— n [ —
i =
Z Z

2
‘mf‘ - (28)
We know the values of x; and y; from our initial registra-
tion step, but we do not know the value of the depth z;.

Thus we cannot impose individual constraints on the mag-
nitudes of m; and n, as was done in the orthographic fac-

torization method. However, we can adopt the following
constraint on the magnitudes of m; and n;

2 2
mf (2
1+xf2 T+ yf2 - zf2

In the case of orthographic projection, one constraint on m,

(29)

and n; was that they each have unit magnitude, as re-

quired by (10). In the above paraperspective case, we sim-
ply require that their magnitudes be in a certain ratio.
There is also a constraint on the angle relationship of m;

and n;. From (21), and the knowledge that i, j,, and k;
are orthogonal unit vectors,

=Xk Jp—yeke XYy
me-Ng =——o3 — =2
f f z;

(30)

The problem with this constraint is that, again, z; is un-
known. We could use either of the two values given in (29)
for 1/ zfz, but in the presence of noisy input data the two

will not be exactly equal, so we use the average of the two
quantities. We choose the arithmetic mean over the geomet-
ric mean or some other measure in order to keep the solu-
tion of these constraints linear. Thus our second constraint
becomes

2 2
1) I
M- N = XYs 5 Tz

31
l+xf2 1+yf2 5D

This is the paraperspective version of the orthographic con-

straint given by (11), which required that the dot product of
m; and n; be zero.

Equations (29) and (31) are homogeneous constraints,
which could be trivially satisfied by the solution
vim; =n, =0, or M = 0. To avoid this solution, we im-

pose the additional constraint

Imy| =1 (32)

This does not effect the final solution except by a scaling
factor.

Equations (29), (31), and (32) give us 2F + 1 equations,
which are the paraperspective version of the metric con-

straints. We compute the 3 x 3 matrix A such that M = MA
best satisfies these metric constraints in the least sum-of-
squares error sense. This is a simple problem because the
constraints are linear in the six unique elements of the

symmetric 3 x 3 matrix Q = ATA. We use the metric con-
straints to compute Q, compute its Jacobi Transformation

Q = LAL', where A is the diagonal eigenvalue matrix, and
T
as long as Q is positive definite, A:(LAUZ) . A non-

positive-definite Q indicates that unmodeled distortion has
overwhelmed the third singular value of the measurement
matrix, due possibly to noise, perspective effects, insuffi-
cient rotational motion, a planar object shape, or a combi-
nation of these effects.

4.4 Paraperspective Motion Recovery
Once the matrix A has been determined, we compute the

shape matrix S = A™S and the motion matrix M = MA.
For each frame f, we now need to recover the camera ori-

entation vectors i, j;, and k, from the vectors m, and n;,
which are the rows of the matrix M. From (21) we see that

ff =z,m; + fof jf =zn; + yflA<f (33)

From this and the knowledge that i,, j;, and k, must be
orthonormal, we determine that

I Xj = (zfmf +xfkf)><(zfnf +yfkf) = k;
M = ‘zfmf + xfkf‘ =1

| = [z +yik | =1 (34)

Again, we do not know a value for z;, but using the rela-
tions specified in (29) and the additional knowledge that
‘Rf‘ =1, (34) can be reduced to

Gk, = H, (35)
where
(W, x;) 1
Gf = mf Hf = —Xf (36)
Ny —Ys
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~ me i
mf:,/1+xfm nf=,/l+yf2m (37)
f f
We compute k, simply as
k; = G;'H, (38)
and then compute
=0, xk, J; =k, xm; (39)

There is no guarantee that the ff and jf given by this equa-
tion will be orthonormal, because m; and n; may not have
exactly satisfied the metric constraints. Therefore we actu-
ally use the orthonormals which are closest to the i, and j;
vectors given by (39). We further refine these values using a
non-linear optimization step to find the orthonormal ff and

jf, as well as depth z;, which provide the best fit to (33).

