
X Vision: A Portable Substrate for Real-Time Vision ApplicationsGregory D. Hager and Kentaro ToyamaDepartment of Computer ScienceYale University, P.O. Box 208285New Haven, CT, 06520Phone: (203) 432-6432Fax: (203) 432-0593E-mail: hager@cs.yale.edu, toyama@cs.yale.eduAbstractIn the past several years, the speed of standard processors has reached the point whereinteresting problems requiring visual tracking can be carried out on standard workstations.However, relatively little attention has been devoted to developing visual tracking technology inits own right.In this article, we describe X Vision, a modular, portable framework for visual tracking.X Vision is designed to be a programming environment for real-time vision which provides highperformance on standard workstations out�tted with a simple digitizer. X Vision consists of asmall set of image-level tracking primitives, and a framework for combining tracking primitives toform complex tracking systems. E�ciency and robustness are achieved by propagating geometricand temporal constraints to the feature detection level, where image warping and specializedimage processing are combined to perform feature detection quickly and robustly.Over the past several years, we have used X Vision to construct several vision-based sys-tems. We present some of these applications as an illustration of how useful, robust trackingsystems can be constructed by simple combinations of a few basic primitives combined with theappropriate task-speci�c constraints.To appear in Computer Vision and Image Understanding



1 IntroductionReal-time vision is an ideal source of feedback for systems that must interact dynamically with theworld. Cameras are passive and unobtrusive, they have a wide �eld of view, and they provide ameans for accurately measuring the geometric properties of physical objects. Potential applicationsfor visual feedback range from traditional problems such as robotic hand-eye coordination andmobile robot navigation to more recent areas of interest such as user interfaces, gesture recognition,and surveillance.One of the key problems in real-time vision is to track objects of interest through a series ofimages. There are two general classes of image processing algorithms used for this task: full-�eldimage processing followed by segmentation and matching, and localized feature detection. Manytracking problems can be solved using either approach, but it is clear that the data-processingrequirements for the solutions vary considerably. Full-frame algorithms such as optical ow calcu-lation or region segmentation tend to lead to data intensive, processing which is performed o�ineor which is accelerated using specialized hardware (for a notable exception, see [36]). On the otherhand, feature-based algorithms usually concentrate on spatially localized areas of the image. Sinceimage processing is local, high data bandwidth between the host and the digitizer is not needed.The amount of data that must be processed is also relatively low and can be handled by sequentialalgorithms operating on standard computing hardware. Such systems are cost-e�ective and, sincethe tracking algorithms reside in software, extremely exible and portable. Furthermore, as thespeed of processors continues to increase, so does the complexity of the real-time vision applica-tions that can be run on them. These advances anticipate the day when even full-frame applicationsrequiring moderate processing can be run on standard hardware.Local feature tracking has already found wide applicability in the vision and robotics liter-ature. One of the most common applications is determining structure from motion. Structurefrom motion algorithms attempt to recover the three-dimensional structure of objects by observingtheir movement in multiple camera frames. Most often, this research involves observation of linesegments [12, 30, 43, 45, 57], point features [41, 44], or both [14, 42], as they move in the image.As with stereo vision research, a basic necessity for recovering structure accurately is a solution tothe correspondence problem: three-dimensional structure cannot be accurately determined withoutknowing which image features correspond to the same physical point in successive image frames. Inthis sense, precise local feature tracking is essential for the accurate recovery of three-dimensionalstructure.Robotic hand-eye applications also make heavy use of visual tracking. Robots often operatein environments rich with edges, corners, and textures, making feature-based tracking a naturalchoice for providing visual input. Speci�c applications include calibration of cameras and robots[9, 28], visual-servoing