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Abstract

In this paper a novel recursive method for estimating structure and motion from image sequences is
presented. The novelty lies in the fact that the output of the algorithm is independent of the chosen coor-
dinate systems in the images as well as the ordering of the points. It relies on subspace and factorization
methods and is derived from both ordinary coordinate representations and camera matrices and from
a so called depth and shape analysis. Furthermore, no initial phase is needed to start the algorithm.
It starts directly with the first two images and incorporates new images as soon as new corresponding
points are obtained. The performance of the algorithm is shown on both simulated and real data.

Moreover, the two different approaches, one using camera matrices and the other using the con-
cepts of affine shape and depth, are unified into a general theory of structure and motion from image
sequences.

Key words: Projective reconstruction, recursive structure from motion, factorization methods,
coordinate invariancy

1 Introduction

The problem of reconstruction of an unknown scene from a number of its projective images, obtained
from uncalibrated cameras, has been treated by many researchers during the last years. This problem
has sometimes been referred to as the structure from motion problem (SFM). However, since also the
ego-motion of the camera is obtained, structure and motion from images sequences would be a better de-
scription. The first result obtained was that it is only possible to reconstruct the scene up to an unknown
projective transformation, see for example [11] and [1].

Some present reconstruction algorithms rely on particular choices of coordinates in the images and
the (unknown) object, e.g. projective or affine coordinates, where some points are sorted out in order to
build up a basis, see [1], [8], [9] and [3]. The drawback of selecting some points to build up a basis is,
firstly, that all points are not treated uniformly and, secondly, that the measurement errors may propagate
uncontrollably.

Other algorithms rely on the so called multilinear constraints. These are obtained from 2, 3 or 4
images and are called bilinear, trilinear and quadrilinear constraints respectively. They express the
fact that the image coordinates have to fulfil a constraint that is linear in the coordinates of each image
separately. For 2 images the bilinear constraint is expressed by the fundamental matrix and is some-
times called the epipolar constraint. For 3 and 4 images the trilinear and quadrilinear constraints are
expressed by the trifocal and quadrifocal tensor respectively. Then there are no multilinear constraints
and tensors involving more than four images. The drawback of the reconstruction algorithms relying on
these constraints is that they can only deal with 2, 3 or 4 images and there is no generic way to extend
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these algorithms to more images. These types of algorithms can be found in [2], [4] and [6] among
others.

Recently, some work has been done on finding more generic algorithms, that can deal with any
number of images and points in a unified manner. One such attempt has been made in [15], where
an extension of the well-known Tomasi-Kanade factorization algorithm to the projective case has been
proposed. A drawback of this algorithm is that it is not independent of the chosen coordinate systems
in the images and that the relative depths of the points are needed in order to carry out the factorization.
To obtain these relative depths, the epipolar constraints have been used and thus the same problems as
described above appear.

There are also several attempts towards recursive algorithms, i.e. algorithms where more and more
images are used as they become available. One such algorithm has been presented in [10], using tools
from automated control. Another has been presented in [7], using a statistical framework. The drawback
of these algorithms, when used in the projective case, is that the result is dependent on the chosen
coordinate systems in the images and in the last case, also on the used initial values obtained from three
different images.

Another attempt towards more generic algorithms has been made in [14] and [5]. There the re-
construction problem is solved by minimizing a variational formula that is independent of the chosen
coordinate system in the images and the ordering of the points. In this paper we will extend these algo-
rithms to the recursive case, where more and more images are incorporated as new corresponding points
become available.

The algorithm derived in [14] relies on the concepts of affine shape and depth, developed in a series
of papers, see for example [11], [12] and [13]. On the other hand the algorithm used in [5] relies on the
standard formulation with camera matrices. However, the final algorithms shows a lot of similarities and
one of the goals of this paper will be to investigate and clarify these similarities.

This paper is organized as follows. In Section 2 we give a brief formulation of the projective structure
from motion problem, first using coordinates and later subspaces. In Section 3 we present two dual
methods to solve this problem and in Section 4 these methods are extended to the recursive case. These
methods give reconstructions that are independent of the coordinate systems in the images as well as
the ordering of the points. Moreover, the similarities between these methods are exploited and they are
shown to be dual to each other. In Section 5 three different experiments are given, two using simulated
data and one using real image data. The first simulated experiment is with randomly chosen camera
positions and the second is with slowly varying camera movement. It is shown that the resulting back-
projected errors in the images are only 50% larger than the standard deviation of the added noise. The
experiment on real image data is done on a sequence of images of a toy-block scene. Finally, in Section 6,
some conclusions are given.

