An Adaptive Model for Tracking Objects by Color

Christopher Rasmussen and Gregory D. Hager

Department of Computer Science
Yale University
51 Prospect Street
New Haven, CT 06520-8285

rasmuss@powered.cs.yale.edu, hager@cs.yale.edu

Abstract

This paper discusses an adaptive approach to tracking
objects based primarily on their color. By limiting our at-
tention to areas of approximately uniform reflectance on
nearly Lambertian surfaces, we can assume that pivels cor-
responding to surface patches on the object form a lin-
ear cluster in color space. Performing principal compo-
nents analysis on user-selected sample pizels parametrizes
an ellipsoidal model of this distribution that can be used to
quickly and robustly track many objects through a range of
orientations and scales. The apparent color and intensity
of an object may change as it moves, though; we present a
technique for tracking an object’s color distribution through
color space while tracking it in the image. Finally, by using
weak spatial information we demonstrate successful track-
ing in the presence of similar-colored background distrac-
tors. In combination with a tracking failure recovery pro-
cedure, the basic technique has been successfully applied to
tasks as diverse as head and hand tracking, following jug-
gled and thrown balls, and constructing vision-based input
devices.

1 Introduction

Tracking is a common visual task with many uses. By
maintaining focus on someone’s face as they walk and
talk, we can continually read their facial expressions;
by following a tennis ball off of an opponent’s racquet
and across the net, we can position ourselves properly
for a return; by keeping our eye on a doorknob as we
approach it, we can ensure that we grasp it smoothly
when it is within reach.

The difficult problem in visual tracking is perform-
ing fast and reliable matching of the target from frame
to frame. A large variety of tracking techniques and
algorithms have been reported in the literature, but
most tracking algorithms ultimately rely on one of
three low-level image processing techniques: edge ex-
traction, variations on region-based correlation, or sim-

ple segmentation techniques, often referred to as “blob”
tracking. Although edge-based and region-based tech-
niques are generally more accurate and robust than
segmentation-based techniques, they also incur a much
higher computational cost. Conversely, blob track-
ing 1s computationally efficient and practical, partic-
ularly as standard desktop processors have become
more powerful. This has led to it becoming the pre-
ferred method of performing tracking for many prac-
tical applications.

Traditionally, blob tracking has been implemented
on gray-scale images using thresholding or simple func-
tions of gray-scale value [1, 2, 4, 12]. These techniques
usually rely on a structured environment (e.g., a black
backdrop) so that the target (e.g., a white ping-pong
ball) is unique. With the advent of inexpensive color
cameras and digitizers, it seems likely that color-based
thresholding techniques will provide a practical and
robust alternative.

To date, little has been published on practical color
tracking algorithms. A simple color tracking technique
is presented in Du and Crisman [5]. They pick a set
of arbitrary “categorical” colors in RGB space and
construct membership volumes for each one based on
nearest neighbor calculation. Objects are character-
ized by their histograms over these volumes, permit-
ting multi-colored regions to be tracked. It is unclear
what update function is used to determine where to
move the tracking window, and the results are based
only on synthetic, abstract image sequences.

Pfinder [17] and Perseus [8] are specialized systems
for tracking people. Pfinder uses a statistical charac-
terization of color variation in a static image to per-
form color-based change detection; Perseus uses color
histograms (as one of a suite of “feature maps”). Prior
terms on flesh color assist the systems in automati-
cally finding skin and “bootstrapping” a model when-



ever someone appears in the scene. Models for body
parts and constraints governing their interaction con-
tribute to a high-level manager of the tracking prim-
itives. To achieve its results, Pfinder does complete
low-resolution (subsampled to 160 x 120 pixels) anal-
ysis of every frame, and runs at 10 Hz on an SGI Indy;
Perseus uses DataCube vision hardware to work at
frame-rate. Pfinder depends on a static background
for accurate segmentation, ruling out camera move-
ment.

In this paper, we describe a general-purpose tech-
nique for color blob tracking within the XVision real-
time vision software package [7]. The primary at-
tributes of our approach are that it does not depend
on a fixed camera, it uses an empirical sampling of the
color space and a physically plausible model of color
variation, and it exhibits fast performance on standard
workstations. The technique is general enough to ap-
ply to varied problem domains, and as a primitive is
suitable for the construction of more complicated sys-
tems.