and hand-eye coordination [10, 18, 25, 27, 56], mobile robot navigation andmap-making [45, 55], pursuit of moving objects [10, 26], grasping [1], and telerobotics [23]. Roboticapplications most often require the tracking of objects more complex than line segments or pointfeatures, and they frequently require the ability to track multiple objects. Thus, a tracking systemfor robotic applications must include a framework for composing simple features to track objectssuch as rectangles, wheels, and grippers in a variety of environments. At the same time, the factthat vision is in a servo loop implies that tracking must be fast, accurate, and highly reliable.A third category of tracking applications are those which track modeled objects. Models maybe anything from weak assumptions about the form of the object as it projects to the camera image1



(e:g: , contour trackers which assume simple, closed contours [8]) to full-edged three-dimensionalmodels with variable parameters (such as a model for an automobile which allows for turningwheels, opening doors, etc.). Automatic road-following has been accomplished by tracking theedges of the road [34]. Various snake-like trackers are used to track objects in 2D as they moveacross the camera image [2, 8, 11, 29, 46, 49, 54]. Three-dimensional models, while more complex,allow for precise pose estimation [17, 31]. The key problem in model-based tracking is to integratesimple features into a consistent whole, both to predict the con�guration of features in the futureand to evaluate the accuracy of any single feature.While the list of tracking applications is long, the features used in these applications are vari-ations on a very small set of primitives: \edgels" or line segments [12, 17, 30, 31, 43, 45, 49, 57],corners based on line segments [23, 41], small patches of texture [13], and easily detectable highlights[4, 39]. Although the basic tracking principles for such simple features have been known for sometime, experience has shown that tracking them is most e�ective when strong geometric, physical,and temporal constraints from the surrounding task can be brought to bear on the tracking prob-lem. In many cases, the natural abstraction is a multi-level framework where geometric constraintsare imposed \top-down" while geometric information about the world is computed \bottom-up."Although tracking is a necessary function for most of the research listed above, it is generallynot a focus of the work and is often solved in an ad hoc fashion for the purposes of a singledemonstration. This has led to a proliferation of tracking techniques which, although e�ectivefor particular experiments, are not practical solutions in general. Many tracking systems, forexample, are only applied to pre-stored video sequences and do not operate in real time [40]. Theimplicit assumption is that speed will come, in time, with better technology (perhaps a reasonableassumption, but one which does not help those seeking real-time applications today). Other trackingsystems require specialized hardware [1], making it di�cult for researchers without such resourcesto replicate results. Finally, most, if not all, existing tracking methodologies lack modularity andportability, forcing tracking modules to be re-invented for every application.Based on these observations, we believe that the availability of fast, portable, recon�gurabletracking system would greatly accelerate research requiring real-time vision tools. Just as theX Window system made graphical user interfaces a common feature of desktop workstations, ananalogous \X Vision" system could make desktop visual tracking a standard tool in next generationcomputing. We have constructed such a system, called X Vision, both to study the science andart of visual tracking as well as to conduct experiments utilizing visual feedback. Experience fromseveral teaching and research applications suggests that this system reduces the startup time fornew vision applications, makes real-time vision accessible to \non-experts," and demonstrates thatinteresting research utilizing real-time vision can be performed with minimal hardware.This article describes the philosophy and design of X Vision, focusing particularly on howgeometric warping and geometric constraints are used to achieve high performance. We also presenttiming data for various tracking primitives and several demonstrations of X Vision-based systems.The remainder of the article is organized into four parts. Section 2 describes X Vision in somedetail and Section 3 shows several examples of its use. The �nal section suggests some of thefuture directions for this paradigm, and we include an appendix which discusses some details of thesoftware implementation. 2



