X Vision: A Portable Substrate for Real-Time Vision Applications

Gregory D. Hager and Kentaro Toyama
Department of Computer Science
Yale University, P.O. Box 208285

New Haven, CT, 06520

Phone: (203) 432-6432
Fax: (203) 432-0593
E-mail: hager@cs.yale.edu, toyama@cs.yale.edu

Abstract

In the past several years, the speed of standard processors has reached the point where
interesting problems requiring visual tracking can be carried out on standard workstations.
However, relatively little attention has been devoted to developing visual tracking technology in
its own right.

In this article, we describe X Vision, a modular, portable framework for visual tracking.
X Vision is designed to be a programming environment for real-time vision which provides high
performance on standard workstations outfitted with a simple digitizer. X Vision consists of a
small set of image-level tracking primitives, and a framework for combining tracking primitives to
form complex tracking systems. Efficiency and robustness are achieved by propagating geometric
and temporal constraints to the feature detection level, where image warping and specialized
image processing are combined to perform feature detection quickly and robustly.

Over the past several years, we have used X Vision to construct several vision-based sys-
tems. We present some of these applications as an illustration of how useful, robust tracking
systems can be constructed by simple combinations of a few basic primitives combined with the
appropriate task-specific constraints.

To appear in Computer Vision and Image Understanding

1 Introduction

Real-time vision is an ideal source of feedback for systems that must interact dynamically with the
world. Cameras are passive and unobtrusive, they have a wide field of view, and they provide a
means for accurately measuring the geometric properties of physical objects. Potential applications
for visual feedback range from traditional problems such as robotic hand-eye coordination and
mobile robot navigation to more recent areas of interest such as user interfaces, gesture recognition,
and surveillance.

One of the key problems in real-time vision is to track objects of interest through a series of
images. There are two general classes of image processing algorithms used for this task: full-field
image processing followed by segmentation and matching, and localized feature detection. Many
tracking problems can be solved using either approach, but it is clear that the data-processing
requirements for the solutions vary considerably. Full-frame algorithms such as optical flow calcu-
lation or region segmentation tend to lead to data intensive, processing which is performed offline
or which is accelerated using specialized hardware (for a notable exception, see [36]). On the other
hand, feature-based algorithms usually concentrate on spatially localized areas of the image. Since
image processing is local, high data bandwidth between the host and the digitizer is not needed.
The amount of data that must be processed is also relatively low and can be handled by sequential
algorithms operating on standard computing hardware. Such systems are cost-effective and, since
the tracking algorithms reside in software, extremely flexible and portable. Furthermore, as the
speed of processors continues to increase, so does the complexity of the real-time vision applica-
tions that can be run on them. These advances anticipate the day when even full-frame applications
requiring moderate processing can be run on standard hardware.

Local feature tracking has already found wide applicability in the vision and robotics liter-
ature. One of the most common applications is determining structure from motion. Structure
from motion algorithms attempt to recover the three-dimensional structure of objects by observing
their movement in multiple camera frames. Most often, this research involves observation of line
segments [12, 30, 43, 45, 57|, point features [41, 44], or both [14, 42], as they move in the image.
As with stereo vision research, a basic necessity for recovering structure accurately is a solution to
the correspondence problem: three-dimensional structure cannot be accurately determined without
knowing which image features correspond to the same physical point in successive image frames. In
this sense, precise local feature tracking is essential for the accurate recovery of three-dimensional
structure.

Robotic hand-eye applications also make heavy use of visual tracking. Robots often operate
in environments rich with edges, corners, and textures, making feature-based tracking a natural
choice for providing visual input. Specific applications include calibration of cameras and robots
[9, 28], visual-servoing and hand-eye coordination [10, 18, 25, 27, 56], mobile robot navigation and
map-making [45, 55], pursuit of moving objects [10, 26], grasping [1], and telerobotics [23]. Robotic
applications most often require the tracking of objects more complex than line segments or point
features, and they frequently require the ability to track multiple objects. Thus, a tracking system
for robotic applications must include a framework for composing simple features to track objects
such as rectangles, wheels, and grippers in a variety of environments. At the same time, the fact
that vision is in a servo loop implies that tracking must be fast, accurate, and highly reliable.

A third category of tracking applications are those which track modeled objects. Models may
be anything from weak assumptions about the form of the object as it projects to the camera image

(e.g. , contour trackers which assume simple, closed contours [8]) to full-fledged three-dimensional
models with variable parameters (such as a model for an automobile which allows for turning
wheels, opening doors, etc.). Automatic road-following has been accomplished by tracking the
edges of the road [34]. Various snake-like trackers are used to track objects in 2D as they move
across the camera image [2, 8, 11, 29, 46, 49, 54]. Three-dimensional models, while more complex,
allow for precise pose estimation [17, 31]. The key problem in model-based tracking is to integrate
simple features into a consistent whole, both to predict the configuration of features in the future
and to evaluate the accuracy of any single feature.

