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Abstract. The paper deals with the structure-motion problem for un-
calibrated cameras, in the case that subsidiary information is available,
consisting e.g. in known coplanarities or parallelities among points in
the scene, or known positions of some focal points (hand-eye calibra-
tion). Despite unknown camera calibrations, it is shown that in many
instances the subsidiary information makes affine or even Euclidean re-
construction possible. A parametrization by affine shape and depth is
used, providing a simple framework for the incorporation of apriori know-
ledge, and enabling the development of iterative, rapidly converging al-
gorithms. Any number of points in any number of images are used in a
uniform way, with equal priority, and independently of coordinate repre-
sentations. Moreover, occlusions are allowed.

1 Introduction

The structure and motion problem is central for computer vision, dealing with
the analysis of a 3D scene by means of a sequence of 2D images. It is often
studied by epipolar geometry and multilinear constraints, cf. [2], [3], [4], [5], [6],
[7]. [10], [11], [19], [21]. The present paper uses an alternative approach, based
on the notions of affine shape and depth, developed in a series of papers [12],
[13], [14], [15], [16], [17], [18]:

Depending on the apriori information available, the structure and motion
problem can be treated on different levels. In the case of uncalibrated cameras
it is well known that only projective reconstruction is possible, cf. [2], [14]. Wor-
king with point configurations, we here consider the case when some affine or
Euclidean knowledge about the scene or the camera locations is available, e.g. a
number of occurences like *two lines are parallel’ or ’a line is parallel to a plane’,
in which case affine reconstruction can be achieved. When having in addition
some sort of Euclidean information, like a city map in the case of pictures of a
city scene, this may be strengthened to Euclidean reconstruction. Another si-
tuation considered is when the relative placement of at least five focal points
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are known, where is is shown that not only the projective but also the affine
structure of the scene can be recovered. Again, having Euclidean information
about the focal points, this can be strengthened to Euclidean reconstruction of
the scene. The latter situation appears naturally in hand-eye calibration from
pictures taken by a camera mounted on a moving robot arm, with registration
of the motion parameters. It is also shown how to adjust a reconstruction to be
consistent with coplanarity constraints for some set of points.

The notion of affine shape is well suited to handle these situations, theoreti-
cally as well as computationally. To gain robustness, numerical computations are
based on a variational formulation, possible to exploit by linear algebraic met-
hods. Data from any number of points in any number of images can be treated
simultaneously, without preselection of reference points or images. In particular,
there is no need to handle the numerically unstable situation of overdetermined
systems of polynomial equations with uncertain coefficients.

The plan of the paper is as follows. In Section 2 a brief recapitulation of the
notions of affine depth and shape and their use in single view geometry is given.
Section 3 deals with multiple view geometry along the same lines. With this
background, Section 4 presents algorithms for projective reconstruction. These
are then extended in Section 5 to affine and Euclidean reconstruction in the case
of subsidiary information. More details and discussions about the notions of
affine shape and depth are given in a self-contained and independent Appendix.

2 Single view geometry by affine shape and depth

Let A® denote the three-dimensional affine space, let IT' be a plane in A3, the
image plane, and let IT be a subset of A3. By P, is meant the perspective trans-
formation II — II' with centre ¢. Here ¢ is allowed to be a point at infinity,
in which case Py is a parallel projection in direction ¢. Perspective transforma-
tions model the pinhole camera. If no metrical information is known or used, the
camera is said to be uncalibrated.

The principal objects dealt with in this paper are n-point configurations X', by
which is meant ordered sets of points X = (X!,...  X"), where X* € A® k=
1,...,n. Let py denote the dimension of X, e.g. px = 3 if X is a non-planar 3D-
configuration. The set of n-point configurations of dimension p will be denoted
Cn.p-

In a series of papers [12], [13], [14], [15], the notions of affine shape space
and affine depth space have been developed. The definitions and main properties
are summarized below. For a somewhat more thorough presentation, see the
accompanying appendix.

The following notation is used throughout the paper: If & = (o, ... ,a,), £ =
(&1y---,&n), let a = (a1 &y,. .. ,anén), andleta = (1/ay,...,1/a,). Moreover,
let o ={£€R"| > & =0}

— Definition of affine shape and depth spaces. Let z* be the coordinate column
vector of X* with respect to an arbitrary affine basis, ¥ = 1,... ,n. Then



the affine shape space and the affine depth space are defined by

11...1 11...1
2! x2$n:| and d(X):RI‘OW[ n:|;

S(X):N[ xlmz---x
respectively, where A stands for nullspace, and Rrow for rowspace. (Cf.
Definition A.1 of the Appendix.)