2 Problem Formulation

The image formation system (the camera) is modeled by the equation

λ

��
u
v
1

�������
γ f s f x0

0 f y0

0 0 1

����
R 	�
 Rt �

�� x
y
z
1

����� �

λu

�
K

�
R 	�
 Rt � x �

(1)

Here x

���
xyz1 � T denotes object coordinates in extended form and u

���
uv1 � T denotes extended image

coordinates. The scale factor λ, called the depth, accounts for perspective effects and � R � t � represents a
rigid transformation of the object, i.e. R denotes a 3 � 3 rotation matrix and t a 3 � 1 translation vector.
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Finally, the parameters in K represent intrinsic properties of the image formation system: f represents
the focal length, γ the aspect ratio and s the skew, modeling the geometry of the light sensitive elements
and � x0 � y0 � is called the principal point, interpreted as the orthogonal projection of the focal point onto
the image plane. The parameters in R and t are called extrinsic parameters and the parameters in K are
called the intrinsic parameters. Observe that there are 6 extrinsic and 5 intrinsic parameters, in total
11, the same number as in an arbitrary 3 � 4 matrix defined up to a scale factor. If the extrinsic as well
as the intrinsic parameters are unknown, (1) can compactly be written

λu

�
Px � (2)

In the following we will assume that we have n points (with known correspondences) in m different
images and that the intrinsic, as well as the extrinsic parameters, are allowed to vary between the different
imaging instants. Let ui � j

� �
ui � j vi � j 1 � T denote the extended coordinates of point number j in image

number i and let x j

���
x j y j z j 1 � T denote the extended coordinates of point number j in the object. Then

(2) takes the form

λi � jui � j

�
Pix j � (3)

where Pi denotes the i:th camera matrix and λi � j the depth of point j in image i.
Introduce the following notation for the extended coordinates of the points in image i

Ui

� ��
ui � 1 ui � 2 ui � 3 � � � ui � n
vi � 1 vi � 2 vi � 3 � � � vi � n
1 1 1 � � � 1

��
� i

�
1 � � � � � m � (4)

The extended object coordinates will be described by

X

� �� x1 x2 x3 � � � xn

y1 y2 y3 � � � yn

z1 z2 z3 � � � zn

1 1 1 � � � 1

����� � (5)

Finally, it is convenient to describe the depth, λi � j in (1), of point j in image i by the diagonal matrices

Λi

� �� λi � 1 0 � � � 0
0 λi � 2 � � � 0
...

...
. . .

...
0 0 � � � λi � n

������ � i

�
1 � � � � � m � (6)

Now, (3) can be written as follows,

UiΛi

�
PiX � i

�
1 � � � � � m � (7)

Denote the linear subspace in IRn spanned by the rows in Ui by Di, i.e.

Di

�
linhull

�
ūi � v̄i � 1̄ � :

�
�

µ1x̄i � µ2ȳi � µ31̄ 	 µi � IR � � (8)

Here linhull denotes the linear hull, ūi and v̄i denote the vector consisting of the x- and y-coordinates of
the points in image i respectively and 1̄ denotes an n-vector consisting of 1:s, i.e.

ūi

�
� ui � 1 � ui � 2 � � � � � ui � n � � (9)

v̄i

�
� vi � 1 � vi � 2 � � � ��� vi � n � � (10)

1̄

�
� 1 � 1 � � � � � 1 � � (11)
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Similarly, let D denote the linear subspace in IRn spanned by the rows in X, i.e.

D

�
linhull

�
x̄ � ȳ � z̄ � 1̄ � � (12)

where x̄, ȳ and z̄ denote the vector consisting of the x-, y- and z-coordinates of the object points respec-
tively, i.e.

x̄

�
� x1 � x2 � � � � � xn � � (13)

ȳ

�
� y1 � y2 � � � � � yn � � (14)

z̄

�
� z1 � z2 � � � � � zn � � (15)

Let ΛiDi denote the linear space

ΛiDi

�
�
λi � 1v1 � � � � λi � nvn 	 � v1 � � � ��� vn � � Di � � (16)

i.e. the diagonal matrix Λi is interpreted as an operator that acts on a linear subspace by multiplication
of the components by the diagonal elements. The subspace ΛiDi can also be written as

ΛiDi

�
linhull

�
Λiūi � Λiv̄i � Λi1̄ � � (17)

Proposition 2.1. The camera matrix equations (7) are equivalent to the subspace equations

ΛiDi � D � (18)