While the list of tracking applications is long, the features used in these applications are vari-
ations on a very small set of primitives: “edgels” or line segments [12, 17, 30, 31, 43, 45, 49, 57],
corners based on line segments [23, 41], small patches of texture [13], and easily detectable highlights
[4, 39]. Although the basic tracking principles for such simple features have been known for some
time, experience has shown that tracking them is most effective when strong geometric, physical,
and temporal constraints from the surrounding task can be brought to bear on the tracking prob-
lem. In many cases, the natural abstraction is a multi-level framework where geometric constraints
are imposed “top-down” while geometric information about the world is computed “bottom-up.”

Although tracking is a necessary function for most of the research listed above, it is generally
not a focus of the work and is often solved in an ad hoc fashion for the purposes of a single
demonstration. This has led to a proliferation of tracking techniques which, although effective
for particular experiments, are not practical solutions in general. Many tracking systems, for
example, are only applied to pre-stored video sequences and do not operate in real time [40]. The
implicit assumption is that speed will come, in time, with better technology (perhaps a reasonable
assumption, but one which does not help those seeking real-time applications today). Other tracking
systems require specialized hardware [1], making it difficult for researchers without such resources
to replicate results. Finally, most, if not all, existing tracking methodologies lack modularity and
portability, forcing tracking modules to be re-invented for every application.

Based on these observations, we believe that the availability of fast, portable, reconfigurable
tracking system would greatly accelerate research requiring real-time vision tools. Just as the
X Window system made graphical user interfaces a common feature of desktop workstations, an
analogous “X Vision” system could make desktop visual tracking a standard tool in next generation
computing. We have constructed such a system, called X Vision, both to study the science and
art of visual tracking as well as to conduct experiments utilizing visual feedback. Experience from
several teaching and research applications suggests that this system reduces the startup time for
new vision applications, makes real-time vision accessible to “non-experts,” and demonstrates that
interesting research utilizing real-time vision can be performed with minimal hardware.

This article describes the philosophy and design of X Vision, focusing particularly on how
geometric warping and geometric constraints are used to achieve high performance. We also present
timing data for various tracking primitives and several demonstrations of X Vision-based systems.
The remainder of the article is organized into four parts. Section 2 describes X Vision in some
detail and Section 3 shows several examples of its use. The final section suggests some of the
future directions for this paradigm, and we include an appendix which discusses some details of the
software implementation.

2 Tracking System Design and Implementation

It has often been said that “vision is inverse graphics.” X Vision embodies this analogy and carries
it one step further by viewing wvisual tracking as inverse animation. In particular, most graphics
or animation systems implement a few simple primitives, e.g., lines and arcs, and define more
complex objects in terms of these primitives. So, for example, a polygon may be decomposed into
its polyhedral faces which are further decomposed into constituent lines. Given an object-viewer
relationship, these lines are projected into the screen coordinate system and displayed. A good
graphics system makes defining these types of geometric relationships simple and intuitive [15].

X Vision provides this functionality and its converse. In addition to stating how a complex
object in a particular pose or configuration is decomposed into a list of primitive features, X Vision
describes how the pose or attitude is computed given the locations of those primitives. More
specifically, the system is organized around a small set of image-level primitives referred to as basic
features. Fach of these features is described in terms of a small set of parameters, referred to as a
state vector, which completely specifies the features’ positions and appearances. Complex features
or objects carry their own state vectors which are computed by defining functions or constraints
on a collection of simpler state vectors. These complex features may themselves participate in the
construction of yet more complex features. Conversely, given the state vector of a complex feature,
constraints are imposed on the state of its constituent features and the process recurses until image-
level primitives are reached. The image-level primitives search for features in the neighborhood of
their expected locations which produces a new state vector, and the cycle repeats.

In addition to being efficient and modular, X Vision provides facilities to simplify embedding
of vision into applications. In particular, X Vision incorporates data abstraction that dissociates
information carried in the feature state from the tracking mechanism used to acquire it.

2.1 Image-Level Feature Tracking

The primitive feature tracking algorithms of X Vision are optimized to be both accurate and efficient
on scalar processors. These goals are met largely through two important attributes of X Vision.
First, any tracking primitive operates on a relatively small “region of interest” within the image.
Tracking a feature means that the region of interest retains a fixed, pre-defined relationship to the
feature. In X Vision, a region of interest is referred to as a window. Fundamentally, the goal of
low-level processing is to process the pixels within a window using a minimal number of addressing
operations, bus transfer cycles, and arithmetic operations.

The second key idea is to employ image warping to geometrically transform windows so that
image features appear in a canonical configuration. Subsequent processing of the warped window
can then be simplified by assuming the feature is in or near this canonical configuration. As
a result, the image processing algorithms used in feature-tracking can focus on the problem of
accurate configuration adjustment rather than general-purpose feature detection. For example,
consider locating a straight edge segment with approximately known orientation within an image
region. Traditional feature detection methods utilize one or more convolutions, thresholding, and
feature aggregation algorithms to detect edge segments. This is followed by a matching phase which
utilizes orientation, segment length, and other cues to choose the segment which corresponds to the
target [5]. Because the orientation and linearity constraints appear late in the detection process,
such methods spend a large amount of time performing general purpose edge detection which in

turn generates large amounts of data that must then be analyzed in the subsequent match phase.
A more effective approach, as described in Section 2.1.2, is to exploit these constraints at the outset
by utilizing a detector tuned for straight edges.