— Affine invariancy. There exists an affine transformation A4 : X — X" if and
only if s(X) C s(X'), or, equivalently, d(X') C d(X). If X is restricted to
planar configurations, then the inclusions are in fact equalities, s(X) = s(X")
and d(X') = d(X), respectively. In this case we also write X = X’. (Cf.
Theorem A.1.)

— Dimension. The dimensions of the linear spaces s(X) and d(X) are related to
the dimension of the configuration by dim s(X) = n—px—1 and dimd(X) =
px + 1, respectively. (Cf. Theorem A.2.)

— Shape and depth theorem. There exists a perspective transformation P such
that P(X) £ Y with depth a if and only if as(X) C s()), or, equivalently,
ad(Y) C d(X). If X is restricted to planar configurations, then the inclu-
sions are replaced by as(X) = s()) and ad()) = d(X), respectively. (Cf.
Theorem B.1.)

— Definition of S- and D-matrices. By an S-matrix of X' is meant a matrix
having s(X) as column space. By a D-matrix is meant a matrix having
d(X) as row space. Passage between different S-matrix representations is
performed by multiplication from the right by a non-singular matrix. (Cf.
Definition A.2.)

— Focal point theorem. If as(X) C s(Y), then there exists a projection Py :
X — Y if and only if

n n
o=> amX*/> am ,
k=1 k=1

where n € s(Y) \ as(X). The compound configuration (X,¢) thus has an

S-matrix
g _ | diag (@)Sy
(X7¢) - _aTSy °

(Cf. Theorem B.2.)

3 Multiple views

3.1 Main theorem

Suppose that Y',... , Y™ € C,» are projective images of one and the same
configuration X € Cp 3. The shape and depth theorem implies that a's(X) C
(YY), ..., a™ms(X) C s(Y™), or, equivalently,

s(X)cats(QY') , ..., s(X)cams(y™), whereal,...,a™ €d(X) .



From this the equivalence between the first two items in the following theorem
follows. An analogous argument for the depth space yields the equivalence with
the third item.

Theorem 1. Structure theorem. Let X € Cy, ,. The following statements are
equivalent:

— YVt € Cphp_1 is a projective image of X with depth vector a*, i =1,... ,m,
where not all projections are flat,

~s(X) =atsOM ) ... Nams™),

—d(X) =ard(Y') + ...+ a™d(Y™).

First note the ambiguity in the last two items, consisting in that they remain
valid after multiplication with any 8 in d(X), giving rise to a new consistent
reconstruction, with shape space 8s(X). This is the shape-depth formulation of
the well-known projective reconstruction ambiguity, cf. [14]. Also note that since
dim d(X) = 4, the ambiguity is governed by four independent components of .

To indicate the usage of the theorem, consider the equivalence of the first two
items in the case m = 2. First normalize by multiplying by 3 = o', then put ¢® =
a?/at, and let A)| denote the corresponding reconstructed object configuration.
Here q? is called kinetic depth, and the notation )| comes from the fact that »t
is formed by a parallel projection. The condition to fulfill is

s(A)) = s (@s(V?) - (1)

To analyze this condition, choose S-matrices Sy1, Sy=, and form the com-
pound matrix

W, (V',Y?) =[Sy | diag(@")Sy2] -

A dimension argument yields that a necessary condition for (1) to be fulfilled is
that

dmNW,(Y", V) =n—-p—-1 <= rankW,(Y',V?)=n—-p+1.

One way to proceed is by forming polynomial equations from the vanishing
of all subdeterminants of W, of order n — p. For reasons that will be discussed
in Section 3.3, we prefer another method, described in Section 4.1. However,
once g2 is determined, A can be computed as the intersection space in (1), after
which all other consistent reconstructions are obtained by multiplication with
B € d(X)). As remarked above, this gives a four parameter family of solutions
to the reconstruction problem.

3.2 The Chasles matrix

Next we combine Theorem 1 with the focal point theorem, to describe the inter-
play between structure and motion. By means of the S-matrices of the respective



images and the depth vectors @', ... ,@™, a compound matrix, called the Chasles
matriz, is formed

diag (aTl)Syl -+ diag (@™)Sym
—at Syl 0
ct,...,ymat,...,am) = 0 0 . (2
0 o —am T Sym

Theorem 2. Structure and motion theorem. Let X € C, ,. The following sta-
tements are equivalent.

— V¥ € Cyp-1 is a projective image of X with depth vector of, i = 1,...,m,
where not all projections are flat,
— the Chasles matriz C(Y*,... , Y™ a',... ,a™) is an S-matriz of the com-

pound configuration (X, ¢, ... ,¢™).