2 Background

The principle issue in any blob tracking algorithm is
to perform an accurate segmentation of a set of can-
didate pixels into those that belong to the target and
those that do not. In principle, any standard color
segmentation algorithm could be used to solve this
problem. However, most such algorithms attempt to
segment an entire static images with little or no a pri-
ort knowledge of the color distribution over the scene.
Typically, a high priority is placed on finding accurate
borders for color regions in order to provide useful in-
formation for subsequent stages of processing.

The task of tracking an object presents a different
set of demands. First, although the background has
an unknown color distribution, we can assume that
the object to be tracked is initially completely known
in a color sense. Second, real-time considerations limit
the complexity of computation that can be performed
on each newly-acquired image, although the initializa-
tion stage can often be leisurely. Finally, because the
primary goal of tracking is object localization, com-
pletely accurate segmentation is not as important as
eliminating false positives. It is acceptable to be con-
servative and only classify part of the object as the
object, as long as a large enough fraction is found to
be distinguishable from noise.

The theoretical basis for our segmentation algo-
rithm is given by Klinker et al. [9]. They present a
thorough analysis of the physics of object color prop-
erties in the context of an off-line approach to seg-
menting unknown colors in a scene. In particular,

they show that the sample color distribution of an
object with both Lambertian and specular reflectance
components should be a tube-like cluster about the
ideal ray (the Lambertian component), with branches
or curvature toward light source colors (the specular
component). Our own empirical observations of a vari-
ety of naturally occuring objects have confirmed these

findings.

For our work, we assume that the reflectance of an
object is primarily Lambertian and that its surface is
of nearly uniform color. Theoretically, we would then
expect that the color distribution over the object is
a scattering of points in RGB space lying somewhere
along a ray from the origin (black) toward the intrinsic
color of the object. In practice, though, this is not the
case due to object color variation, some specularity,
and camera noise. However, by choosing objects with
minimal specularity or choosing color sample locations
on them away from specularities, we have found that
a single tubal cluster often captures color variation
very well. We model this cluster by doing principal
components analysis (PCA) [11] on a user-chosen sam-
ple color distribution. The results give the tracker a
bounding ellipsoid for determining pixel membership
in the object’s dominant color.

This approach can easily be extended to handle
objects composed of multiple uniform color patches.
With knowledge of which pixel belongs to which color,
we can partition the object into its constituent colors
and fit an ellipsoid to each one. Object membership
is the union of the computed ellipsoids.

Our assumption of uniform coloration and Lam-
bertianness is an adequate approximation for many
objects, but only up to a point. In particular, the
orientation and location of clusters in color space cor-
responding to objects depends on the intensity and
spectral composition of the light incident upon them.
Furthermore, the mixture of light emanating from ra-
diant surfaces in the environment and ultimately en-
tering the camera may change as an object translates
or simply rotates in place. For example, objects may
move in and out of shadows; they may rotate and
change their apparent shading; and they can move
away from a window, where the light is very yellow,
toward a brick wall that is reflecting much redder light.
All of these effects cause the apparent color of the ob-
ject to change, possibly rendering a static color model
formulated at one time, in one place invalid during
subsequent tracking. Research on color constancy is
addressed toward solving this problem, but has not ad-
vanced far enough to be applicable to most real-world
situations [6].



We can often overcome this problem by exploit-
ing an attribute of the tracking domain: as an object
moves, its apparent color varies more or less continu-
ously. This property is very different from how most
color constancy problems are posed, as discontinuities
in light composition falling on a fixed scene. Such
an assumption may be violated in environments with
hard shadows or focused light sources, but in most en-
vironments these are rare. When it holds, though the
original ellipsoid may cease to be an object’s best color
model from frame to frame, the best ellipsoid for the
next frame is likely nearby in color space. This prop-
erty of relatively slow change suggests that tracking
an object in color space as well as in image space may
be a feasible way to achieve the equivalent of color
constancy.

Moving the ellipsoid around in color space is reason-
able for clusters that are well separated from those of
other colors in the image, but abutting clusters present
a problem. If a nearby cluster is denser than the one
associated with the object being tracked, adaptation
may lead to the membership ellipsoid slipping onto
it, causing mistracking. This problem, distraction,
is similar to what correlation-based tracking meth-
ods can encounter in image space. Various techniques
might be employed to detect nearby clusters in color
space and somehow evade them, but often the clusters
overlap enough as to be virtually indistinguishable.
This problem can be largely avoided by appealing to
the spatial characteristics of the object to differentiate
it from the background.