An additional advantage to warping-based algorithms is that they separate the “change of
coordinates” needed to rectify a feature from the image processing used to detect it. On one hand,
the same type of coordinate transforms, e.g. , rigid transformations, occur repeatedly, so the same
warping primitives can be reused. On the other hand, various types of warping can be used to
normalize features so that the same accelerated image processing can be applied over and over
again. For example, quadratic warping could be used to locally “straighten” a curved edge so that
an optimized straight edge detection strategy can be applied.

The low-level features currently available in X Vision include solid or broken contrast edges
detected using several variations on standard edge-detection, general grey-scale patterns tracked
using SSD (sum-of-squared differences) methods [3, 47], and a variety of color and motion-based
primitives used for initial detection of objects and subsequent match disambiguation [51]. The
remainder of this section describes how edge-tracking and correlation-based tracking have been
incorporated into X Vision. In the sequel, all reported timing figures were taken on an SGI Indy
workstation equipped with a 175Mhz R4400 SC processor and an SGI VINO digitizing system.
Nearly equivalent results have been obtained for a Sun Sparc 20 equipped with a 70Mhz super-
sparc processor and for a 120MHz Pentium microprocessor, both with standard digitizers and
cameras.

2.1.1 Warping

In the remainder of this article, we define acquiring a window to be the transfer and warping of the
window’s pixels. The algorithms described in this article use rigid and affine warping of rectangular
image regions. The warping algorithms are based on the observation that a positive-definite linear
transformation A, can be written as a product of an upper-triangular matrix U and a rotation
matrix R(#) as

A=UR(®9) = [Sy] [(:f)s(H) — sin(0)]
0 sy sin(#) cos(9)

The implementation of image warping mirrors this factorization. First, a rotated rectangular
area is acquired using an algorithm closely related to Bresenham algorithms for fast line render-
ing [15]. The resulting buffer can be subsequently scaled and sheared using an optimized bilinear
interpolation algorithm. The former is relatively inexpensive, requiring about 2 additions per pixel
to implement. The latter is more expensive, requiring 3 multiplies and 6 additions per pixel in
our implementation. The initial acquisition is also parameterized by a sampling factor, making it
possible to acquire decimated images at no additional cost. The warping algorithm supports reduc-
tion of resolution by averaging neighborhoods of pixels at a cost of one addition and 1/r multiplies
per pixel for reduction by a factor of r. Figure 1 shows the time consumed by the three stages of
warping (rotation, scale, and resolution reduction) on various size regions, and shows the effective
time consumed for affine warping followed by resolution reduction to three different scales.

!The time taken for scaling varies with the amount of scaling done; these timings are for scaling the input image
by a factor of 1/1.1.

Size ‘20><20 40 x 40 | 60 x 60 | 80 x 80 | 100 x 100

Rotational Warping 0.11 0.40 0.94 1.77 2.83
Scale and Shear! 0.39 1.52 3.45 6.11 9.69
Resolution by 2 0.06 0.23 0.54 1.02 1.67
Resolution by 4 0.04 0.13 0.30 0.59 0.97
Affine 0.50 1.92 4.39 7.88 12.52
Affine by 2 0.56 2.15 4.93 8.90 14.19
Affine by 4 0.54 2.05 4.69 8.47 13.49

Figure 1. The time in milliseconds consumed image warping for various size regions. The first two lines
show the time for each of the warping stages. The third and fourth lines show the time taken for reducing
image resolution by a factor of 2 and 4. The final lines show the time needed for affine warping at various

scales based on the component times.

For the purposes of later discussion, we denote an image region acquired at time ¢ as R(¢). The
region containing the entire camera image at time ¢ is written Z(¢). Warping operators operate on
image regions to produce new regions. We write R(t) = warp, ,(Z(¢);d, #) to denote the acquisition
of an image region centered at d = (z,y)" and rotated by 6. Likewise, using the definition of U
above, R'(t) = warp,(R(t); U) denotes scaling the image region R(¢) by s, and s, and shearing
by ~. Affine warping is defined as

warp . (R(t); A,d) = warp_(warp,_,(R(t);d,0);U)

where A = U R(6).

2.1.2 Edges

X Vision provides a tracking mechanism for linear edge segments of arbitrary length. The state of
an edge segment consists of its position, d = (z,y)’, and orientation, @, in framebuffer coordinates
as well as its filter response r. Given prior state information L; = (zy, ys, 04, r4)!, we can write the
feature tracking cycle for the edge state computation at time ¢ + 7 schematically as

L.y, = L; + Edge(warp,, (Z({ + 7); x4, ye, 01); L) (1)

The edge tracking procedure can be divided into two stages: feature detection and state up-
dating. In the detection stage, rotational image warping is used to acquire a window which, if the
prior estimate is correct, leads to an edge which is vertical within the warped window. Detecting
a straight, vertical contrast step edge can be implemented by convolving each row of the window
with a derivative-based kernel, and averaging the resulting response curves by summing down the
columns of the window. Finding the maximum value of this response function localizes the edge.
Performance can be improved by noting that the order of the convolution and summation steps can
be commuted. Thus, in an n X m window, edge localization with a convolution mask of width &
can be performed with just m X (n + k) additions and mk multiplications. We, in fact, often use an
IR filter composed of a series of —1s, one or more 0s, and a series of +1s which can be implemented

using only m X (n+4) additions. We note that this is significantly cheaper than using, for example,
steerable filters for this purpose [16].