From this theorem it follows that a necessary and sufficient condition for
geometric consistency is that the Chasles matrix has rank m+n—4. In particular,
this means that when having fixed the locations of four of the m + n points
X1,..., X, ¢4, ... ,¢™, all the others are known too, as linear expressions in
the four selected points. These expressions can be read out explicitely from the
Chasles matrix, as illustrated by the following example.

Ezample 1. Let Y' and Y? be defined by their S-matrices

8 8 1 5
—4 -1 -1 2
Syl =|-1-4], Syz = 1—-4
-3 0 -1 0
0-3 0-3
Then
8 8 7, g
-4-1-g, 2g,
Wq(ylayQ) =|-1-4 g; —4q;,
-3 0-q, 0
0-3 0—3g;

One verifies that if § = (3,6,9,1,2), then rank W, = 3. According to (2), a
Chasles matrix is obtained by enlarging W, with two rows, in such a way that
all column sums vanish:

8§ 8 3 15

—-4-1-6 12

A —-1-4 9-36
C(ylayz)laq) =|-3 0-1 0
0-3 0 —6

00 0 0
0 0-5 15



Here the first five rows correspond to points of X, while rows six and seven
correspond to ¢' and ¢2, respectively.

Another Chasles matrix is obtained by elimination of the ¢?-component in
the fourth column:

8§ 8 3 24

—4-1-6-6

—-1-4 9-9

C(y17y2717q)= -3 0-1-3
0-3 0-6

0 0 0 O

0 0-5 0

From the fourth and third columns of C we read out that
. 1
s(X)) = linear hull (8, -2,—3,-1,—-2) and ¢ = g(3X1 —6Xy +9X3— X,) .

Moreover, from the first column it follows that P! is a parallel projection in the
direction

—4X: Xy — X1 X5 -3X1 Xy,

which determines the point at infinity ¢!.

By this we have completely described one solution of the structure-motion
problem. All other solutions are generated by letting @' run through d(X)), i.e.
the hyperplane 83 — 2@ — 3@t — @ — 2@ = 0, with four degrees of freedom.
One example of such an @' is (3,3,2,6,3). Then &* = a'g = (9,18,18,6,6) ||
(3,6,6,2,2), which gives the Chasles matrix

24 24 3 15
~12 -3-6 12

—2-8 6-24

cC V% ata?)=|-18 0-2 0
0-9 0 —6

8—4 0 0

0 0-1 3

After elimination of a ¢'-component of the first image, and a ¢?-component of
the second, we obtain another Chasles matrix

24 72 324

—~12 —18 —6 —6

—2-18 6—6

cCY, V% at, %) = | —18 —18 —2 —6
0-18 0-6

8 0 0 0

0 0-1 0

Now all characteristics of the structure-motion problem, the shape of A" as well
as the focal points, can be read out:

s(X) = linear hull (4,—1,-1,—1,-1) |
P =-3X1 +3X, +1X3+ 2X,
¢? =3X; —6Xy +6X3 —2X, .



Note that columns two and four are parallel, and that both describe the shape
of X. This is what could be expected from the fact that the object configuration
has not changed between the imaging instants. Also note that a's(X) = s(X)),
in accordance with the discussion above.

3.3 Relation to fundamental matrices and multilinear forms

To fix the ideas, consider the case of 5-point configurations, and choose S-
matrices so that

M M | G0t G
M Me | Tl Galss
W, (V'Y = | nhy mh | Tam31 Qaie
1 0| -g 0
0 —1| 0 —g

By the discussion after Theorem 1, the necessary and sufficient condition
for geometric consistency is rank W, = 5 — 4 + 2 = 3, or, equivalently, that all
4 x 4-subdeterminants of W, vanish. Consider for instance the subdeterminant
obtained from the rows 1,2, 3,4. Put ¢* = [n}, nd, nd)T, 2 = [nd, n3, 03T, Tt
is readily verified that the subdeterminant condition can be written

T 0 By —B
Cl ¢C2 =0 with & = _Bl 0 B3 dla‘g (61762763) )
By, —B3 0

and L
77%1 217751
N41 94M11

77%1 g2n§1
N41 94M11

n31 T3

B, =|M14
7 Ik @und

This shows that (17 &¢2 = 0 is a necessary condition for the points ¢ and (2 in
the respective images to match. This is the classical epipolar constraint, cf. [2],
and the matrix @ is the fundamental matrix with respect to this particular choice
of frames. The factorization of & was discovered in [6], in a slightly different
setting, where it was called the reduced fundamental matriz. In an analogous
way, trilinear and multilinear forms appear by taking subdeterminants of W,
when m > 2.