2 Tracking System Design and ImplementationIt has often been said that \vision is inverse graphics." X Vision embodies this analogy and carriesit one step further by viewing visual tracking as inverse animation. In particular, most graphicsor animation systems implement a few simple primitives, e.g., lines and arcs, and de�ne morecomplex objects in terms of these primitives. So, for example, a polygon may be decomposed intoits polyhedral faces which are further decomposed into constituent lines. Given an object-viewerrelationship, these lines are projected into the screen coordinate system and displayed. A goodgraphics system makes de�ning these types of geometric relationships simple and intuitive [15].X Vision provides this functionality and its converse. In addition to stating how a complexobject in a particular pose or con�guration is decomposed into a list of primitive features, X Visiondescribes how the pose or attitude is computed given the locations of those primitives. Morespeci�cally, the system is organized around a small set of image-level primitives referred to as basicfeatures. Each of these features is described in terms of a small set of parameters, referred to as astate vector, which completely speci�es the features' positions and appearances. Complex featuresor objects carry their own state vectors which are computed by de�ning functions or constraintson a collection of simpler state vectors. These complex features may themselves participate in theconstruction of yet more complex features. Conversely, given the state vector of a complex feature,constraints are imposed on the state of its constituent features and the process recurses until image-level primitives are reached. The image-level primitives search for features in the neighborhood oftheir expected locations which produces a new state vector, and the cycle repeats.In addition to being e�cient and modular, X Vision provides facilities to simplify embeddingof vision into applications. In particular, X Vision incorporates data abstraction that dissociatesinformation carried in the feature state from the tracking mechanism used to acquire it.2.1 Image-Level Feature TrackingThe primitive feature tracking algorithms of X Vision are optimized to be both accurate and e�cienton scalar processors. These goals are met largely through two important attributes of X Vision.First, any tracking primitive operates on a relatively small \region of interest" within the image.Tracking a feature means that the region of interest retains a �xed, pre-de�ned relationship to thefeature. In X Vision, a region of interest is referred to as a window. Fundamentally, the goal oflow-level processing is to process the pixels within a window using a minimal number of addressingoperations, bus transfer cycles, and arithmetic operations.The second key idea is to employ image warping to geometrically transform windows so thatimage features appear in a canonical con�guration. Subsequent processing of the warped windowcan then be simpli�ed by assuming the feature is in or near this canonical con�guration. Asa result, the image processing algorithms used in feature-tracking can focus on the problem ofaccurate con�guration adjustment rather than general-purpose feature detection. For example,consider locating a straight edge segment with approximately known orientation within an imageregion. Traditional feature detection methods utilize one or more convolutions, thresholding, andfeature aggregation algorithms to detect edge segments. This is followed by a matching phase whichutilizes orientation, segment length, and other cues to choose the segment which corresponds to thetarget [5]. Because the orientation and linearity constraints appear late in the detection process,such methods spend a large amount of time performing general purpose edge detection which in3



turn generates large amounts of data that must then be analyzed in the subsequent match phase.A more e�ective approach, as described in Section 2.1.2, is to exploit these constraints at the outsetby utilizing a detector tuned for straight edges.An additional advantage to warping-based algorithms is that they separate the \change ofcoordinates" needed to rectify a feature from the image processing used to detect it. On one hand,the same type of coordinate transforms, e:g: , rigid transformations, occur repeatedly, so the samewarping primitives can be reused. On the other hand, various types of warping can be used tonormalize features so that the same accelerated image processing can be applied over and overagain. For example, quadratic warping