The detection scheme described above requires orientation information to function correctly. If
this information cannot be supplied from “higher-level” geometric constraints, it is estimated as
follows (refer to Figure 3). As the orientation of the acquisition window rotates relative to the edge,
the response of the filter drops sharply. Thus, edge orientation can be computed by sampling at
several orientations and interpolating the responses to locate the direction of maximum response.
However, implementing this scheme directly would be wasteful because the acquisition windows
would overlap, causing many pixels to be transferred and warped three times. To avoid this
overhead, an expanded window at the predicted orientation is acquired, and the summation step
is repeated three times: once along the columns, and once along two diagonal paths at a small
angular offset from vertical. This effectively approximates rotation by image shear, a well-known
technique in graphics [15]. Quadratic interpolation of the maximum of the three curves is used to
estimate the orientation of the underlying edge. In the ideal case, if the convolution template is
symmetric and the response function after superposition is unimodal, the horizontal displacement
of the edge should agree between all three filters. In practice, the estimate of edge location will be
biased. For this reason, edge location is computed as the weighted average of the edge location of
all three peaks.

Even though the edge detector described above is quite selective, as the edge segment moves
through clutter, we can expect multiple local maxima to appear in the convolution output. This
is a well-known and unavoidable problem for which many solutions have been proposed [38]. By
default, X Vision declares a match if and only if a unique local maximum exists within an interval
about the response value stored in the state. The match interval is chosen as a fraction of the
difference between the matched response value and its next closest response in the previous frame.
This scheme makes it extremely unlikely that mistracking due to incorrect matching will occur.
Such an event could happen only if some distracting edge of the correct orientation and response
moved into the tracking window just as the desired edge changed response or moved out of the
tracking window. The value of the threshold determines how selective the filter is. A narrow
match band implicitly assumes that the edge response remains constant over time, a problem in
environments with changing backgrounds. Other possibilities include matching on the brightness
of the “foreground” object or matching based on nearness to an expected location passed from a
higher-level object. Experimental results on line tracking using various match functions can be
found in [49].

The result of the image processing stage is to compute an offset normal to the edge orientation,
0t, and an orientation offset 66. Given these values, the geometric parameters of the edge tracker
are updated according to the following equation:

Ti4r Tt —ot sin(@t + 60)
Yegr | = | ye | + | Otcos(0:+468) |. (2)
Ot r 6, 60

Because of the aperture problem, the state vector is not fully determined by information returned
from feature detection. There is nothing to keep the window from moving “along” the edge that it
is tracking. For this reason, the edge tracking primitive almost always participates in a composite
feature that imposes additional constraints on its state (see Section 2.2).

We note that edge tracking robustness can be increased by making edge segments as long

Figure 2. Close-up of tracking windows at two time points. Left, time ¢;, where the edge tracking algorithm
has computed the correct warp parameters to make an edge appear vertical (the “setpoint”). Right, the
edge acquired at time ?;41. The warp parameters computed for ¢; were used to acquire the image, but the

underlying edge has changed orientation. Figure 3 shows how the new orientation is computed.

angle

4 .|.m

<« interpolated
peak

]

+
5

:

-
—

Figure 3. Schematic for computing edge orientation. The diagrams on the left show a window of pixels
at three different “orientations.” The middle figure displays the edge after a warped acquisition (Figure 2,
right). The top and bottom figures show the effect of shifting rows to simulate orientational offset. Summing
the columns for each figure and taking differences between adjacent sets of columns gives estimates for edge
strength. The arrows at the bottom show where each image experiences the strongest vertical edge within
the window. At the right, these values are plotted with angle offset on the vertical axis and edge strengths
on the horizontal axis. The three data points are fit to a quadratic, whose peak offers an estimate for the
best angular offset of the actual edge. (Both the orielztation of the edge in the middle figure and the extent

of the shearing in the top and bottom figures have been exaggerated for illustrative purposes.)

Line Length Sampling
Length, Width | Full | 1/2 | 1/4
20, 20 0.39 | 0.29 | 0.20
40, 20 0.71]0.41 | 0.26
60, 20 1.13 1 0.59 | 0.35
20, 30 0.56 | 0.34 | 0.27
40, 30 0.93 | 0.55 | 0.35
60, 30 1.55 1 0.77 | 0.47
20, 40 0.65 | 0.43 | 0.32
40, 40 1.17 | 0.66 | 0.45
60, 40 2.09 | 0.97 | 0.57

Figure 4. Time in milliseconds required for one iteration of tracking an edge segment.

as possible [50]. Long segments are less likely to become completely occluded, and changes in the
background tend to affect a smaller proportion of the segment with a commensurately lower impact
on the filter response. On long edge segments, speed is maintained by subsampling the window
in the direction of the edge segment. Likewise, the maximum edge motion between images can be
increased by subsampling in the horizontal direction. In this case, the accuracy of edge localization
drops and the possibility of an ambiguous match increases.