Due to the arbitrary world coordinate orientation, to obtain
a unique solution we then rotate the computed shape and
motion to align the world axes with the first frame’s camera

axes, so that i, = [L00]" and j, =[010]".
All that remain to be computed are the translations for
each frame. We calculate the depth z, from (29). Since we

know z., X, ¥;, i¢, J;, and K, we can calculate f, using
(19) and (20).

5 PERSPECTIVE REFINEMENT
OF PARAPERSPECTIVE SOLUTION

This section presents an iterative method used to recover
the shape and motion using a perspective projection model.
The object shape and camera motion provided by paraper-
spective factorization are refined alternately. This is a sim-
pler and more efficient solution than the method of [11] in
which all parameters are refined simultaneously, but this
method may converge more slowly if the initial values are
inaccurate. Although our algorithm was developed inde-
pendently and handles the full three dimensional case, this
method is quite similar to a two dimensional algorithm
reported in [12].

5.1 Perspective Projection
Under perspective projection, often referred to as the pin-
hole camera model, object points are projected directly to-
wards the focal point of the camera. An object point’s image
coordinates are determined by the position at which the
line connecting the object point with the camera’s focal
point intersects the image plane, as illustrated in Fig. 4.
Simple geometry using similar triangles produces the
perspective projection equations

ufp:|M pr:|m
K¢ ~(sp —tf) K; ~(sp—tf)

Assuming unit focal length, we rewrite the equations in the
form

(40)

_if~sp+xf _Jf~sp+yf
ufP_kf-sp+zf pr_kf-sp+zf (41)
where
Xe =—lg -ty Y =—j; -ty 2, = K - 1, (42)
Image
Plane
/ |
focal
world
length origin

Fig. 4. Perspective projection in two dimensions.

5.2 Iterative Minimization Method

Equation (41) defines two equations relating the predicted
and observed positions of each point in each frame, for a
total of 2FP equations. We formulate the problem as a non-
linear least squares problem in the motion and shape vari-
ables, in which we seek to minimize the error

F o ii-s. +x, )\ j-s+y2
= __f % 7t _f e I
e=>> [ufp K, s +zf] +[pr K, s, +2 (43)

f=1p=1 P
In the above formulation, there appear to be 12 motion
variables for each frame, since each image frame is defined
by three orientation vectors and a translation vector. How-
ever, we can enforce the constraint that i,, j;, and k, are
orthogonal unit vectors by writing them as functions of
three independent rotational parameters o, B, and y;.

]

cos o cos/jf (cosozf sin[if sinyf 7sintxf cosyf) (cosozf sinﬁf cos v¢ +sinorf sinyf)
sinncf cosﬁf (sinozf sin,Bf sinyf +Cos g cosyf) (sinaf sinﬁf €os y¢ — oS oy sinyf)
—sin /Jf

cos[if sinyf cosﬁf cos 7¢

(44)
This gives six motion parameters for each frame (x, y, z, o,
B, and y) and three shape parameters for each point
(sp = [splspZSps]) for a total of 6F + 3P variables.

We could apply any one of a number of non-linear tech-
niques to minimize the error € as a function of these 6F + 3P
variables. Such methods begin with a set of initial variable
values, and iteratively refine those values to reduce the er-
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ror. Our method takes advantage of the particular structure
of the equations by separately refining the shape and mo-
tion parameters. First the shape is held constant while
solving for the motion parameters which minimize the er-
ror. Then the motion is held constant while solving for the
shape parameters which minimize the error. This process is
repeated until an iteration produces no significant reduc-
tion in the total error €.

While holding the shape constant, the minimization
with respect to the motion variables can be performed
independently for each frame. This minimization requires
solving an overconstrained system of six variables in P
equations. Likewise while holding the motion constant,
we can solve for the shape separately for each point by
solving a system of 2F equations in three variables. This
not only reduces the problem to manageable complexity,
but as pointed out in [12], it lends itself well to parallel
implementation.