could be used to locally \straighten" a curved edge so thatan optimized straight edge detection strategy can be applied.The low-level features currently available in X Vision include solid or broken contrast edgesdetected using several variations on standard edge-detection, general grey-scale patterns trackedusing SSD (sum-of-squared di�erences) methods [3, 47], and a variety of color and motion-basedprimitives used for initial detection of objects and subsequent match disambiguation [51]. Theremainder of this section describes how edge-tracking and correlation-based tracking have beenincorporated into X Vision. In the sequel, all reported timing �gures were taken on an SGI Indyworkstation equipped with a 175Mhz R4400 SC processor and an SGI VINO digitizing system.Nearly equivalent results have been obtained for a Sun Sparc 20 equipped with a 70Mhz super-sparc processor and for a 120MHz Pentium microprocessor, both with standard digitizers andcameras.2.1.1 WarpingIn the remainder of this article, we de�ne acquiring a window to be the transfer and warping of thewindow's pixels. The algorithms described in this article use rigid and a�ne warping of rectangularimage regions. The warping algorithms are based on the observation that a positive-de�nite lineartransformation A; can be written as a product of an upper-triangular matrix U and a rotationmatrix R(�) as A = U R(�) = " sx 0 sy # " cos(�) � sin(�)sin(�) cos(�) #The implementation of image warping mirrors this factorization. First, a rotated rectangulararea is acquired using an algorithm closely related to Bresenham algorithms for fast line render-ing [15]. The resulting bu�er can be subsequently scaled and sheared using an optimized bilinearinterpolation algorithm. The former is relatively inexpensive, requiring about 2 additions per pixelto implement. The latter is more expensive, requiring 3 multiplies and 6 additions per pixel inour implementation. The initial acquisition is also parameterized by a sampling factor, making itpossible to acquire decimated images at no additional cost. The warping algorithm supports reduc-tion of resolution by averaging neighborhoods of pixels at a cost of one addition and 1=r multipliesper pixel for reduction by a factor of r: Figure 1 shows the time consumed by the three stages ofwarping (rotation, scale, and resolution reduction) on various size regions, and shows the e�ectivetime consumed for a�ne warping followed by resolution reduction to three di�erent scales.1The time taken for scaling varies with the amount of scaling done; these timings are for scaling the input imageby a factor of 1/1.1. 4



Size 20 � 20 40 � 40 60 � 60 80 � 80 100 � 100Rotational Warping 0.11 0.40 0.94 1.77 2.83Scale and Shear1 0.39 1.52 3.45 6.11 9.69Resolution by 2 0.06 0.23 0.54 1.02 1.67Resolution by 4 0.04 0.13 0.30 0.59 0.97A�ne 0.50 1.92 4.39 7.88 12.52A�ne by 2 0.56 2.15 4.93 8.90 14.19A�ne by 4 0.54 2.05 4.69 8.47 13.49Figure 1. The time in milliseconds consumed image warping for various size regions. The �rst two linesshow the time for each of the warping stages. The third and fourth lines show the time taken for reducingimage resolution by a factor of 2 and 4. The �nal lines show the time needed for a�ne warping at variousscales based on the component times.For the purposes of later discussion, we denote an image region acquired at time t as R(t): Theregion containing the entire camera image at time t is written I(t): Warping operators operate onimage regions to produce new regions. We write R(t) = warprot(I(t);d; �) to denote the acquisitionof an image region centered at d = (x; y)t and rotated by �: Likewise, using the de�nition of Uabove, R0(t) = warpss(R(t);U) denotes scaling the image region R(t) by sx and sy and shearingby : A�ne warping is de�ned aswarpa�(R(t);A;d) = warpss(warprot(R(t);d; �);U)where A = U R(�):2.1.2 EdgesX Vision provides a tracking mechanism for linear edge segments of arbitrary length. The state ofan edge segment consists of its position, d = (x; y)t; and orientation, �, in framebu�er coordinatesas well as its �lter response r. Given prior state information Lt = (xt; yt; �t; rt)t; we can write thefeature tracking cycle for the edge state computation at time t + � schematically asLt+� = Lt + Edge(warprot(I(t+ �); xt; yt; �t);Lt): (1)The edge tracking procedure can be divided into two stages: feature detection and state up-dating. In the detection stage, rotational image warping is used to acquire a window which, if theprior estimate is correct, leads to an edge which is vertical within the warped window. Detectinga straight, vertical contrast step edge can be implemented by convolving each row of the windowwith a derivative-based kernel, and averaging the resulting response curves by summing down thecolumns of the window. Finding the maximum value of this response function localizes the edge.Performance can be improved by noting that the order of the convolution and summation steps canbe commuted. Thus, in an n � m window, edge localization with a convolution mask of width kcan be performed with just m� (n+k) additions and mk multiplications. We, in fact, often use anIR �lter composed of a series of �1s, one or more 0s, and a series of +1s which can be implemented5