In this paper we will discuss three related color
tracking algorithms. All are predicated on a PCA-
based notion of color membership. The first, which
we will call static color model tracking (SC), uses the
PCA-derived ellipsoid directly for classifying pixels
by color and repositioning a tracking window to stay
centered on the object. The second, adaptive color
model tracking (AC), is SC plus the ability to con-
tinue tracking an object despite changing illuminant
intensity and color composition. Finally, adaptive,
distraction-resistant color model tracking (ADC) is
AC plus a weak spatial constraint to help disambiguate
similarly-colored background pixels that might other-
wise be erroneously classified as part of the object.
We will outline how these methods differ in the next
section, and detail the capabilities of all of them in
the Results, as well as the situations in which the first
two break.

3 Methods

In our formulation, there is one tracker associated
with each object to be tracked. An object is a three-

dimensional entity that projects onto a spatially com-
pact set, or region, of similarly colored pixels in the
image. A tracker is a process that attempts to po-
sition a subwindow in the image at every time step
such that the center of the object remains inside it.
The tracker is bound to its object initially by giving it
a sample of the object’s color and the object’s image
location. The tracker formulates a model of the ob-
ject’s color, positions its window at the initial image
location, and repeatedly classifies pixels in the win-
dow as either matching its color model or not. Those
pixels which match the model are interpreted as be-
longing to the object and are called its support after
[17]; the tracking window is repositioned to be cen-
tered on them.

3.1 Initialization

Initial information about an object O; 1s supplied to
the tracker through human agency. A user indicates
the object to be tracked by pointing at different parts
of it on a live video display of the camera’s view and
clicking each time to record a color sample. Each click
grabs a 16 x 16 pixel subimage centered at the pointer
location. The aggregate sampled pixels’ color values
(minus any saturated pixels) form a distribution in
RGB space from which the color model of O; 1s derived
using PCA.

The ellipsoid computed for an object O; can be de-
scribed mathematically as a scaling S;, rotation R;,
and translation T; of the unit sphere in RGB space.
A particular image pixel p; = (2;,y;, R;j, G;, B;j)T has
both a spatial and a color component. It is in the color
membership ellipsoid of O; if the following function C;
maps it to 1:

i -lp-1 . . BT _ 7.
Ci(pj):{ Lif |IS7 Ry (R, Gy, B) T <p

0 otherwise

p indicates how many standard deviations of the orig-
inal sampled points the ellipsoid accounts for. Adjust-
ing p allows the tracker to be more or less conservative
in its classification of candidate points; we used p = 2
as a threshold for the results presented in this paper.

One to three clicks capturing the extremes of a
gradient of intensity in the object generally suffice.
Choosing samples appropriately is most important in
SC, because we want the ellipsoid to be large enough
to accomodate some color variation as J; moves, yet
not so large that other colors are incorrectly classi-
fied as the same. For AC and ADC, the color sam-
ple should be chosen only to avoid a very tight clus-
ter, because the volume of the computed ellipsoid is
analagous to the size of the tracking window in that if



it is too small, even slow color shifts may be too quick
to track.

3.2 Update

SC Tracking an object O; consists of updating the
image location (z;, ;) of a tracking window W;, where
W, has a fixed height and width (here h; = w; = 128
pixels). At tracking cycle ¢t = 0, we initialize tracking
of O; by centering W on the mean image location of
the color sample clicks. For subsequent tracking cy-
cles, every pixel p; in W} is evaluated by C;; the set
of all such p; for which C;(p;) = 1 constitutes the
object’s color support CSE at time ¢. In the SC algo-
rithm, the mean image location of the pixels in CS}
is used as the center of Wit‘H. For reasons detailed in
the Results section below, no attempt is made to vary
the size of the tracking window in order to estimate
object scaling.