Figure 4 shows timings for simple edge tracking that were obtained during test runs. Length
and width refer to the length of the tracked edge and the width of the search region normal to the
edge in pixels, respectively. One interesting point is that, because superimposing the columns of
the image is performed before the convolution step, processing speed is sublinear with edge length.
For example, moving from 20 pixel edges to 40 pixel edges results in only a 65% increase in time.
Also, tracking a 40 pixel segment at half resolution takes the same amount of time as a 20 pixel
segment at full resolution because the warping operator implements decimation efficiently. Finally,
if we consider tracking 20 pixel edge segments at full resolution, we see that it is possible to track
up to 33.33/0.44 = 85 segments simultaneously at frame rate.

2.1.3 Region-Based Tracking

In region-based tracking, we consider matching a stored reference window to a region of the image.
The reference is either a region taken from the scene itself, or a pre-supplied target template. It is
assumed throughout that the surface patch corresponding to the region of interest is roughly planar
and that its projection is relatively small compared to the image as a whole so that perspective
effects are minimal. Under these circumstances, the geometric distortions of a region are well
modeled by an affine transformation consisting of a 2 x 1 translation vector, d = (u,v)’, and
a positive definite 2 x 2 matrix, A. The state vector for our region tracker includes these six
geometric parameters and a residual value, r, which indicates how well the reference region and the
current image region match in a least-squares sense. Defining S; = (A4, dy, r¢) to denote the state
vector parameters at time ¢, the computation of the state at time ¢+ 7 can be written schematically
as

Styr =S¢ + SSD(warp,(Z(t + 7); Ay, dy); Se). (3)

As before, previous state information of the reference region is used to acquire and warp a
prospective image region. Once this transformation is performed, computing the remaining ge-
ometric differences between reference and the prospective regions is posed as a sum-of-squared
differences (least-squares) optimization problem similar to that of stereo matching [33]. We note
that this approach to region tracking is not itself new, however previous implementations were
based on computing and integrating interframe motion [48, 40], did not operate in real-time [6, 7],
or computed a subset of the affine parameters [37]. Our region tracking uses the initial refer-
ence region throughout the image sequence to provide a fixed “setpoint” for the algorithm, and it
computes up to full afline image deformations at or near frame rate.

Let I(x,t) denote the value of the pixel at location x = (z,y)" at time ¢ in an image sequence.
Consider a planar surface patch undergoing rigid motion observed under orthographic projection.
At time tg, the surface projects to an image region R(%g), subsequently referred to as the target
region, with a spatial extent represented as a set of image locations, W. At some later point,
t > tg, the region projects to an affine transformation of the original region. If illumination remains
constant, the geometric relationship between the projections can be recovered by minimizing the
following objective function:

O(A,d) = S (I(Ax + d,1) — I(x,10))?w(x), 1> to, (4)
xeW

where A and d are as described above, x = (z,y)’, and w(-) is an arbitrary positive weighting
function.

Suppose that a solution at time ¢, (A, d;), is known, and the goal is to compute the solution
at time t 4+ 7 for small positive 7. Since we apply affine warping to the image of time ¢ 4+ 7, it is
useful to define

Ay = AI+A) (5)
dip, = di+Ad, (6)

where A’ and d’ represent incremental changes during the interval 7. Substituting into (4) we have

O(Atsrydigr) = S (H(A(T+ ANx 4+ Apd + diy t 4+ 7) — I(x, 1)) *w(x). (7)
xeW

We now introduce the “warped image,” J(x,t) = I(Ax + d,t+ 7), and write a new objective
function O'(-) in terms of J, A’ and d’:

O'(A",d")= Y (J(x+ Alx+d' 1+ 7) = I(x,10)) w(x). (8)
xEW

Solving (8) proceeds by linearizing J about the point (A’,d’) = 0, yielding

O'(A,d)= > (J(x,t) + VJ(x,t)- (A'x+d') = I(x,10))w(x), >0, (9)
xEW

where V.J = (J,, J,)" is the warped image spatial gradient.

If the solution at ¢ is nearly the correct one, then J(x,t) = I(x,t), and hence VJ ~ VI =
(I, 1), where I, and I, are spatial gradients of the original image. With this observation, we can
simplify (9) and rewrite it in terms of the spatial derivatives of the reference image yielding

O'(A',d) = Z (VI(x,t)-(A'x +d) + (J(x,1) = I(x,10)))*w(x). (10)
xeW

In this form, the problem can be solved by joint optimization over all six unknowns in A’ and d'.
However, one difficulty with computing affine structure lies in the fact that many target regions do
not have enough texture to fully determine all six geometric parameters [40]. Consider, for example,
a window placed on a right-angle corner. A pure translation of the corner can be accounted for as
translation, scaling or a linear combination of both. The solution implemented in X Vision is based
on the observation that the image structure which determines translation and rotation is similar to
that which determines scale and shear. In general, translation and rotation are much more rapidly
changing parameters than are scale and shear. In ambiguous situations these parameters should

be the preferred interpretation for image changes.
To implement this solution, we decompose A’ into a differential rotation and an upper triangular