Proof. Given w̄ � ΛiDi we have from (16) and (8)

w̄

�
t1Λiūi � t2Λiv̄i � t3Λi1̄ � ti � IR �

Let w, ui, vi and 1 denote row-vectors corresponding to w̄, ūi, v̄i and 1̄ respectively we obtain

w

�
t1uiΛi � t2viΛi � t31Λi

��
t1P1

i X � t2P2
i X � t3P3

i X � D �
where the second equality is obtained from (7) and P j

i denotes the j:th row of Pi.
On the other hand, assume that (18) is valid. Then Λiūi � ΛiDi � D can be written as

Λiūi

�
p1

1x̄ � p1
2ȳ � p1

3z̄ � p1
41̄ � p1

j � IR �
In the same way Λiv̄i and Λi1̄ can be written as linear combinations of x̄, ȳ, z̄ and 1̄ with coefficients p2

j

and p3
j respectively. Then (7) is valid with � Pi � j � k

�
� pk

j � , which concludes the proof.

The subspace equation in (18) can intuitively be understood from (7) interpreted as an equation that
projects the 4-dimensional space spanned by the rows of X to the 3-dimensional space spanned by the
rows of UiΛi.

One advantage of the formulation (18) is that it is independent of the chosen coordinate systems in
the images, since Di is the same subspace for every choice of affine coordinates in the images, i.e. D i is
an affine invariant (even a complete affine invariant). This follows from the fact that an affine change of
coordinates in image i can be written as

Ûi

�
HiUi � (19)
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where Ûi denotes the new coordinates and Hi a non-singular 3 � 3 matrix of the form

Hi

� ��
a1 � 1 a1 � 2 b1

a2 � 1 a2 � 2 b2

0 0 1

��
� (20)

The coordinate change in (19) changes ūi and v̄i to

a1 � 1ūi � a1 � 2v̄i � b11̄ and a2 � 1ūi � a2 � 2v̄i � b21̄ �
which obviously spans the same space together with 1̄ as ūi and v̄i do.

A dual formulation, used in [14] can be obtained by introducing the affine shape, S i, of Ui as the
null-space to the matrix Ui in (4) and analogously for X, denoted S . Also Si is a complete affine invariant
of the point configuration described by Ui. Furthermore, Si is a perspective image of S , with depths Λi,
if and only if

ΛiS � Si � (21)

The subspaces Si and S are orthogonal complements to the subspaces Di and D , i.e.

S

�
D

�
�

�
u � IRn 	 v � u

�
0 � �

v � D � �
For further details, see [11], [12] and [13]. The equivalence between (21) and (18) follows from the fact
that (21) is the orthogonal complement of (18) in IRn, making the approach of [14] dual to the one in [5].

The advantage of the introduced notations in (4), (5) and (6) is that (1) can be written, for m images
of n points, ��

u1Λ1

u2Λ2

u3Λ3
...

umΛm

�������� �
��
P1

P2

P3
...

Pm

�������� X

�
PX � (22)

Note that the sum of two subspaces s1 and s2 is defined by

s1 � s2

�
�
x � y 	 x � s1 � y � s2 � �

Using the subspace analogy in (18), we have the following theorem.

Theorem 2.1. The camera equations in (7) can be written as the single subspace equation

Λ1D1 � Λ2D2 � Λ3D3 � � � � � ΛmDm � D � (23)

Proof. The theorem follows directly from the discussion above.

Note that (23) also follows directly from (18). Observe that since dimΛ iDi

�
3 and dimD

�
4, either

is dim � Λ1D1 � � � � � ΛmDm �
�

3 or 4. In the first case, all spaces ΛiDi coincide, which is equivalent to
that all images are projectively equivalent. Disregarding this degenerate situation, we find that equality
holds in (23).

Our goal now is to use (23) to design an algorithm for calculating X, Λi and Pi from the image data
Ui. Then X gives us the reconstruction (structure) and Pi give us the camera matrices (motion; obtained
as the null-spaces of Pi).
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The same subspace formula can be obtained in the dual approach, since (21) implies that

S � Λ̄1S1 � Λ̄2S2 � Λ̄2S3 � � � � � Λ̄mSm � (24)

where Λ̄i

�
Λ � 1

i , which again is dual to (23). By the same argument as above, equality holds in non-
degenerate situations.

Observe the well-known fact that it is only possible to reconstruct the object and the ego-motion up
to an arbitrary projective transformation, since given Pi and X, that fulfils (22), we can replace them
by PiA � 1 and AXΛ, where A is a nonsingular 4 � 4 matrix and Λ is a diagonal matrix, which makes
the last coordinate equal to one1, and (22) will still be fulfilled. Furthermore, the depths λi � j can not be
determined uniquely. The obtained depths, for a particular reconstruction, are called the relative depths,
since they can only be determined up to an unknown scale factor even when the reconstruction is fixed.