using only m�(n+4) additions. We note that this is signi�cantly cheaper than using, for example,steerable �lters for this purpose [16].The detection scheme described above requires orientation information to function correctly. Ifthis information cannot be supplied from \higher-level" geometric constraints, it is estimated asfollows (refer to Figure 3). As the orientation of the acquisition window rotates relative to the edge,the response of the �lter drops sharply. Thus, edge orientation can be computed by sampling atseveral orientations and interpolating the responses to locate the direction of maximum response.However, implementing this scheme directly would be wasteful because the acquisition windowswould overlap, causing many pixels to be transferred and warped three times. To avoid thisoverhead, an expanded window at the predicted orientation is acquired, and the summation stepis repeated three times: once along the columns, and once along two diagonal paths at a smallangular o�set from vertical. This e�ectively approximates rotation by image shear, a well-knowntechnique in graphics [15]. Quadratic interpolation of the maximum of the three curves is used toestimate the orientation of the underlying edge. In the ideal case, if the convolution template issymmetric and the response function after superposition is unimodal, the horizontal displacementof the edge should agree between all three �lters. In practice, the estimate of edge location will bebiased. For this reason, edge location is computed as the weighted average of the edge location ofall three peaks.Even though the edge detector described above is quite selective, as the edge segment movesthrough clutter, we can expect multiple local maxima to appear in the convolution output. Thisis a well-known and unavoidable problem for which many solutions have been proposed [38]. Bydefault, X Vision declares a match if and only if a unique local maximum exists within an intervalabout the response value stored in the state. The match interval is chosen as a fraction of thedi�erence between the matched response value and its next closest response in the previous frame.This scheme makes it extremely unlikely that mistracking due to incorrect matching will occur.Such an event could happen only if some distracting edge of the correct orientation and responsemoved into the tracking window just as the desired edge changed response or moved out of thetracking window. The value of the threshold determines how selective the �lter is. A narrowmatch band implicitly assumes that the edge response remains constant over time, a problem inenvironments with changing backgrounds. Other possibilities include matching on the brightnessof the \foreground" object or matching based on nearness to an expected location passed from ahigher-level object. Experimental results on line tracking using various match functions can befound in [49].The result of the image processing stage is to compute an o�set normal to the edge orientation,�t, and an orientation o�set ��: Given these values, the geometric parameters of the edge trackerare updated according to the following equation:264 xt+�yt+��t+� 375 = 264 xtyt�t 375+ 264 ��t sin(�t + ��)�t cos(�t + ��)�� 375 : (2)Because of the aperture problem, the state vector is not fully determined by information returnedfrom feature detection. There is nothing to keep the window from moving \along" the edge that itis tracking. For this reason, the edge tracking primitive almost always participates in a compositefeature that imposes additional constraints on its state (see Section 2.2).We note that edge tracking robustness can be increased by making edge segments as long6



Figure 2. Close-up of tracking windows at two time points. Left, time ti, where the edge tracking algorithmhas computed the correct warp parameters to make an edge appear vertical (the \setpoint"). Right, theedge acquired at time ti+1. The warp parameters computed for ti were used to acquire the image, but theunderlying edge has changed orientation. Figure 3 shows how the new orientation is computed.