;L 0 «a Sy Y
A_l—a Ol—l_lo Sy

and solve for two parameter groups, (d, @) and (s, sy, 7), sequentially. This establishes preferences
for interpreting image changes (the result being that some image perturbations result in short
detours in the state space before arriving at a final state estimate). Although less accurate than a

matrix:

simultaneous solution, the small amount of distortion between temporally adjacent images makes
this solution method sufficiently precise for most applications.
We first solve for translation and rotation. For an image location x = (z,y)" we define

I(x,t0)y/ w(x) (11)
1, (x,to)y/w(x)

(y Lx(x,t0) — « I, (x,t0))y/w(x)

ho(x) = (J(x,t)— 1(x,t))y/w(x), (12)

»
~— ~— ~—
ll

(
(
(
(

and the linear system for computing translation and rotation is

9292 929y GoYr d ho ge
9y9: 9y9y GyYr []: | hogy |- (13)
xXeEW 9rgx grgy grgr xeW hO gr

Since the spatial derivatives are only computed using the original reference image, g,, ¢,, and g,
are constant over time, so those values and the inverse of the matrix on the left hand side of (13)
can be computed offline.

Once d and «a are known, the least squares residual value is computed as

hi(x) = ho(x) — gz(x)u — gy(x)v — g,(x)a. (14)

10

If the image distortion arises from pure translation and no noise is present, then we expect that
hq(x) = 0 after this step. Any remaining residual can be attributed to geometric distortions in the
second group of parameters, linearization error or noise. To recover scale changes and shear, we
define for an image location x = (=, y)!

gsx(x) = ng(X), (15)
Isy(x) = ygy(x),
94(x) =y gu(x), (16)

and the linear system for computing scaling and shear parameters is

Gszsx Ysxlfsy YszG~ Sa hl sz
GsyGse Ysylsy YGsyd~ Sy = Z hl sy . (17)
xew G~vGsz G~v4sy G~YG~ Y xeWw hy 9~

As before, g4, gy, and g, can be precomputed as can the inverse of the matrix on the left hand
side. The residual is

ha(x) = hi(X) = g (X)52 = gy (X)5y = 9-(%)7. (18)

After all relevant stages of processing have been complete,

Y Sew halx)?)

r =
W

is stored as the match value of the state vector.

One potential problem with this approach is that the brightness and contrast of the target are
unlikely to remain constant which may bias the results of the optimization. The solution is to
normalize images to have zero first moment and unit second moment. We note that with these
modifications, solving (4) for rigid motions (translation and rotation) is equivalent to maximiz-
ing normalized correlation [24]. Extensions to the SSD-based region tracking paradigm for more
complex lighting models can be found in [21].

Another problem is that the image gradients are only locally valid. In order to guarantee
tracking of motions larger than a fraction of a pixel, these calculations must be carried out at
varying levels of resolution. For this reason, a software reduction of resolution is carried out at the
time of window acquisition. All of the above calculations except for image scaling are computed at
the reduced resolution, and the estimated motion values are appropriately rescaled. The tracking
algorithm changes the resolution adaptively based on image motion. If the computed motion value
for either component of d’ exceeds 0.25, the resolution for the subsequent step is halved. If the
interframe motion is less than 0.1, the resolution is doubled. This leads to a fast algorithm for
tracking fast motions and a slower but more accurate algorithm for tracking slower motions.

If we consider the complexity of tracking in terms of arithmetic operations on pixels (asymp-
totically, these calculations dominate the other operations needed to solve the linear system) we
see that there is a fixed overhead of one difference and multiply to compute hg. Each parameter
computed requires an additional multiply and addition per pixel. Computing the residual values

11

Size 40 x 40 | 60 x 60 80 x 80 100 x 100
Reduction | 4 2 4 2 4 2 4 2
Rigid 1515632 95| 6.1 |17.7| 9.4 | 28.3
Affine 3.7184 811|156 | 144 | 28.5] 22.5 | 43.1

Figure 5. The time in milliseconds consumed by one cycle of tracking for various instantiations of the SSD
tracker. The first row shows the timings for rigid motion (translation and rotation), and the second row

shows the time for full affine deformations.

consumes a multiply and addition per pixel per parameter value. In addition to parameter estima-
tion, the initial brightness and contrast compensation consume three additions two multiplies per
pixel. Thus, to compute the algorithm at a resolution d requires 15/d? multiplies and 1 + 16/d?
additions per pixel (neglecting warping costs). It is interesting to note that at a reduction factor
of d = 4, the algorithm compares favorably with edge detection on comparable sized regions.

To get a sense of the time consumed by these operations, several test cases are shown in Figure 5.
The first row shows the time needed to track rigid motions (translation and rotation) and the second
shows the time taken for tracking with full affine deformations. The times include both warping
and parameter estimation; the times given in Figure 1 can be subtracted to determine the time
needed to estimate parameter values. In particular, it is important to note that, because the time
consumed by affine warping is nearly constant with respect to resolution, parameter estimation
tends to dominate the computation for half and full resolution tracking, while image warping tends
to dominate the computation for lower resolution tracking. With the exception of 100 x 100 images
at half resolution, all updates require less than one frame time (33.33 ms.) to compute. Comparing
with Figure 4, we observe that the time needed to track a 40 x 40 region at one-fourth resolution
is nearly equivalent to that needed to track a comparably-sized edge segment as expected from the
complexity analysis given above.