3 A Proximity Measure for Reconstruction

Before presenting a criterion for solving the structure and motion problem, we will need some funda-
mental results on projection matrices, representing orthogonal projections.

The orthogonal projection Tv of v � IRn onto the subspace T is defined according to

1. Tv � T ,

2. v 
 Tv � T
�

.

The easiest way to calculate the orthogonal projection is given in the following lemma.

Lemma 3.1. The orthogonal projection Tv of v onto the subspace spanned by the columns of M is given
by

Tv

�
M � MT M � � 1MT v �

i.e. the projection matrix is M � MT M � � 1MT .

Proof. It follows from property (1) above that Tv can be written as Mµ for some µ � IR p, where p denotes
the number of columns in M, i.e. Tv

�
Mµ. From property (2) it follows that

MT � v 
 Mµ �
�

0 � MT v

�
MT Mµ �

µ

�
� MT M ��� 1MT v � Tv

�
Mµ

�
M � MT M ��� 1MT v �

The matrix M
�
�

M � MT M � � 1MT is known as the Moore-Penrose pseudo-inverse and is also character-
ized as x

�
M

�
y being the least squares solution to y

�
Mx.

Note that if the subspace is given by the rows of M (instead of the columns), the projection matrix
becomes

MT � MMT � � 1M

instead and the projection equation becomes

T � v �
�

vMT � MMT � � 1M �
for a row-vector v.

1The diagonal matrix is only a rescaling of the point coordinates, needed to interpret the elements in the matrix X as
coordinates and not only as a representative of the subspace D .
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For convenience, we set Vi

�
UiΛi. Now, the matrix

Ti

�
VT

i � ViVT
i � � 1Vi � (25)

defines the orthogonal projection from IRn onto ΛiDi. Introduce the normalized sum of projections

T

�
1
m

m

∑
1

Ti � (26)

The purpose of the factor 1 � m in (26) is to make the size of the entries in T more independent of
the number of images, in the sense that the trace of T is independent of m. (Since T i are orthogonal
projection matrices to subspaces of rank 3, traceTi

�
3, and consequently traceT

�
3. Note that from

(23), we immediately get for any vector v � IRn, that

Tv

�
1
m

m

∑
1

Tiv � D � (27)

Since dim � D �
�

4 in non-degenerate situations, we consequently obtain that

rank � T �
�

4 � (28)

Furthermore, the matrix T becomes independent of the choice of basis in the different D i according to
the following Lemma.

Lemma 3.2. The matrix T defined in (26) is independent of the chosen basis for D i.

Proof. Let the rows of Vi be an arbitrary basis for ΛiDi. Then any other representation of ΛiDi as the
row space of a matrix is obtained by multiplying Vi by an arbitrary non-singular matrix Ai from the left,
i.e. as AiVi. Consider the definition of Ti in (25) with AiVi instead of Vi as a representative of ΛiDi,

� AiVi � T � AiVi � AiVi � T ��� 1AiVi

�
VT

i AT
i � AiViVT

i AT
i ��� 1AiVi

��
VT

i AT
i A � T

i � ViVT
i ��� 1A � 1

i AiVi

��
VT

i � ViVT
i ��� 1Vi �

This shows that T is independent of the chosen basis.

Corollary 3.1. The matrix T is independent of affine changes of coordinates in the images.

Observe that the only undetermined parameters in T are the relative depths in Λ i, everything else can be
measured from the images.

Looking at (23) the condition (28) can be interpreted as follows. The individual projections, T i, are
the orthogonal projections onto the subspaces ΛiDi. (23) says that the sum of these three-dimensional
subspaces are contained in a four-dimensional subspace, D . Thus the sum of these projection matrices
has rank less than or equal to 4.

Definition 3.1. Let σi, i

�
1 � � � � � n be the singular values of T. The proximity measure of T is defined

as

P

�
σ5 � (29)
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The proximity measure measures the degree of 4-dimensionality of the sum of the subspaces D i. This
choice of proximity measure is somewhat ad hoc. Another choice could be to minimize the ratio σ5 � σ4

instead. However, for computational purposes the definition above is more convenient.
Now the reconstruction problem can be formulated by a variational formula

min�
λi � j � P � (30)

In the noise free case the minimum value is equal to 0. One of the advantages with this formulation of
the reconstruction problem is

Theorem 3.1. When noise is present in the measurements, minimizing the variational formula in (30)
gives a projective reconstruction that is independent of the chosen coordinate systems.

Proof. Follows directly from the previous lemma and the construction of the proximity measure.