Figure 3. Schematic for computing edge orientation. The diagrams on the left show a window of pixelsat three di�erent \orientations." The middle �gure displays the edge after a warped acquisition (Figure 2,right). The top and bottom �gures show the e�ect of shifting rows to simulate orientational o�set. Summingthe columns for each �gure and taking di�erences between adjacent sets of columns gives estimates for edgestrength. The arrows at the bottom show where each image experiences the strongest vertical edge withinthe window. At the right, these values are plotted with angle o�set on the vertical axis and edge strengthson the horizontal axis. The three data points are �t to a quadratic, whose peak o�ers an estimate for thebest angular o�set of the actual edge. (Both the orientation of the edge in the middle �gure and the extentof the shearing in the top and bottom �gures have been exaggerated for illustrative purposes.)7



Line Length SamplingLength, Width Full 1/2 1/420, 20 0.39 0.29 0.2040, 20 0.71 0.41 0.2660, 20 1.13 0.59 0.3520, 30 0.56 0.34 0.2740, 30 0.93 0.55 0.3560, 30 1.55 0.77 0.4720, 40 0.65 0.43 0.3240, 40 1.17 0.66 0.4560, 40 2.09 0.97 0.57Figure 4. Time in milliseconds required for one iteration of tracking an edge segment.as possible [50]. Long segments are less likely to become completely occluded, and changes in thebackground tend to a�ect a smaller proportion of the segment with a commensurately lower impacton the �lter response. On long edge segments, speed is maintained by subsampling the windowin the direction of the edge segment. Likewise, the maximum edge motion between images can beincreased by subsampling in the horizontal direction. In this case, the accuracy of edge localizationdrops and the possibility of an ambiguous match increases.Figure 4 shows timings for simple edge tracking that were obtained during test runs. Lengthand width refer to the length of the tracked edge and the width of the search region normal to theedge in pixels, respectively. One interesting point is that, because superimposing the columns ofthe image is performed before the convolution step, processing speed is sublinear with edge length.For example, moving from 20 pixel edges to 40 pixel edges results in only a 65% increase in time.Also, tracking a 40 pixel segment at half resolution takes the same amount of time as a 20 pixelsegment at full resolution because the warping operator implements decimation e�ciently. Finally,if we consider tracking 20 pixel edge segments at full resolution, we see that it is possible to trackup to 33:33=0:44� 85 segments simultaneously at frame rate.2.1.3 Region-Based TrackingIn region-based tracking, we consider matching a stored reference window to a region of the image.The reference is either a region taken from the scene itself, or a pre-supplied target template. It isassumed throughout that the surface patch corresponding to the region of interest is roughly planarand that its projection is relatively small compared to the image as a whole so that perspectivee�ects are minimal. Under these circumstances, the geometric distortions of a region are wellmodeled by an a�ne transformation consisting of a 2 � 1 translation vector, d = (u; v)t; anda positive de�nite 2 � 2 matrix, A: The state vector for our region tracker includes these sixgeometric parameters and a residual value, r; which indicates how well the reference region and thecurrent image region match in a least-squares sense. De�ning St = (At;dt; rt) to denote the statevector parameters at time t, the computation of the state at time t+� can be written schematicallyas 8



St+� = St + SSD(warpa�(I(t+ �);At;dt);St): (3)As before, previous state information of the reference region is used to acquire and warp aprospective image region. Once this transformation is performed, computing the remaining ge-ometric di�erences between reference and the prospective regions is posed as a sum-of-squareddi�erences (least-squares) optimization problem similar to that of stereo matching [33]. We notethat this approach to region tracking is not itself new, however previous implementations werebased on computing and integrating interframe motion [48, 40], did not operate in real-time [6, 7],or computed a subset of the a�ne parameters [37]. Our