To get a sense of the effectiveness of affine tracking, Figure 6 shows several images of a box as
a 100 x 100 region on its surface was tracked at one-fourth resolution. The lower series of images is
the warped image which is the input to the SSD updating algorithm. We see that except for minor
variations, the warped images are identical despite the radically different poses of the box.

2.2 Networks of Features

One goal of X Vision is to make it simple to quickly prototype tracking systems from existing
components, and then to add application-specific constraints quickly and cleanly. This is accom-
plished by extending the state-based representation used in image-level features with additional
infrastructure to support hierarchical imposition of geometric and physical constraints on feature
evolution.

More specifically, we define composite features to be features that compute their state from
other basic and composite features. We allow two types of feature composition. In the first case,
information flow is purely “bottom-up.” Features are combined solely to compute information
from their state vectors without altering their tracking behavior. For example, given two point
features it may be desirable to present them as the line feature passing through both. A feature

12

Figure 6. Several images of a planar region and the corresponding warped image used by the tracker. The
image at the left is the initial reference image.

(henceforth, feature refers to both basic and composite features) can participate in any number of
such constructions. In the second case, the point of performing feature composition is to exploit
higher level geometric constraints in tracking as well as to compute a new state vector. In this case,
information flows both upward and downward.

We further define a feature network to be a set of nodes connected by arcs directed either upward
or downward (a feature and its subsidiary feature can be linked in both directions). Nodes represent
features, and links represent the information dependency between a composite feature and the fea-
tures used to compute its state. To implement these functions, we associate a state-computation
procedure with the incoming links to a node, and a constraint-propagation procedure with the
outgoing links.

A complete feature tracking cycle consists of: 1) traversing the downward links from each top-
level node by executing the associated constraint-propagation procedure until basic features are
reached; 2) performing low-level detection in every basic feature; and 3) traversing the upward links
of the graph by executing the state-computation procedure of each node. State prediction can be
added to this cycle by including it in the downward constraint propagation phase. Thus, a feature
tracking system is completely characterized by the topology of the network, the identity of the
basic features, and the state computation and constraint propagation functions for each non-basic
feature node.

A concrete example is a feature tracker for the intersection of two non-collinear contours. This
composite feature has a state vector €' = (x,y,@,a)T describing the position of the intersection
point, the orientation of one contour, and the orientation difference between the two contours. The
constraint-propagation function for corners is implemented as follows. From image edges with
state Ly = (21,91,01,71)7 and Ly = (23, y,02,79)7, the distance from the center of each tracking
window to the point of intersection the two edges can be computed as

A1 = (2 — z1)sin(b) — (y2 — y1) cos(bz))/ sin(fz — 6y),
A2 = ((@2 — z1)sin(b1) — (y2 — y1) cos(f1))/ sin(fz — 07).

Given a known corner state vector, we can choose “setpoints” A7 and A3 describing where to
position the edge trackers relative to the intersection point. With this information, the states of

13

the individual edges can be adjusted as follows:

r; = x.— A cos(b;),

Yi = Yo — Ajsin(6;), (20)
for ¢« = 1,2. Choosing A} = A5 = 0 defines a cross pattern. If the window extends / pixels along
the edge, choosing AT = A3 = h/2 defines a corner. Choosing A} = 0 and A5 = h/2 defines a tee
junction, and so forth.

Conversely, given updated state information for the component edges, the state-computation
function computes:

T, = 1+ Acos(by), (21)
Ye = Y1+ Aysin(6y),

ec = 017

Q. = 02 — 01.

The tracking cycle for this system starts by using prior predictions of corner state to impose
the constraints of (20) downward. Image-level feature detection is then performed, and finally
information is propagated upward by computing (21).

Composite features that have been implemented within this scheme range from simple edge
intersections as described above, to snake-like contour tracking [49], to three-dimensional model-
based tracking using pose estimation [32], as well as a variety of more specialized object trackers,
some of which are described in Section 3.

2.3 Feature Typing

In order to make feature composition simpler and more generic, we have included polymorphic
type support in the tracking system. Fach feature, basic or composite, carries a type. This type
identifies the geometric or physical information contained in the state vector of the feature. For
example, there are point features which carry location information and line features which carry
orientation information.

Any composite feature can specify the type of its subsidiary features and can itself carry a type.
In this way, the construction becomes independent of a manner with which its subsidiary nodes
compute information. So, for example, a line feature can be constructed from two point features
by computing the line that passes through the features and a point feature can be computed by
intersecting two line features. An instance of the intersection-based point feature can be instantiated
either from edges detected in images or line features that are themselves computed from point
features.