We perform the individual minimizations, fitting six
motion variables to P equations or fitting three shape vari-
ables to 2F equations, using the Levenberg-Marquardt
method [8]. This method uses steepest descent when far
from the minimum and varies continuously towards the
inverse-Hessian method as the minimum is approached.
Since we know the mathematical form of the expression of
g, the Hessian matrix is easily computed by taking deriva-
tives of € with respect to each variable.

A single step of the Levenberg-Marquardt method re-
quires a single inversion of a 6 x 6 matrix when refining a
single frame of motion, or a single inversion of a 3 x 3 ma-
trix when refining the position of a single point. Generally
about six steps were required for convergence of a single
point or frame refinement, so a complete refinement step
requires 6P inversions of 3 x 3 matrices and 6F inversions
of 6 x 6 matrices.

In theory we do not actually need to vary all 6F + 3P
variables, since the solution is only determined up to a
scaling factor, the world origin is arbitrary, and the world
coordinate orientation is arbitrary. We could choose to ar-
bitrarily fix each of the first frame’s rotation variables at
zero degrees, and similarly fix some shape or translation

parameters to reduce the problem to 6F + 3P — 7 variables.
However, it was experimentally confirmed that the algo-
rithm converged significantly faster when all shape and
motion parameters are all allowed to vary. The final shape
and translation are then adjusted to place the origin at the
object’s center of mass and scale the solution so that the
depth in the first frame is one. This shape and the final mo-
tion are then rotated so that i, = [100]" and j, =[010]", or
equivalently, so that o, = B, =TI} = 0.

A common drawback of iterative methods on complex
non-linear error surfaces is that the final result can be
highly dependent on the initial value. Taylor, Kriegman,
and Anandan [12] require some basic odometry measure-
ments as might be produced by a navigation system to use
as initial values for their motion parameters, and use the 2D
shape of the object in the first image frame, assuming con-
stant depth, as their initial shape. To avoid the requirement
for odometry measurements, which will not be available in

many situations, we use the paraperspective factorization
method to supply initial values to the iterative perspective
refinement process.

6 COMPARISON OF METHODS USING
SYNTHETIC DATA

In this section we compare the performance of the paraper-
spective factorization method with the previous ortho-
graphic factorization method. The comparison also includes
a factorization method based on scaled orthographic pro-
jection (also known as “weak perspective”), which models
the scaling effect of perspective projection but not the posi-
tion effect, in order to demonstrate the importance of mod-
eling the position effect for objects at close range.2 Our re-
sults show that the paraperspective factorization method is
a vast improvement over the orthographic method, and
underscore the importance of modeling both the scaling
and position effects. We further examine the results of per-
spectively refining the paraperspective solution. This con-
firms that modeling of perspective distortion is important
primarily for accurate shape recovery of objects at close
range.

6.1 Data Generation

The synthetic feature point sequences used for comparison
were created by moving a known “object”—a set of 3D
points—through a known motion sequence. We tested
three different object shapes, each containing approxi-
mately 60 points. Each test run consisted of 60 image
frames of an object rotating through a total of 30 degrees
each of roll, pitch, and yaw. The “object depth”—the dis-
tance from the camera’s focal point to the front of the ob-
ject—in the first frame was varied from three to 60 times the
object size. In each sequence, the object translated across the
field of view by a distance of one object size horizontally
and vertically, and translated away from the camera by half
its initial distance from the camera. For example, when the
object’s depth in the first frame was 3.0, its depth in the last
frame was 4.5. Each “image” was created by perspectively
projecting the 3D points onto the image plane, for each se-
guence choosing the largest focal length that would keep
the object in the field of view throughout the sequence. The
coordinates in the image plane were perturbed by adding
Gaussian noise, to model tracking imprecision. The stan-
dard deviation of the noise was two pixels (assuming a
512 x 512 pixel image), which we consider to be a rather
high noise level from our experience processing real image
sequences. For each combination of object, depth, and
noise, we performed three tests, using different random
noise each time.