In the case of exact data, the statement that W, has rank 3 is equivalent
to the vanishing of a number of appropriately chosen subdeterminants, some of
which can be interpreted as fundamental matrices. However, using such a finite
family of algebraic conditions in the presence of noise, there is no longer any
guarantee for the fulfillment of the rank condition. The same objection remains
in the case of multilinear forms, and depicts a drawback of algorithms based
on fundamental and multilinear forms. Another disadvantage is the coordinate
dependency, which may require rules for coordinate normalization.

All these problems are avoided by working with the matrix W, and the
Chasles matrix, where, loosely speaking, simultaneous and uniform averaging is



done over all conceivable constraints. One is lead to a viewpoint, where there is
nothing special with the epipolar constraint compared to the other constraints
that can be drawn from Theorem 1, except that contrary to most of the others,
the epipolar constraint has a nice geometric interpretation.

3.4 Proximity measures

Intending to work with linear algebraic methods instead of polynomial equa-
tions, a quantitative tool for comparison of the correlation of linear subspaces
is needed. In fact, the shape and depth theorem (single view) and the structure
theorem (multiple views) both make assertments about the intersection of linear
subspaces. In the single view case, the condition is that the intersection space
of as(X) and s()) coincides with as(X), and in the multiple view case, the
condition is that the n — 3-dimensional subspaces s(J!),... ,s(J™) intersect in
an n — 4-dimensional subspace. This leads to the formulation of the

General problem: Measure the rate of c-dimensional coincidence between
linear subspaces Vi,...,V,, of R".

To construct such a measure, let Py denote the orthogonal projection matrix
onto V. Then there is a chain of equivalences,

zeVin...NVy, <= L(Ppz+...+Py2) =12 <
 eigenvector with eigenvalue 1 of M = L(Py, +...+ Py,,) .

It follows that Vi, ... ,V,, intersect in a c-dimensional subspace if and only if the
eigenspace corresponding to the eigenvalue 1 of M has dimension c. Hence the
matrix I — M has rank deficiency c. A natural measure of this rank deficiency
is the c:th smallest eigenvalue of I — M. An equivalent choice, more suitable for
convergence studies of the algorithms below, is the following prozimity measure:

[«
Vi, , V) = (Z A)1/2 where A\ < ... < A, are eigenvalues of I — M .
k=1

In connection with single and multiple view geometry, as described by the
shape and depth theorem and the structure theorem, V' = s()) for some ).
Taking an S-matrix for ) with orthogonal columns, the projection matrix can
be written SST. Using these theorems, a complication is the unknown depth
parameters that appear. Violating slightly the orthogonality claim, in the case
of single views below we work with the matrix

1
M= 5(Asms*;A + SyS3) with A=diaga,
and in the case of multiple views, with the matrix
1
M = —(Sy, ST + Q257,8%. Q2+ ... + QmSy,. SH Qm) ,

with Q; = diag(q®), i = 1,... ,m. An analogous construction can be done with
depth spaces instead of shape spaces, cf. [8].



4 Algorithms for projective reconstruction

4.1 Complete data, no occlusions

By the discussion above, the problem is to determine kinetic depth vectors ¢ so
that the m-image analogue of (1) is fulfilled for some &. This can be done by
the following algorithm, introduced in [18]. A dual version, using depth instead
of shape spaces, leads to factorization methods generalizing the one of [20], cf.
[8]. The algorithm reads:

1. takeg* =1fori=1,...,m,

2. compute an estimate of X by means of multiple view proximity,

3. knowing an estimate of X', compute for each image i an estimate of the
kinetic depth vector o’ by means of single view proximity, and form the
corresponding kinetic depth vector ¢?,

4. goto 2 or STOP, according to some criterion.

It can be shown that the sequence formed by the successively computed
values of the proximity measure, (m1)$°, decreases and convergences to a local
minimum of 7, considered as a function of ¢',...,¢™. Also the successively
computed kinetic depth values and reconstruction estimates converge. In the
case of exact data, and sufficiently many images and points, there is a unique
minimum, corresponding to the true values of kinetic depth and the true object
configuration X. Empirically, the algorithm convergences very rapidly, in 10-20
iterations.

Given a, compute X

Given «, compute X

Given X, af Given X
Given X, compute « —
compute aM

compute af

Fig. 1. Left loop: algorithm of Section 4.1. Right loop: algorithm of Secion 4.2.

The convergence can be proved by observing that the minimization problem
hidden in the proximity measure can be formulated

m= _inf inf||[M(¢*...,q™) = P||gob
¢?,...,q" P

where P runs through the orthogonal projection matrices of rank n — 4. This
minimization problem can be studied by classical analytical methods.