The actual reconstruction can be obtained from the singular value decomposition of T. Observe first that
T is symmetric, since it is a sum of symmetric matrices, Ti according to (25) and (26). Let T

�
U T ΣU ,

where U is an orthogonal matrix and Σ is a diagonal matrix containing the singular values, σ i, of T. Let
Σ̃

�
diag � σ1 � σ2 � σ3 � σ4 � 0 � � � � � 0 � and let Ũ denote the first three columns of U . Then

P

�
Ũ Σ̃ (31)

gives the camera matrices and

X

�
ŨT (32)

gives a projective reconstruction fulfilling (22). From the reconstruction in (32) a projective basis con-
sisting of 5 points in general position can be chosen. Then projective coordinates with respect to these
5 basis points can easily be calculated by multiplying X with a diagonal matrix from the right and a
non-singular 4 � 4 matrix from the left (corresponds to a projective transformation) such that the first 5
points have coordinates � 1 � 0 � 0 � 0 � , � 0 � 1 � 0 � 0 � , � 0 � 0 � 1 � 0 � , � 0 � 0 � 0 � 1 � and � 1 � 1 � 1 � 1 � respectively.

Using the dual approach we obtain a similar formulation as follows. Denote by

Si

�
I 
 Ti

the orthogonal projection onto the subspace Λ̄iSi and observe that x � Λ̄iSi

�
Six

�
x implies that

m�
i � 1

Λ̄iSi

���
x 	 1

m

m

∑
i � 1 � Six � 2

�
� x � 2 � � (33)

By introducing

M

�
1
m

m

∑
i � 1

Si � (34)

it follows that
m�

i � 1

Λ̄iSi

�
	
x 	 xT Mx

�
� x � 2 � �

According to (24), it follows that

dim
m�

i � 1

Λ̄iSi

�
n 
 4 �
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From properties of quadratic forms it follows that this is the case if and only if M has a singular value
1 of multiplicity n 
 4. Observing that M

�
I 
 T, this is in perfect agreement with the properties of T.

Let τi denote the singular values of M, as proximity measure we may chose

π

�
1 
 τn � 4

�
σ4 (35)

and the same variational formula as above
min
λi � j π �

Then the reconstruction can be obtained in a similar way as described above by using the singular value
decomposition of M. In detail, let M

�
V T DV , then the range of first n 
 4 rows of V can serve as an

estimate of S .
Observe that the singular values of M and T are related by τi

�
1 
 σ j for some i, j. Observe,

furthermore, that M and T are not, in general, projection matrices, but they are symmetric, positive
definite with norm � 1.

4 A Recursive Algorithm

One problem with using (30) is that the solution, Λi, i

�
1 � � � � � m, is not unique, since the scale factors

Λi in (1) for the first image can not be determined uniquely. In fact, they can be chosen arbitrarily in the
linear space D , also called the depth space of X , see [14]. This can be seen from (7), since the last row
in PiX is a linear combination of the rows in X. One way to circumvent this problem is to fix all scale
factors in the first image to 1, by introducing the kinetic depths

qi � j

�
λi � j

λ1 � j
(36)

and replace all λi � j in the previous equations with qi � j . These kinetic depths are unique modulo constant
factors and independent of the individual coordinate representations.

We propose a recursive algorithm consisting of the following steps:

1. Start by putting qi � j

�
1 for all available images.

2. Calculate T from (27) (or M from (34)) using all at this time available images.

3. Calculate the singular value decomposition of T (or M), i.e. T

�
U T ΣU (or M

�
V T DV ) and the

proximity measure P (or π).

4. Let X denote the first four rows of U (or let S denote the first n 
 4 rows of V ), which will be used
as an approximation of the object, as done in (32).

5. Add one or several new images.

6. Use (18) to estimate Λi from xi and X (or use (21) to estimate Λi from Si and S), for all images.

7. Calculate qi � j from (36) and goto 2.

We have in this algorithm fixed the kinetic depths for the first image to q1 � j

�
1 according to (36)

and from that assumption the reconstruction is unique up to an unknown affine transformation. Other
reconstructions are obtained by multiplying the depths with a vector in the depth space of X, see [13].

Observe that new images only enter in the algorithm at step 5. This is motivated by the fact that
when an approximation to the reconstructed object is available, we get a good approximation of the
relative depths for the new image. Then this image can be used to make a better approximation of the
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1 2 3 4Image

Step 1-7 Step 5-7

Step 2-4

Step 5-7

Step 2-4Step 2-4

Figure 1: Illustration of the recursive algorithm.

reconstructed object. If the new image is used directly in step 2, we have to guess the relative depths and
using them in step 3 and 4 probably do not make the approximation of the reconstructed object better.