6.2 Error Measurement

We ran each of the three factorization methods on each
synthetic sequence and measured the rotation error, shape
error, X-Y offset error, and Z offset (depth) error. The rota-

2. The scaled orthographic factorization method is very similar to the
paraperspective factorization method; the metric constraints for the method

2 2
are‘mf‘ = ‘nf‘ ,m;-n; =0, and |m1| = 1. See Appendix B.
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tion error is the root-mean-square (RMS) of the size in radi-
ans of the angle by which the computed camera coordinate
frame must be rotated about some axis to produce the
known camera orientation. The shape error is the RMS er-
ror between the known and computed 3D point coordi-
nates. Since the shape and translations are only determined
up to scaling factor, we first scaled the computed shape by
the factor which minimizes this RMS error. The term
“offset” refers to the translational component of the motion
as measured in the camera’s coordinate frame rather than

in world coordinates; the X offset is ff -ff, the Y offset is

t, -J;, and the Z offset is t, - k,. The X-Y offset error and Z

offset error are the RMS error between the known and
computed offset; like the shape error, we first scaled the
computed offset by the scale factor that minimized the RMS
error. Note that the orthographic factorization method sup-
plies no estimation of translation along the camera’s optical
axis, so the Z offset error cannot be computed for that
method.

6.3 Discussion of Results

Fig. 5 shows the average errors in the solutions computed
by the various methods, as a functions of object depth in
the first frame. We see that the paraperspective method
performs significantly better than the orthographic factori-
zation method regardless of depth, because orthography
cannot model the scaling effect that occurs due to the mo-
tion along the camera’s optical axis. The figure also shows
that at close range, the paraperspective method performs
substantially better than the scaled orthographic method
(discussed in Appendix B) while the errors from the two
methods are nearly the same when the object is distant.
This confirms the importance of modeling the position ef-
fect when objects are near the camera. Perspective refine-
ment of the paraperspective results only marginally im-
proves the recovered camera motion, while it significantly
improves the accuracy of the computed shape, even up to
fairly distant ranges.
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Fig. 5. Methods compared for a typical case. Noise standard deviation
= two pixels.

We show the results of refining the known correct mo-
tion and shape only for comparison, as it indicates what is
essentially the best one could hope to achieve using the
least squares formulation without incorporating additional
knowledge or constraints.

In other experiments in which the object was centered in
the image and there was no translation across the field of
view, the paraperspective method and the scaled ortho-
graphic method performed equally well, as we would ex-
pect since such image sequences contain no position effects.
Similarly, we found that when the object remained centered
in the image and there was no depth translation, the ortho-
graphic factorization method performed well, and the
paraperspective factorization method provided no signifi-
cant improvement since such sequences contain neither
scaling effects nor position effects.

6.4 Analysis of Paraperspective Method
Using Synthetic Data

Now that we have shown the advantages of the paraper-
spective factorization method over the previous method,
we further analyze the performance of the paraperspective
method to determine its behavior at various depths and its
robustness with respect to noise. The synthetic sequences
used in these experiments were created in the same manner
as in the previous section, except that the standard devia-
tion of the noise was varied from 0 to 4.0 pixels.