4.2 Missing data, occlusions

The algorithm above can easily be modified to handle also the the situation of
missing data, i.e. when not all points are visible in all images. In this case the
second step of the algorithm in Section 4.1 is divided into two:

3’ knowing an estimate of X, compute by means of single view proximity for
each image i a depth vector a®* corresponding to points present in image i,

3" compute for each image i the depth vector o™ corresponding to the missing
points, using that the total depth vector o! € d(X).

The algorithms have been tested on images of a London scene, provided
by Fraunhofer IGD within the CUMULI project. Six images have been used,
taken at different locations on the river bank of the Thames. Forty points were
manually detected in the images, where due to occlusions about 20 % of data
was missing. The outcome is illustrated in Figure 2 and Figure 3, left diagram.

5 Using subsidiary information

5.1 Coplanarities

In man-made scenes, one often knows apriori that certain points are coplanar.
The formalism of affine shape is well adapted to this situation. Suppose for
instance that the first four points are coplanar. Then s(X) contains an element
where all components except the first four vanish (cf. (i) in Example A.1). Hence,
for a given S-matrix, there is a column vector z such that

X X oo X
X X - X
X X o+ X
x| | X+ X
0] = | x--- x|*-
0 X o0 X
N————
Sx

In case of non-exact data, this can’t be expected to be fulfilled exactly. Ho-
wever, by a least square argument, the S-matrix can easily be adjusted to fulfill
one or several coplanarity conditions. For instance, in the situation above, let &
be the element in s(X) that is closest to the linear space U consisting of vectors
with vanishing components 5, ... ,n, and let £’ be the projection of £ on U. Let
&+ be the orthogonal complement of ¢ in s(X). Then & @ ¢+ is the subspace
of Xy that is closest to s(X) in proximity measure 7. It is shape space of some
configuration X', obeying the coplanarity constraint. In the same way, multiple
coplanarity constraints can be handled.

This leads to an algorithm, illustrated by the left hand loop in Figure 4,
yielding projective reconstruction of an object fulfilling a family of coplanarity
constraints.
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Fig. 2. Two of the six images used of a London scene. The symbols x denote the point
configuration used, consisting of 40 points, with lots of occlusions. The circle symbols
denote backprojection of reconstructed points, as if the scene had been transparent.
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Fig. 3. Bird-eye perspectivities of the London scene, with placement of four points
on the left building according to a city map. Left image: Projective reconstruction
without using subsidiary information. Right image: Affine reconstruction, corrected for
coplanarities given by the walls, and parallelities given by roofs, walls, windows and
ground.

5.2 Parallelity

Often one knows not only that certain points A, B,C, D are coplanar, but also
that some lines AB and CD connecting them are parallel. If sufficiently many
such parallelities are known, the projective reconstruction can be strengthened
to an affine one. In fact, it is easily seen that (cf. (ii) in Example A.1) AB || CD
if and only if

a
—a

b
_8 € Bs(&)) for some a,b .

0

This leads to a linear system of equations in 3, from which the depth in the first
image can be determined, yielding an affine reconstruction of the object confi-
guration X. If Euclidean coordinates of four points are known, then Euclidean
reconstruction of the whole configuration is achieved. An algorithm is described

by the left hand loop in Figure 4. The performance on the London images is
illustrated in Figure 3, right diagram.

5.3 Known focii locations

By means of Theorem 2 it is also possible to use the affine shape formalism to
make Euclidean hand-eye calibration, even in the case of uncalibrated cameras,
provided that the focal points are known. In fact, knowing the affine shape of the
configuration formed by five or more focal points, from the Chasles matrix the



—»| Given «, compute X —»Given a, compute X

1

enforce coplanarities focii loca’ciOE

and parallelities

Given X, af] Given X Given X, o] Given X

M rompute af

compute o™ compute of compute o

Fig. 4. Left loop: algorithm of Section 5.1 and 5.2. Right loop: algorithm of Secion 5.3.

depth in the first image can be computed, cf. [9], by iterative solving of linear
systems of equations. This is done by a similar argument as the one behind
the algorithm in Section 5.1, and yields an affine reconstruction. When knowing
Euclidean coordinates for the focal points, from the Chasles matrix also the
location of all objects points can be computed, yielding Euclidean reconstruction.
An algorithm is described by the right hand loop in Figure 4. Figure 5 illustrates
the typical performance of the algorithm on simulated data, in a situation where
the focal points are densely distributed far away from the object. It is interesting
to note that the impact of image noise mainly consists in a translation of the
object along the ray of sight, while its shape is preserved to a large extent.