The proposed scheme is illustrated in Figure 1, in the case where one new image enters in each loop
of the algorithm.

We start with the first two images and carry out step 1 to 7, which gives an approximation to the
reconstruction and the relative depths. Then carry out step 2 to 4 again in order to update the recon-
struction using the obtained relative depths. In step 5 the third image enters and the relative depths of
all images are calculated in 6 and 7. Then the reconstruction is updated again in step 2 to 4, before
the fourth image enters in step 5 and so on. When a lot of images has become available it is tedious to
calculate relative depths to all of them in every loop. A way to circumvent this is to limit the number of
images, where the relative depths are updated to say 10 but use all images in step 2 to 4, since this does
not increase the complexity of the algorithm after the 10 first images.

When the initial step has been done the algorithm works by switching between updating the recon-
struction and updating the relative depths:

� Update the reconstruction, using the present images and relative depths.

� Update the relative depths of the present images and calculate an estimate of the relative depths of
the new image, using the reconstruction.

Step 6 above can be carried out as follows. Note that, when the object, in this case X, is known, then
(7) is linear in the unknown parameters Λi and Pi. However, in order to maintain our subspace approach,
we will use (18) and determine Λi such that the subspace ΛiDi is contained, as well as possible, in D .
Let

TD

�
XT � XXT � � 1X

denote the projection matrix onto D and
TS

�
I 
 TD

the projection matrix onto the orthogonal complement of D . Then (7) can be written

TS � UiΛi � T
�

0 � (37)

which are 3n linear equations in the n unknown relative depths, for each i

�
1 � � � � m.

Proposition 4.1. Let u j
i , j

�
1 � 2 � 3 denote the three rows of Ui, now considered as columns instead.

Then step 6 above can be formulated as the optimization problem

min�
Λi

� � 1

3

∑
j � 1 � TS Λiu

j
i � 2 � (38)

Furthermore, if an orthonormal representation of Ui is used, i.e. u j
i are orthonormal, the result is inde-

pendent of affine coordinate changes in the images.
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Proof. The first statement, that (38) solves step (6) is obvious from the discussion above.
The independence of the solution to the optimization problem in (38) on the chosen basis can be

seen as follows. The minimization problem in (38) can be rewritten as

min�
Λi

� � 1 � TS ΛiUT
i � 2F

�
min�
Λi

� � 1
trace � TS ΛiUT

i � TS ΛiUT
i � T � � (39)

where � � � F denotes the Frobenius norm and trace A denotes the trace of A. Assume that the rows in
Ui are orthonormal. Any other choice of an orthonormal basis for the row span of U i can be written
as RUi, where R denotes an orthogonal matrix. It can easily be seen from (39) that � QD ΛiUT

i RT � F is
independent of R, since

TS ΛiUT
i RT � TS ΛiUT

i RT � T
�

TS ΛiUT
i RT RUiΛiT

T
S

��
TS ΛiUT

i UiΛiT
T

S

��
TS ΛiUT

i � TS ΛiUT
i � T

and thus the solution to the optimization problem in (38) is independent of the chosen orthonormal
basis.

Remark. In order to achieve an orthonormal basis, spanning Di, � UiUT
i � � 1 � 2Ui, is used instead of Ui.

This can be seen from the fact that the rows of the matrix � UiUT
i � � 1 � 2Ui obviously span the same space

as the rows of the matrix Ui and they are orthogonal since

� UiUT
i � � 1 � 2Ui � � UiUT

i � � 1 � 2Ui � T
�

I �
This procedure of selecting an orthonormal basis is necessary in order to achieve a result that is inde-
pendent on the chosen coordinate systems in the images. It is also advantageous for numerical reasons.

Theorem 4.1. The output of the recursive algorithm is independent of the chosen coordinate systems in
the images as well as of the ordering of the points.

Proof. The statement follows from the previous proposition and lemma and the construction of the
proximity measure.

In the dual approach step 6 can be solved similarly using (21) in the following way. Let TSi denote the
projection matrix onto the subspace Si and TDi

�
I 
 TSi the corresponding projection onto the orthogonal

complement. Then (21) can be written

TDiΛS

�
0 � (40)

The left hand sides in (37) and (40) are transposes and can be solved in the same way.
It turns out that the use of the kinetic depths, qi � j , above instead of the relative depths, λi � j , is not

necessary for this algorithm to work. Instead it is possible to work directly with the relative depths
and thus omit step 7 in the algorithm. Moreover, the convergence properties of the algorithm are better
when using relative depths instead of kinetic depths, according to experimental studies. This is the case,
despite the fact that there are more free variables than needed, i.e. a lot of Gauge freedom. This fact
might be explained as the extra degrees of freedom makes it possible to go a straighter and shorter way
to the minima. However, the limit of λi � j is not unique. Using other initial values might result in a
different (but projectively equivalent) limit.