In Fig. 6, we see that at high depth values, the error in
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the solution is roughly proportional to the level of noise in
the input, while at low depths the error is inversely re-
lated to the depth. This occurs because at low depths, per-
spective distortion of the object’s shape is the primary
source of error in the computed results. At higher depths,
perspective distortion of the object’s shape is negligible,
and noise becomes the dominant cause of error in the re-
sults. For example, at a noise level of one pixel, the rota-
tion and XY-offset errors are nearly invariant to the depth
once the object is farther from the camera than 10 times
the object size. The shape results, however, appear sensi-
tive to perspective distortion even at depths of 30 or 60
times the object size.
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Fig. 6. Paraperspective shape and motion recovery by noise level.
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7 SHAPE AND MOTION RECOVERY
FROM REAL IMAGE SEQUENCES

We tested the paraperspective factorization method on two
real image sequences—a laboratory experiment in which a
small model building was imaged, and an aerial sequence
taken from a low-altitude plane using a hand-held video
camera. Both sequences contain significant perspective ef-
fects, due to translations along the optical axis and across
the field of view. We implemented a system to automatically
identify and track features, based on [13] and [4]. This tracker
computes the position of a square feature window by mini-
mizing the sum of the squares of the intensity difference over
the feature window from one image to the next.

7.1 Hotel Model Sequence

A hotel model was imaged by a camera mounted on a
computer-controlled movable platform. The camera motion
included substantial translation away from the camera and
across the field of view (see Fig. 7). The feature tracker
automatically identified and tracked 197 points throughout
the sequence of 181 images.

Fig. 7. Hotel model image sequence. (Top left) Frame 1, (top right)
Frame 61, (bottom left) Frame 121, (bottom right) Frame 151.

Fig. 8. Comparison of top views of orthographic (left) and paraperspec-
tive (right) shape results.

Both the paraperspective factorization method and the
orthographic factorization method were tested with this
sequence. The shape recovered by the orthographic factori-
zation method was rather deformed (see Fig. 8) and the
recovered motion incorrect, because the method could not
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account for the scaling and position effects which are
prominent in the sequence. The paraperspective factoriza-
tion method, however, models these effects of perspective
projection, and therefore produced an accurate shape and
accurate motion.

Several features in the sequence were poorly tracked,
and as a result their recovered 3D positions were incor-
rect. While they did not disrupt the overall solution
greatly, we found that we could achieve improved results
by automatically removing these features in the following
manner. Using the recovered shape and motion, we com-
puted the reconstructed measurement matrix W™, and
then eliminated from those features for which the aver-
age error between the elements of W and W™ was more
than twice the average such error. We then ran the shape
and motion recovery again, using only the remaining 179
features. Eliminating the poorly tracked features de-
creased errors in the recovered rotation about the cam-
era’s x-axis in each frame by an average of 0.5 degree,
while the errors in the other rotation parameters were also
slightly improved. The final rotation values are shown in
Fig. 9, along with the values we measured using the cam-
era platform. The computed rotation about the camera x-
axis, y-axis, and z-axis was always within 0.29 degree,
1.78 degrees, and 0.45 degree of the measured rotation,
respectively.
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Fig. 9. Hotel model rotation results.

7.2 Aerial Image Sequence

An aerial image sequence was taken from a small airplane
overflying a suburban Pittsburgh residential area adjacent
to a steep, snowy valley, using a small hand-held video
camera. The plane altered its altitude during the sequence
and also varied its roll, pitch, and yaw slightly. Several im-
ages from the sequence are shown in Fig. 10.

Fig. 10. Aerial image sequence. (Top left) Frame 1, (top right) Frame
35, (middle left) Frame 70, (middle right) Frame 108, (bottom) fill pat-
tern indicating points visible in each frame.

Due to the bumpy motion of the plane and the instability
of the hand-held camera, features often moved by as much
as 30 pixels from one image to the next. The original feature
tracker could not track motions of more than approximately
three pixels, so we implemented a coarse-to-fine tracker.
The tracker first estimated the translation using low resolu-
tion images, and then refined that value using the same
methods as the initial tracker.

The sequence covered a long sweep of terrain, so none of
the features were visible throughout the entire sequence. As
some features left the field of view, new features were
automatically detected and added to the set of features be-
ing tracked. A vertical bar in the fill pattern (shown in
Fig. 10) indicates the range of frames through which a fea-
ture was successfully tracked. Each observed data meas-
urement was assigned a confidence value based on the gra-
dient of the feature and the tracking residue. A total of
1,026 points were tracked in the 108 image sequence, with
each point being visible for an average of 30 frames of the
sequence.