Fig. 5. Left diagram depicts focal points by squares and object points by circles. Right
diagrams depicts true object points by circles and reconstructed points by crosses, in
the presence of image noise.
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Appendix

A Affine Shape and Depth

In this section, a brief recapitulation of the definitions and the basic properties
of affine shape and depth spaces is given. For more details and proofs, see [12],
[13], [14], [15], [16], [17], [18].

A.1 Subspace formulation

Let A? denote an affine space of dimension d, where the cases d = 2 and d = 3 are
of particular interest. In our approach, the primitive objects are not individual
points of A%, but point configurations,

X=(Xx',...,X"), where X*e€cA? k=1,...,n.

By the dimension px of X is meant the dimension of the smallest affine subspace
containing X. Let the set of n-point configurations of dimension p be denoted
Cn,p- For instance, Cy, 2 consists of n-point configurations in A3 which are planar
but not linear.

The main idea of the approach of affine shape is to peel off any dependency
of the coordinatization of A% on the parametrization of C, ,. To construct such
a parametrization, consider two different coordinate representations x and Z on
A?. Here £ = Bz + b, where B is a non-singular d x d-matrix, and b is a column
matrix. For a given configuration X, to the respective coordinate representations
we associate matrices with the coordinate vectors as columns, but augmented
with a row of ones,

Then
3)

In this way, the set of augmented coordinate matrices is partitioned into
equivalence classes, each of which can be identified with one particular point
configuration. The problem is to label these equivalence classes. This is done by
means of the two consequences of (3):

X, =AX, with Az[Bb] .

01

N(XG) :N(Xa) ) RI‘OW(Xa) = RI’OW(Xa) )

where A stands for ‘nullspace’ (column) and Rrow for ‘row space’. We have seen
that these linear subspaces discriminate between point configurations. On the
other hand, one readily verifies that if N'(X) = N (X) or Rrow(X) = Rrow(X),
then there exists an affine transformation A such that X, = AX,. This shows
that the linear subspaces N'(X,) and Rrow(X,) stand in a one-one correspon-
dence with the set of point configurations. Since they are independent of the
coordinatization of A?, the following definition makes sense.



Definition A.1. Let X, be an augmented coordinate matriz for X € C, , with
respect to some coordinate system. Then

the affine shape space of X, denoted s(X), is defined by s(X) = N (X,),
the affine depth space of X, denoted d(X), is defined by d(X) = Riow(Xs)-

Often we use abbreviated denominations, saying e.g. ‘affine shape’; ‘shape
space’ or simply ‘shape’ instead of ‘affine shape space’, analogously for depth.
The denomination ‘affine depth’ will be motivated in Remark 1 below. Affine
shape also has an interpretation in terms of barycentric coordinates, cf. e.g. [13].

The discussion above is summarized in the following theorem, saying that
affine shape and affine depth are complete affine invariants.

Theorem A.1. Let X, X € Cp,. The following statements are equivalent:

— X and X can be mapped onto each other by an affine transformation,

- 3()_() = S(X):
— d(®) = d(X).

To continue, some further notations are needed. Let

So={6€ (&, &) R | Y & =0},

k=1

and let a multiplication on R™ be defined by
a = (04151,... ;anfn) if a= (0417--- aan)a = (517--- ;fn) .

In the same way, division &/« is defined by componentwise division, provided that
a; 70, i=1,... ,n. We use the notation @ = 1/a, where 1 = (1,...,1) € R™.
Finally, for the situation in Theorem A.l we use the notation

X £ X <= X and X have equal shape .

The following example is crucial for some common kinds of subsidiary infor-
mation. It shows that shape spaces mirror a lot of qualitative information about
point configurations.

Example A.1.
(i) Let X = (X!,...,X™). Then the sub-configuration (X*1 X*2 Xks Xk4)
is planar if and only if

E XM 4+ G, XM =0 with &, +...+&, =0.

Hence s(X) contains an element £ = (&,...,&,) where all components except
fkl g 7£k4 vanish.

(ii) One readily verifies that in (i), the vectors X*1 X*k2 and XksXk+ are
parallel if and only if &, = —&,, ks = —&k, - In particular, (X1, Xk2 Xks Xka)
forms a parallelogram if and only if +&, = £&, = +&, = £&,, with two
positive and two negative signs.

(iii) It can be shown that the vector X% X*2 is parallel to the plane span-
ned by the points X*2 X*s X*s if and only if s(X) contains an element £ =
(&1,-..,&n), where all components except &, , ... ,&k, vanish and &, = —&g,.