The advantage of using the relative depths, λi � j , is that we obtain an algorithm that is also independent
on the ordering of the images, when the number of used images are constant. However, in the recursive

11



case this fact is not important. The relative depths have been used in the experiments, for simplicity and
for better convergence properties.

Observe that it is not necessary to calculate the whole singular value decomposition of T in step 3. It
is sufficient to calculate the 5 largest singular values and the vectors corresponding to the 4 largest singu-
lar values, which is the same as calculating the 5 largest eigenvalues and the eigenvectors corresponding
to the 4 largest eigenvalues.

Observe also that there are not at this moment any theoretical proof that the algorithm will converge.
However, experimental evidence as well as recently started theoretical studies, indicates that the algo-
rithm has very good convergence properties, both globally and locally. Even the rate of convergence
is very good, based on experimental observations. After using this algorithm for some time on a num-
ber of different experiments, we have not found any single case where the algorithm does not converge
to the correct solution. In all these experiments the initial relative depths have been chosen λ i � j

�
1,

corresponding to an affine approximation. This indicates that there is no need to first estimate funda-
mental matrices and relative depths and then use these as initial values. However, if these relative depths
obtained from fundamental matrices where available (as in [15]) the convergence properties would of
course be as good as with the other initialization.

The proposed algorithm assumes a sufficiently general motion and structure, in order to make sure
that the rank of T is at least 4 for every choice of relative depths. Otherwise, the motion, or the scene,
is degenerate (e.g. planar scene, only zooming or pure rotations). As all reconstruction algorithms the
performance degrades in non-general or nearly non-general situations.

5 Experiments

Experiments have been carried out on synthetic data with added noise as well as on a real image se-
quence. Since the two methods described above are dual to each other and give equivalent algorithms,
only the first one has been used in the experiments. The proximity measure, P , are recorded for each
iteration as well as the estimated standard deviation of the errors in the images obtained from back pro-
jection of the reconstruction to the images, described in more detail below. In both experiments, we have
a time window of ten consecutive images, where the relative depths are computed.

5.1 Simulated Data

The first experiment has been carried out as follows. We have tried to make the simulation setup close
to a real life situation. The object consists of 15 points, which have been chosen randomly within a
box with side equal to 400 units. Then the camera has been positioned at a distance of 2000 units away
from the center of the object. The focal lengths have been chosen to 1000 plus a random number with
standard deviation 100. The skew, aspect ratio and principal point have also been chosen randomly with
mean values and standard deviations � 0 � 0 � 2 � , � 1 � 0 � 2 � and � 0 � 10 � units respectively. The object has been
rotated by a random rotation matrix between the different imaging instants. The obtained pixel values of
the points in the images vary between 
 400 and 400 pixels. Different levels of noise have been added
to the images. The results are shown in Table 1, where σ denotes the standard deviation of normal
independent noise added to the points in the images and σ̂ denotes the estimated standard deviation of
the errors in the back-projected images. This estimate has been obtained as follows. When the estimated
reconstruction, X̂, has been obtained, using step 4 in the algorithm, the depths are estimated using step
6 and finally the camera matrices are estimated in least squares sense from (7), i.e.

P̂i

�
UiΛ̂iX̂

� �
where X̂

�
denotes the Moore-Penrose pseudo-inverse of X̂ and �̂ denotes estimated quantities. From

these camera matrices, Pi, and the reconstruction, X̂, the back-projected image coordinates, Ûi, can
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σ 0 0.1 0.2 0.5 1 2 5
σ̂ 0.01 0.2 0.3 0.9 1.7 3.4 8.6

Table 1: Errors in the images and estimated errors in the reconstructions in the first experiment.

easily be calculated using (7), i.e.

ÛiΛ̂i

�
P̂iX̂ � i

�
1 � � � � � m �

Then the estimated standard deviation in the images are obtained from

σ̂

�
� 1
d

m � n
∑

i � j � 1

� ui � j 
 ûi � j � 2 � � vi � j 
 v̂i � j � 2 � 1 � 2 � (41)

where the denominator, d

�
2mn 
 3n 
 11m � 15, is the number of free parameters, coming from 2mn

measured coordinates in the images, 3n coordinates in the reconstruction, 11m parameters in the camera
matrices and 15 degrees of freedom in a three-dimensional projective transformation.

As Table 1 indicates, the estimated standard deviation σ̂ is only slightly larger than the actual uncer-
tainty σ in the images. For σ

�
0 � 3,

Figure 2 illustrate the development of the proximity measure P (log10 � P � is plotted) and the esti-
mated standard deviation σ̂, versus the number of images taken into account.