Because not all entries of the 2F x P measurement ma-
trix W were known, it was not possible to compute its
SVD. Instead, a confidence-weighted decomposition step,
described in [7], was used to decompose the measurement
matrix W into S, M, and T. Paraperspective factorization
was then used to recover the final shape of the terrain and
motion of the airplane. Two views of the reconstructed
terrain map are shown in Fig. 11. While no ground-truth
was available for the shape or the motion, we observed
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that the terrain was qualitatively correct, capturing the
flat residential area and the steep hillside as well, and that
the recovered positions of features on buildings were ele-
vated from the surrounding terrain.

Ky

Fig. 11. Two views of reconstructed terrain.

8 CONCLUSIONS

The principle that the measurement matrix has rank three,
as put forth by Tomasi and Kanade in [14], was dependent
on the use of an orthographic projection model. We have
shown in this paper that this important result also holds for
the case of paraperspective projection, which closely ap-
proximates perspective projection. We have devised a
paraperspective factorization method based on this model,
which uses different metric constraints and motion recov-
ery techniques, but retains many of the features of the
original factorization method.

In image sequences in which the object being viewed
translates significantly toward or away from the camera or
across the camera’s field of view, the paraperspective factori-
zation method performs significantly better than the ortho-
graphic method. The paraperspective factorization method
also computes the distance from the camera to the object in
each image and can accommodate missing or uncertain
tracking data, which enables its use in a variety of applica-
tions. Furthermore, even at close range when perspective
distortion is significant, paraperspective factorization pro-
duces accurate motion results, and errors in the shape result
due to perspective distortion can be largely reduced using a
simple iterative perspective refinement step.

The C implementation of the paraperspective factoriza-
tion method required about 20-24 seconds to solve a system
of 60 frames and 60 points on a Sun 4/65, with most of this
time spent computing the singular value decomposition of
the measurement matrix. Perspective refinement of the solu-
tion required longer, but significant improvement of the
shape results was achieved in a comparable amount of time.

APPENDIX A
RELATION OF PARAPERSPECTIVE TO
AFFINE MODELS

In an unrestricted affine camera, the image coordinates are
given by

S
pl
Urp =[mn my, m13:| s, (45)
Vip My My My || P

where the m; are free to take on any values. In motion ap-

plications, this matrix is commonly decomposed into a
scaling factor, a 2x2 camera calibration matrix, and a
2 x 3 rotation matrix. The calibration matrix is considered
to remain constant throughout the sequence, while the ro-
tation matrix and scaling factor are allowed to vary with
each image.

L ; S
u 1 i, i Pl X
fp 2_[1 O] ' 2l 5, |+ f (46)
Vo | Ze[S af|Ji1 Ji2 Jia|| P Yi
Sp3
These parameters have the following physical interpreta-
tions: the i, and j; vectors represent the camera rotation in

each frame, x;, y;, and z, represent the object translation
(z; is scaled by the camera focal length, x, and y, are offset

by the image center), a is the camera aspect ratio, and s is a
skew parameter. The skew parameter is non-zero only if the
projection rays, while still parallel, do not strike the image
plane orthogonally.

The paraperspective projection equations can be rewrit-
ten, retaining the camera parameters, as

1 iy Ay g || Sp X; (47)
- b Ji2 Jea || Sp2 ”{ }
z _ y
f —(oy i yf) Kin Kiz Kig || Sp3 f
This can be reduced by Householder transformation, in the

manner shown by [9], to a form identical to that of the
fixed-intrinsic affine camera,
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where b, = ——, ¢; = -.—, and i and j; are orthonormal

unit vectors.