AC The AC algorithm tracks the color distribution
of an object O; as it changes by updating the posi-
tion and orientation of the membership ellipsoid dur-
ing each tracking cycle. An intuition for how to do
this stems from the observation that the internal dis-
tribution of pixels in CSE may be asymmetric; for in-
stance, many of the pixels may be clustered at one of
the ellipsoid, leaving the other end sparse. This can
be interpreted as a signal that the color distribution is
moving in the direction of the density. We capture this
notion by rerunning PCA on CS! to get new estimates
of the ellipsoid’s orientation RE'H and position T;'H
(S; isignored because using it may lead to instability).
These new estimates may not be optimal, but if the
color distribution is not moving too quickly, they will
converge over the course of a few tracking cycles to a
stable extremum. These new transformation matrices
are then used in the next cycle by plugging them back
into the color membership function to get Cf‘H.

ADC The above approach works well as long as
there are few distractors—pixels in W; that are not
part of O;, but whose color is similar enough that
they are part of CS;. Unfortunately, when O; is not
highly saturated, such as when it is someone’s face,
there are usually a number of nearby colors in the im-
age. Empirically, we have found that distractors are
often unconnected or clumped in small groups around
the periphery of the tracking window, while the ob-
ject is relatively compact, large, and centered. In the
ADC algorithm, we make use of this fact to filter CS;
by taking its largest connected component and using
only members of it to update C; and W;. We have also

experimented with using PCA on the spatial compo-
nents of the members of CS; to get an image-spatial
membership ellipse. This would accomplish the same
sort of filtering, but it is sensitive to outliers and is
often too inclusive. Throwing out all pixels but those
in the largest connected component is a crude but ef-
fective way to deal with spatial outliers efficiently.

3.3 Recovery

Occasionally a tracker will lose its object O; by al-
lowing it outside W; due to excessive object speed or
occlusion. We call O; “lost” when the size of CS; falls
below an aggregate image area threshold o (o = 1
here). A tracker can often recover from such events
by resampling the entire image at a lower resolution
and performing a global search [15]. Using 8 x 8 sub-
sampling, a global search incurs about 5 times the
computation of a normal tracking cycle. Though this
causes the update rate to dip, we have found this to
be a rare and therefore acceptable cost. Pixels satisfy-
ing C; in this search are weighted according to formula
(1), below, where L is the point of loss. (1) approx-
imates winner-take-all clustering to decide where to
saccade; nearness to L promotes stability in that an
object lost due to speed is likely to be reacquired if
there are distractions elsewhere in the image.

For all pixels p; that are in CS; over the entire im-
age, let win(j) be the set of pixels both in the support
and also lying within a hypothetical h; x w; tracking
window centered at pj; let wing(j) be the image lo-
cation of the kth pixel in this set. A heuristic for the
best candidate location for the lost object is given by:

1
1+ [Jwing(j) — L]

best — argmax Z (1)
j k

If the size of win(best) is large enough to satisfy the
area threshold «, then tracking is restarted at ppes:.
Otherwise, the search is repeated (as a thread if other
objects are still being tracked).

4 Results

The three trackers that we present are more quali-
tative than precise. No explicit information about
the scale or orientation of O; is generated as a by-
product of the update cycle, as is the case with many
correlation-based methods [13]. An approximation to
such information can in principle be calculated by fit-
ting an ellipse to CS;, but it is not guaranteed to be
meaningful because of O;’s three-dimensionality. The
size and shape of CS; may change as O; rotates if
it is anything other than a uniformly colored sphere.
When tracking a person’s face, for example, if the sub-
ject turns around (and has short hair) the tracker will



Figure 1: (a) Using the ball as a pen; (b) detection of
a ball thrown into view and subsequent tracking as it
bounces and rolls; (c¢) a red ball being tracked as it and
a blue ball are juggled. The blue ball is in front of the
juggler’s nose and the red ball is falling into his left hand

slip onto the smaller patch of skin visible on the back
of their neck; this could be erroneously interpreted as
the subject moving away from the camera.

4.1 Static Color Model

Despite its simplicity, the SC tracker is effective for
a number of tasks, particularly when the object O; is
in front of a generally dissimilar background and does
not move too far. It works best when O; is roughly
spherical, like a ball or a human head, so that shading
does not change dramatically during rotations. We
outline a few applications below.

By keeping a record of the W;’s consecutive image
positions, the tracker gains additional information for
use as input to another program. Figure 1(a) shows
a red ball being used as a pen. The end of a word
can be signalled by concealing the ball in the hand;
when 1t is revealed to start the next word, the loss re-
covery procedure automatically detects the ball at its
new location. We have varied this formula to create a
simple painting program in which the user can create
their own palette by sampling objects lying around—a
green hat becomes a green paintbrush, and so on. An
option is to have brush size vary according to object
image size, allowing the user to move in three dimen-
sions with varying effects on the canvas.