Figure 3 illustrates the RMS (root mean square) Euclidean error in the reconstruction and a projective
invariant of the scene versus the number of images. The Euclidean reconstruction error has been obtained
by choosing a projective transformation of the reconstruction that fits as good as possible to the known
Euclidean object. This has been done by solving the equations

MX̂

�
XE diag � γ � �

for M and γ in the least squares sense, where again X̂ denotes the estimated projective reconstruction, M
denotes a 4 � 4 matrix corresponding to the projective transformation, XE denotes the known Euclidean
reconstruction and γ denote unknown scalar factors. The projective invariant has been calculated by
firstly making a projective transformation of the estimated reconstruction, such that the first five points
have homogeneous coordinates � 1 � 0 � 0 � 0 � , � 0 � 1 � 0 � 0 � , � 0 � 0 � 1 � 0 � , � 0 � 0 � 0 � 1 � and � 1 � 1 � 1 � 1 � respectively.
Then the ratio x6 � z6 (in the new coordinates) has been chosen.

Note that the RMS error of the Euclidean reconstruction is in the limit only about 1% of the size of
the object, which is somehow unexpected. Note also that the projective invariant converges nicely.

In the second experiment we have a similar setup to the preceding experiment, but with the differ-
ence that both the intrinsic and the extrinsic parameters vary more slowly between the imaging instants.
The variation is approximately a few pixels between the images. We achieve this by choosing a few
numbers randomly and using them as Fourier coefficients for a function. The limits for the allowed
variation of the obtained parameters, are about the same as before and also here we add different levels
of noise to the images.

It is seen, from Table 2, that the results for this setup is about the same as in the preceding one and,
for σ

�
0 � 3, Figure 4 and Figure 5 also indicate this.
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Figure 2: log10 � P � and estimated standard deviation, versus number of images in the first experiment.
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Figure 3: RMS error of reconstruction and the projective invariant, versus number of images in the first
experiment. The correct value of the projective invariant is shown as a line.

σ 0 0.1 0.2 0.5 1 2 5
σ̂ 0.03 0.2 0.3 0.8 1.6 3.1 7.1

Table 2: Errors in the images and estimated errors in the reconstructions in the second experiment.
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Figure 4: log10 � P � and estimated standard deviation, versus number of images in the second experiment.

14



0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80
−0.33

−0.32

−0.31

−0.3

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

Figure 5: RMS error of reconstruction and the projective invariant, versus number of images in the
second experiment. The correct value of the projective invariant is shown as a line.
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Figure 6: Estimated standard deviation in the images versus number of images in the third experiment.

5.2 Real Data

A closely space image sequence consisting of 10 images, where taken using a CCD-camera mounted on
an ABB-robot. The scene consists of a number of toy blocks and some other things. We used the Harris
corner detector together with a standard correlation tracker and obtained 14 tracked corners through
the whole sequence. The typical number of corners obtained per image is about 100 
 200, but some
points are lost from one image to the next and thus omitted even if they appear again later. Using a more
sophisticated tracker it would be possible to obtain more than 14 tracked corners. However, the objective
is to show how the recursive algorithm works on real data and not to implement a sophisticated tracker.

In Figure 6, the estimated standard deviation in the images versus the number of images are shown.
It can be seen that the standard deviation is very low for a small number of images. This is due to the
fact that since the image are so similar it is easy to obtain a reconstruction that projects very closely
to the detected corners. Then the standard deviation gets larger when more image are used, since they
differ more and more from each other. Finally, the standard deviation goes down and stabilizes for a
large number of images, due to the convergence of the algorithm. Finally, in Figure 7, the first and the
seventh images of the sequence are shown, together with detected corners (asterisks) and re-projected
corners (circles).
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Figure 7: The first and the seventh image together with detected corners (*) and re-projected corners (o).

6 Conclusions

In this paper we have presented a recursive algorithm that solves the structure and motion from image
sequences problem in a generic way. The algorithm relies on subspace methods and has the following
advantages:

� The result is independent of the chosen coordinate systems in the different images.

� The result is independent of the ordering of the points.

� The convergence is good (less than 10 steps).

The performance of the algorithm has been shown on simulated data with added noise. We have
shown that the resulting errors in the images are only about 50% higher than the standard deviation of
the added noise.

Moreover, two different approaches to structure and motion from image sequences have been unified.
Both are based on coordinate independent representations; one using the concept of affine shape and
depth and the other using depth spaces. We have shown that they are dual to each other and result in
equivalent algorithms.
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