Theorem A.2. Let X € C,, ,. Then

— the affine shape space fulfills
o dims(X)=n-p—1,
[ ] S(X) C 20,
— the affine depth space fulfills
o dimd(X)=p+1,
e 1=(1,...,1) e d(X),
— the affine shape and depth spaces are connected by
e d(X)s(X) =0,
e 5(X)® d(X) =R".

The theorem says that the generic dimension of s(X) is n — 3 for 2D-
configurations, and n — 4 for 3D-configurations. In the same way, the generic
dimension of d(X) is 3 for 2D-configurations and 4 for 3D-configurations.

By the last item, the shape and depth spaces of an n-point configuration
are orthogonal complements of each other in R?, s(X)° = d(X), d(X)° = s(X).
Although this makes one of them seem superfluous, it is practical to use them in
parallel since they embody different aspects of the geometry, with shape space
directed on point configurations and depth spaces on transformations.

The following theorem generalizes Theorem A.1 to non-singular transforma-
tions, typically from 3D to 2D.

Theorem A.3. Let X € Cn, and X € Cpnp_1. The following statements are
equivalent:

— X can be mapped onto X by an affine transformation,
— s(X) C s(X),
— d(X) Ccd(X).

A.2 Matrix formulation

To make numerical computations, matrix representations of the linear spaces
s(X) and d(X) are needed.

Definition A.2. Let X € C, ,. Then

— by an S-matriz of X is meant a matriz with column space s(X),
— by a D-matriz of X is meant a matriz with row space d(X).

Note that X, is a D-matrix of X. The following example illustrates some
typical computations with S-matrices.

Example A.2. Let



We claim that this is an S-matrix of some configuration X € Cg2. In view
of Theorem A.2, first note that the matrix fulfills the necessary conditions of
having rank 3 and vanishing column sums. The column space is unaffected by
multiplication from the right by a non-singular matrix. In particular, using the
inverse of the submatrix of S formed by the rows 3, 4 and 5, we obtain a new
matrix with the same column space,

0-2-4
2 0 2
-1-1-2

The corresponding elements of the columns of the matrix on the right hand
side provide the barycentric coordinate representations for the points X3, X*
and X5, respectively, with respect to the affine frame X', X2, X%. Here in fact
more can be said. Thus the first column says that,

|
—_

-1

I
|
O OO — NN
|
—_ O RO M

(I
—= =N O NN
|
ONN RO
|
-0 0o O O

—_ = O N

1 1
X3=_-x'4+_-Xx?
2 + 2 ’
which means that X1, X2, X3 are collinear, and that X3 is the centroid of X!
and X2. The second column says that
X'+ X?2-X34+X'=0,

which means that X!, X2, X3 X* are vertices of a parallelogram. Finally, the
third column says that

-X°+Xx%=0,

i.e. that the points X° and X°® coincide.

So far, we have avoided ‘points at infinity’. The following example illustrates
how they can be treated within the framework of affine shape.

Example A.3. Let X', X2, X3 be three fixed points, and let X* be defined by

XX = w&XTX2 4+ wé X1X3 . (4)

Then s(X) is a one-dimensional subspace of R*, generated by the vector (1 —
wés — wész, wés, w3, —1). Letting w — oo, by (4) we are led to interpret X* as
the point at infinity in the direction & X1X?2 + £ X1 X3, Taking limits also of
s(X), where X = (X1!,..., X*), one finds that

S(X) = {(5175275370) with El +£2 +£3 = 0} .



A.3 Relation to Grassman manifolds

During the last few years, Grassman-Cayley and exteriour algebra has attracted
some attention in computer vision, cf. e.g. [1]. The discussion below aims at
explaining the place of affine shape and depth in this context.

By Theorem A.2, every point configurations X obeys the inclusion s(X) C
Y. Conversely, every linear subspace U of X is shape space for some point
configuration. In fact, if dimU = o, in the same way as in Example A.2 it is
seen that U = s(X) for some configuration X of dimension pxy =n —o — 1. By
Theorem A.3 we thus have a one-to-one correspondence between linear subspaces
of Xy and point configurations modulo affine transformations,

C”ap/a’ffE G(ann —p— 1) )

where G(Xy,d) denotes the Grassman manifold consisting of all d-dimensional
linear subspaces of Yy C R"™.

The connection to Grassman algebra can be made more precise. For instance,
let X be a planar 4-point configuration, with an augmented coordinate matrix
X,. By definition, the S-matrix, which in this case only has one column, is
obtained by solving for the nullspace of X,. Cramer’s rule yields the components

T;iT; T
gijk = det [1 1] 1k:| . (5)

These are recognized as Pliicker coordinates of the subspace s(X) in R*. The
same holds true for bigger configurations. For instance, if X’ is a 5-point confi-
guration, then all x:es in the S-matrix

Sy =

OX X XX
XOX X X

are Pliicker coordinates for s(X).