Dynamic, dextrous robots that use visual input typ-
ically assume a simplified visual environment in order
to achieve robustness and speed. The juggling robot of
[12] and the ping-pong playing robot of [2], for exam-
ple, require a well-illuminated white ball and a black
background for accurate segmentation. This limits
the robots to performing only in specially-constructed
workspaces with fixed camera views that minimize
distraction. The SC tracking method alone is fast
enough and resistant enough to distraction to offer a
vision system for such tasks that can work in front of
natural backgrounds. Figure 1(c) shows the tracking
of one of two juggled balls. The gaps in the trajec-
tory line are most likely due to the juggler’s hands
occluding the ball as it is caught, as well as occasional
excessive speed; recovery allows tracking to resume at
the first available opportunity.

The recovery procedure need not be regarded as
stemming from failure; rather, if the disappearance of
the tracked object is expected, searching for it while it
is gone becomes surveillance. In Figure 1(b), tracking
was initialized on a ball which was then removed from
view. The ball was thrown into view some time later;
the tracker reacquired it quickly and tracked it as it
bounced.

4.2 Adaptive Color Model

The AC algorithm is good for tracking objects into
and out of shadow, or non-spherical objects through
rotations that would confuse the SC tracker.

The shortcomings of the SC algorithm are illus-
trated in Figure 2. In this demonstration, tracking
was initialized on a piece of red paper with one sam-
ple click in a bright patch. The paper was kept rel-
atively planar as it was then rotated nearly ninety
degrees, changing the surface normal with respect to
the viewer considerably and thus reducing the light
reflected from it into the camera. The AC algorithm
was able to track both the paper through image space
and its color cluster through color space successfully.
From examination of Figures 2(c) and 2(f), the dis-
tance travelled by the paper’s cluster in color space is
great compared to the size of the cluster itself. An SC
tracker trying to perform the same task would be left
behind in color space and lose track of the paper.
4.3 Adaptive, Distraction-Resistant Track-

ing
The ADC method is the best general purpose tracking
algorithm of the three we have discussed. It adds the
capability of dealing with similar colors in the back-
ground that might cause the AC method to slip onto
another feature.

How distraction can occur is shown in Figure 3.



(f)

Figure 2: Tracking a piece of red paper as it rotates with AC. (a) Initial, brightly lit orientation; (b) Color support; (c)
RGB representation of pixels in tracking window. White cluster at lower right is pixels inside ellipsoid; (d) Final, dimly
lit orientation; (e) Color support—note that whole paper is still included; (f) Cluster associated with paper has migrated
toward the origin, but the ellipsoid has followed it. In (c) and (f), the origin (black) is at the lower left front corner of the
cube; the red axis is horizontal, green is vertical, and blue is into the page.



Using the AC algorithm to track a face can be prob-
lematic because the relative unsaturation of flesh color
leaves it close to a number of other common colors in
the scene, including hair and some tan brick. When
enough distracting pixels enter the tracking window,
the ellipsoid is prone to switching to the higher den-
sity cluster that they belong to in color space and
losing track of the face. This has happened in Fig-
ure 3(c). By using ADC, the relatively sparsity and
disconnectedness of the distractors in image space is
counted against them, preventing their proximity in
color space from dislodging the tracker from the ac-
tual object.

ADC works well for tracking faces in many indoor
lighting situations, both from fixed and mobile camera
platforms (Pfinder [17] does not allow camera move-
ment). We have had good results with mounting the
camera on a pan-tilt unit, allowing the tracker to fol-
low the subject’s face over a wide range of poses, po-
sitions, and distances in a room. This is accomplished
by layering on top of tracking as usual a controller
that moves the camera incrementally in the direction
that will bring the tracking window back to the cen-
ter of the 640 x 480 video signal. As long as there
are no other human faces that the tracked face goes
directly in front of or behind, performance is good.
Dealing with this kind of distraction requires a much
more sophisticated geometric analysis of the image.