3 Applications

We have used X Vision for several purposes including hand-eye coordination [19, 20, 22], a pose-
based object tracking system [32], a robust face-tracking system [51], a gesture-based drawing
program, a six degree-of-freedom mouse [52], and a variety of small video games. In this section,
we describe some applications of X Vision which illustrate how the tools it provides—particularly
image warping, image subsampling, constraint propagation, and typing—can be used to quickly
prototype fast and effective tracking systems.

14

line length | sampling || tracking speed | o of position
(pixels) rate (msec/cycle) (pixels)
A B A B

24 1 9.3 7.7 0.09 0.01

12 2 5.5 4.5 0.10 0.00

8 3 3.7 3.3 0.07 0.03

6 4 3.0 2.7 0.05 0.04

2 12 1.9 1.6 0.05 0.04

1 24 1.5 1.3 0.05 0.07

Figure 7. Speed and accuracy of tracking rectangles with various spatial sampling rates. The figures in
column A are for a tracker based on four corners computing independent orientation. The figures in column
B are for a tracker which passes orientation down from the top-level composite feature.

3.1 Pure Tracking Applications

Edge-Based Disk Tracking One important application for any tracking system is model-based
tracking of objects for applications such as hand-eye coordination or virtual reality. While a generic
model-based tracker for three-dimensional objects for this system can be constructed [32], X Vision
makes it possible to gain additional speed and robustness by customizing the tracking loop using
object-specific geometric information.

On example of this customization process is the development of a tracker for rectangular floppy
disks that we use as test objects in our hand-eye experiments (described below). Given the available
tools, the most straightforward rectangle tracker is a composite tracker which tracks four corners,
which in turn are composite trackers which track two lines each as described in Section 2.1.2. No
additional constraints are imposed on the corners.

This method, while simple to implement, has two obvious disadvantages First, in order to track
quickly, only a small region of the occluding contour of the disk near the corners is processed. This
makes them prone to mistracking through chance occlusion and background distractions. Second,
each of the line computations is independently computing orientation from image information,
making the tracking relatively slow. The first problem is handled by increasing the effective length
of the edge trackers by operating them on subsampled windows. The second problem is solved by
adding additional constraints to the system. The composite feature for the rectangle computes the
orientation of the lines joining the corners and passes this information down to the image-level edge
trackers. The edge trackers then do not need to compute orientation from image information. The
net effect of these two changes is to create a highly constrained snake-like contour tracker [29].

Figure 7 contains some timing and accuracy statistics for the resulting algorithm. It shows
that there is little or no loss of precision in determining the location of the corners with reasonable
sampling rates. At the same time, we see a 10% to 20% speedup by not computing line orientations
at the image level and a nearly linear speedup with image subsampling level.

Region-Based Face Tracking A frontal view of a human face is sufficiently planar to be suc-
cessfully tracked as a single SSD region. Figure 8 shows several image pairs illustrating poses of
a face and the warped image resulting from tracking. Despite the fact that the face is nonpla-
nar, resulting for example in a stretching of the nose as the face is turned, the tracking is quite

15

Figure 8. Above several images of the a face and below the corresponding warped images used by the tracking

system.

effective. However, tracking a face as a single region requires affine warping over a relatively large
region which is somewhat slow (about 40 milliseconds per iteration). It can be confused if the face
undergoes distortions which cannot be easily captured by affine deformation, and it is sensitive to
lighting variations and shadowing. Also, many areas of the face contain no strong gradients, thus
contributing little to the state computation.

Figure 9 shows the structure of a more specialized tracking arrangement that uses SSD trackers
at the regions of highest contrast — the eyes and mouth. The result is a gain in performance as
well as the ability to recognize isolated changes in the underlying features. For each of the eyes
and the mouth, a MultiSSD composite tracker performs an SSD computation for multiple reference
images. The state of the MultiSSD tracker is computed to be the state of the tracker with the best
match value and the numeric identity of this tracker. The constraint function copies this state back
down to the component SSD trackers, forcing “losing” SSD trackers follow the “winner.” In effect,
the MultiSSD feature is a tracker with an n-ary switch.

From MultiSSD we derive an Eye tracker which modifies the display function of MultiSSD
to show an open or closed eye based on the state of the binary switch. We also derive Mouth
which similarly displays an open or closed mouth. Two Eye’s compose the Eyes tracker. The
state computation function of Eyes computes the orientation of the line joining the eyes, which
is propagated to the lower-level Eye trackers, obviating the need to compute orientation from
image-level information. Thus, the low-level Eye trackers only solve for translation, much as the
disk tracker described above. Since the mouth can move independently, Mouth computes both
translation and orientation directly from the image. Finally, the Face tracker comprises Eyes and
Mouth. It imposes no constraints on them, but it does interpolate the position of the nose based
on the Eyes and Mouth.

The tracker is initialized by indicating the positions of the eyes and mouth and memorizing
their appearance when they are closed and open. When run, the net effect is a graphical display of
a “clown face” that mimics the antics of the underlying human face — the mouth and eyes follow
those of the operator and open and close as the operator’s do as shown in Figure 10. This system

16

FACE

/

EYES
/ AN MOUTH
EYE EYE
MultiSSD MultiSSD MultiSSD
SSOD SO SO SO SO S

Figure 9. The tracking network used for face tracking.

Figure 10. The “clown face” tracker.

17