From this we learn that in uncalibrated camera geometry, it is only parame-
ters of the form (5) that matter. In fact, regardless of the choice of coordinate
system, image data organize themselves into such packages. An important fea-
ture of the approach by affine shape is that the array structure of the S-matrix
adds further geometric information, compared to the Pliicker coordinates alone.

B Projective transformations and spaces

B.1 Background

By a perspective transformation P : A> —s A? with focus ¢ and image plane
IT is meant a transformation such that every point X € A? is mapped to the
point of intersection of IT and the line ¢ X. Perspective transformations are used
to model the pinhole camera. Whenever the focus is of interest, the notation P
will be used.



To deal with perspective transformations and their compositions, the pro-
jective transformations, to get a coherent theory one has to adjoin points at
infinity to the ambient affine space. As described in Example A.3, such points
can be interpreted as directions in A3. This gives a model for the d-dimensional
projective space P4. If ¢ is a point at infinity, then Py is a parallel projection in
the direction described by ¢.

IfY = Ps(X), then X = agY for some q, called the depth of X with respect
to Y. If ¢ is a point at infinity, the depth is by definition 1. If a configuration X is
mapped onto a configuration ) by a perspective transformation, and the depth
of X* with respect to Y* is ay, k = 1,... ,n, then the vector a = (a,... ,a,) €
R" is called the depth vector of X with respect to ).

B.2 Shape, depth and projective transformations
The following theorem gives a complete description of the single view geometry.
Theorem B.1. Shape and depth theorem.

(i) If X,Y € Cp,p, then the following statements are equivalent:
o there exists a perspective transformation P, such that P(X) = Y with
depth vector a,
o as(X) =s()),
o ad()) = d(X).
(i) If X € Cpp, Y € Cpp—1, then the following statements are equivalent:
e there erists a perspective transformation P, such that P(X) £ Y with
depth vector «,
o as(X) C s()),
e ad()) C d(X).

Remark 1. Now the terminology ‘affine depth space’ can be motivated, giving
the answer to the question: Which depths can occur in conjunction with X'?7
From Theorem B.1 and the fact that every subspace of Xy is a shape space, it
follows that « is the depth of a perspective mapping acting on X if and only if
as(X) C Xy, i.e. a € s(X)°. Since, by Theorem A.2, s(X)° = d(X), the name
‘depth space’ for d(X) is adequate.

B.3 Location of focal point

By Theorem B.1, there exists a projective transformation from 3D to 2D, Py :
X — )Y, with depth «, if and only if there holds a strict inclusion between
linear subspaces, as(X) C s()). According to the following theorem, there is a
one-to-one correspondence between ¢ and the set-difference s()) \ as(X), and
it is possible to express ¢ in terms of X by an explicit formula. In formulating
the theorem, a degenerate case called ‘flat projection’ has to be singled out,
for details see [17]. If X' is an n-point configuration and ¢ a point, then (X, ¢)
denotes the n + 1-point configuration formed by adjoining ¢ as an n + 1:th point
after the points of X.



Theorem B.2. Focal point theorem. Suppose that as(X) C s(Y), where a €
R*, X € Cpp, and Y € Cpp—1. Then Y = Py(Y) with a non-flat projection Py
if and only if

¢=> @mXr/ D> n , (6)
k=1 k=1

with n € s(Y) \ as(X). Analogously when ¢ is a point at infinity. In either case,
the compound configuration (X, ) has an S-matriz

(7)

B.4 Depth, shape and camera matrices

With z, y denoting object and image coordinates, respectively, the camera matriz

P fulfills P [ﬂ = [g{] . For point configurations, it follows that

PX,=Y,A, with A=diag(\,...,\n) .

The camera matrix of course depends on the coordinate systems used for the
scene and the images.

From the equation PX, = Y, A one reads out that each row of Y, A is a
linear combination of the rows of X,, with coefficients from P. It follows that
Ad(Y) C d(X), where A = (A1,...,A,). Conversely, if Ad(Y) C d(X) it can
be shown that there exists a matrix P such that PX, = Y,A. This depicts
the connection between camera matrices and depth and shape spaces, and that
A = « is the depth vector of the camera transformation.

Working with camera matrices, it is well known that the focus is obtained as
the nullspace of the camera matrix. Theorem B.2 gives a novel characterization,
having the advantage of providing an explicit formula for the focal point in terms
of the object X. To see the connection, take n € s()). From PX,A"! =7,, it
follows that PX,A 'y = Y,n = 0, which shows that X,A4 15 belongs to the
nullspace of P, and thus is a focal point.