5 Discussion

The ellipsoidal color tracking schemes that we have
presented have wide applicability. They are especially
notable for their high speed and insensitivity to gross
scaling, rotations, or other geometric distortions of the
tracked object, as well as changes in perceived object
color as it moves about in the presence of non-trivial
background distractors. OQur purpose in this paper has
been to devise a simple, general model and push it as
far as possible. We believe that in situations for which
they are suited, the techniques outlined demonstrate
an ability to perform tracking tasks beyond the reach
of most other approaches.

As input to higher level processes, any of the weak-
geometry color trackers that we have presented is well
suited to being an attentional mechanism [16] that
suggests where to perform more sophisticated analy-
ses. The ADC algorithm, with its use of connected
components, points toward what form such analyses
might take. For instance, we might employ a corre-
lation method to choose between multiple same-color
patches in the tracking window or as a final test of
a candidate location during loss recovery. These sit-
uations occur infrequently enough that such hybrid

Figure 3: Avoiding distraction when tracking a face. (a)
A face in front of a cluttered background; (b) Color sup-
port for the face—note the inclusion of hair highlights and
some edges from the desk in the lower right; (¢) Under AC
tracking, the cluster in RGB space corresponding to hair
has pulled the tracker off the face; (d) Color support for
the wrong object; the window will continue up the wall
before coming to rest; () ADC: The object support after
keeping only the largest connected component in (b); no
mistracking occurs.



tracking would still be much faster than geometry
alone while adding robustness. Geometry is prone to
the problems (multiple object orientations and scales)
that we are avoiding by using just color, of course, but
some work has been done on this [3, 10].

References

[1] P. Allen, A. Timcenko, B. Yoshimi, and P. Michelman. Au-
tomated Tracking and Grasping of a Moving Object with a
Robotic Hand-Eye System. In IEEE Trans. Robotics and
Automation, Vol. 9, No. 2, pp. 152-165, 1993.

[2] R. Andersson. Understanding and Applying a Robot Ping-
Pong Player’s Expert Controller. In ICRA, pp. 1284-1289,
1989.

[3] M. Black and A. Jepson. EigenTracking: Robust Matching
and Tracking of Articulated Objects Using a View-Based
Representation. In ECCV, pp. 329-342, 1996.

[4] P. Corke. Visual Servoing. In Visual Control of Robot Ma-
nipulators — A Review, K. Hashimoto, ed., World Scientific,
1993.

[5] Y. Du and J. Crisman. A Color Projection for Fast Generic
Target Tracking. In TROS, pp. 360-365, 1995.

[6] G. Finlayson, B. Funt, and K. Barnard. Color Constancy
Under Varying Illumination. In ICCV, pp. 720-725, 1995.

[7] G.Hager. The ‘X-Vision’ System: A General-Purpose Sub-
strate for Vision-Based Robotics. In Workshop on Vision
for Robotics, 1995.

[8] R.Kahn, M. Swain, P. Prokopowicz, and R. Firby. Gesture
Recognition Using the Perseus Architecture. To appear in
CVPR, 1996.

[9] G.Klinker, S. Shafer, and T. Kanade. A Physical Approach
to Color Image Understanding. Int. Journal of Computer
Vision, Vol. 4, pp. 7-38, 1990.

[10] H. Murase and S. Nayar. Visual Learning and Recognition
of 3-D Objects from Appearance. Int. Journal of Computer
Vision, Vol. 14, pp. 5-24, 1995.

[11] E. Oja. Subspace Methods of Paitern Recognition, Re-
search Studies Press, 1983.

[12] A. Rizzi, L. Whitcomb, and D. Koditschek. Distributed
Real-Time Control of a Spatial Robot Juggler. IEEE Com-
puter, Vol. 25, No. 5, pp. 12-23, May, 1992.

[13] J. Shi and C. Tomasi. Good Features to Track. In CVPR,
pp. 593-600, 1994.

[14] D. Terzopoulos and T. Rabie. Animat Vision: Active Vi-
sion in Artificial Animals. In ICCV, pp. 801-808, 1995.
[15] K. Toyama and G. Hager. Incremental Focus of Attention
for Robust Visual Tracking. To appear in CVPR, 1996.
[16] J. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. Davis, F. Nuflo.
Modeling Visual-Attention Via Selective Tuning. Al, Vol.

78, No. 1-2, pp. 507-545, October, 1995.

[17] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-Time Tracking of the Human Body. In SPIE,
Vol. 2615, 1995.