Both the fixed-intrinsic-parameter affine camera and the
paraperspective models are specializations of the unre-
stricted affine camera model, yet they are different from
each other. The former projects all rays onto the image
plane at the same angle throughout the sequence, which
can be an accurate model if the object does not translate in
the image or if the angle is non-perpendicular due to a lens
misalignment. Under paraperspective, the direction of im-
age projection and the axis scaling parameters change with
each image in a physically realistic manner tied to the
translation of the object in the image relative to the image
center. This allows it to accurately model the position effect,
unlike the fixed-intrinsic affine camera, while enforcing the
constraint that the camera calibration parameters remain
constant, unlike the unrestricted affine camera.
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APPENDIX B
SCALED ORTHOGRAPHIC FACTORIZATION

Scaled orthographic projection, also known as “weak per-
spective” [5], is a closer approximation to perspective pro-
jection than orthographic projection, yet not as accurate as
paraperspective projection. It models the scaling effect of
perspective projection, but not the position effect. The
scaled orthographic factorization method can be used when
the object remains centered in the image, or when the dis-
tance to the object is large relative to the size of the object.

B.1 Scaled Orthographic Projection

Under scaled orthographic projection, object points are or-
thographically projected onto a hypothetical image plane
parallel to the actual image plane but passing through the
object’s center of mass c. This image is then projected onto
the image plane using perspective projection (see Fig. 12).

Hypothetical
Image I
Plane Plane

focal

length world

origin

Fig. 12. Scaled orthographic projection in two dimensions. Dotted lines
indicate perspective projection.

Because the perspectively projected points all lie on a plane
parallel to the image plane, they all lie at the same depth

20 = (c—t;) -k (49)

Thus the scaled orthographic projection equations are very
similar to the orthographic projection equations, except that
the image plane coordinates are scaled by the ratio of the
focal length to the depth z,.

tp =5 (1[5, -1,
v =5 -5, 1)

To simplify the equations we assume unit focal length, | = 1.
The world origin is arbitrary, so we fix it at the object’s center
of mass, so that ¢ = 0, and rewrite the above equations as

(50)

Up = M-Sy + X Vg =Ng =S, + Y (51)
where
z, = —t; -k, (52)
L1y te - J
X =— 2 Y - 7 (53)
Iy Js
m; = z_f P = Z (54)

B.2 Decomposition

Because (51) is identical to (2), the measurement matrix W
can still be written as V= MS+T just as in the ortho-
graphic and paraperspective cases. We still compute x, and
y; immediately from the image data using (25), and use
singular value decomposition to factor the registered meas-
urement matrix W* into the product of M and S.

B.3 Normalization
Again, the decomposition is not unique and we must deter-
mine the 3 x 3 matrix A which produces the actual motion
matrix M = MA and the shape matrix S = A™'S. From (54),
2 1 2 1
I - Z Il = zZ

(55)

We do not know the value of the depth z,, so we cannot im-
pose individual constraints on m, and n; as we did in the
orthographic case. Instead, we combine the two equations as
we did in the paraperspective case, to impose the constraint

2

i <l =

Because m; and n; are just scalar multiples of i; and j;,
we can still use the constraint that

m;-n; =0 (57)

As in the paraperspective case, (56) and (57) are homogene-
ous constraints, which could be trivially satisfied by the
solution M = 0, so to avoid this solution we add the con-
straint that

Imy| =1 (58)

Equations (56), (57), and (58) are the scaled orthographic
version of the metric constraints. We can compute the 3 x 3
matrix A which best satisfies them very easily, because the
constraints are linear in the six unique elements of the

symmetric 3 x 3 matrix Q = ATA.

B.4 Shape and Motion Recovery
Once the matrix A has been found, the shape is computed
asS=A"S. we compute the motion parameters as
2 mf 2 nf
= =
2

(59)
m|
Unlike the orthographic case, we can now compute z,, the

component of translation along the camera’s optical axis,
from (55).
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