region tracking uses the initial refer-ence region throughout the image sequence to provide a �xed \setpoint" for the algorithm, and itcomputes up to full a�ne image deformations at or near frame rate.Let I(x; t) denote the value of the pixel at location x = (x; y)t at time t in an image sequence.Consider a planar surface patch undergoing rigid motion observed under orthographic projection.At time t0; the surface projects to an image region R(t0), subsequently referred to as the targetregion, with a spatial extent represented as a set of image locations, W : At some later point,t > t0; the region projects to an a�ne transformation of the original region. If illumination remainsconstant, the geometric relationship between the projections can be recovered by minimizing thefollowing objective function:O(A;d) = Xx2W(I(Ax+ d; t)� I(x; t0))2w(x); t > t0; (4)where A and d are as described above, x = (x; y)t; and w(�) is an arbitrary positive weightingfunction.Suppose that a solution at time t, (At;dt); is known, and the goal is to compute the solutionat time t + � for small positive �: Since we apply a�ne warping to the image of time t + �; it isuseful to de�ne At+� = At(I+A0) (5)dt+� = dt +Atd0; (6)where A0 and d0 represent incremental changes during the interval � . Substituting into (4) we haveO(At+� ;dt+�) = Xx2W(I(At(I+A0)x+Atd0 + dt; t+ �)� I(x; t0))2w(x): (7)We now introduce the \warped image," J(x; t) = I(Atx+ dt; t+ �); and write a new objectivefunction O0(�) in terms of J; A0 and d0 :O0(A0;d0) = Xx2W(J(x+A0x+ d0; t+ �)� I(x; t0))2w(x): (8)Solving (8) proceeds by linearizing J about the point (A0;d0) = 0, yieldingO0(A0;d0) = Xx2W(J(x; t) + rJ(x; t) � (A0x+ d0) � I(x; t0))2w(x); � > 0; (9)9



where rJ = (Jx; Jy)t is the warped image spatial gradient.If the solution at t is nearly the correct one, then J(x; t) � I(x; t), and hence rJ � rI =(Ix; Iy)t, where Ix and Iy are spatial gradients of the original image. With this observation, we cansimplify (9) and rewrite it in terms of the spatial derivatives of the reference image yieldingO0(A0;d0) = Xx2W(rI(x; t) � (A0x+ d0) + (J(x; t)� I(x; t0)))2w(x): (10)In this form, the problem can be solved by joint optimization over all six unknowns in A0 and d0:However, one di�culty with computing a�ne structure lies in the fact that many target regions donot have enough texture to fully determine all six geometric parameters [40]. Consider, for example,a window placed on a right-angle corner. A pure translation of the corner can be accounted for astranslation, scaling or a linear combination of both. The solution implemented in X Vision is basedon the observation that the image structure which determines translation and rotation is similar tothat which determines scale and shear. In general, translation and rotation are much more rapidlychanging parameters than are scale and shear. In ambiguous situations these parameters shouldbe the preferred interpretation for image changes.To implement this solution, we decomposeA0 into a di�erential rotation and an upper triangularmatrix: A0 = " 0 ��� 0 # + " sx 0 sy #and solve for two parameter groups, (d; �) and (sx; sy; ); sequentially. This establishes preferencesfor interpreting image changes (the result being that some image perturbations result in shortdetours in the state space before arriving at a �nal state estimate). Although less accurate than asimultaneous solution, the small amount of distortion between temporally adjacent images makesthis solution method su�ciently precise for most applications.We �rst solve for translation and rotation. For an image location x = (x; y)t we de�negx(x) = Ix(x; t0)qw(x) (11)gy(x) = Iy(x; t0)qw(x)gr(x) = (y Ix(x; t0)� x Iy(x; t0))qw(x)h0(x) = (J(x; t)� I(x; t0))qw(x); (12)and the linear system for computing translation and rotation isXx2W 264 gxgx gxgy gxgrgygx gygy gygrgrgx grgy grgr 375" d� # = Xx2W 264 h0 gxh0 gyh0 gr 375 : (13)Since the spatial derivatives are only computed using the original reference image, gx; gy, and grare constant over time, so those values and the inverse of the matrix on the left hand side of (13)can be computed o�ine.Once d and � are known, the least squares residual value is computed ash1(x) = h0(x)� gx(x)u� gy(x)v � gr(x)�: (14)10



If the image distortion arises from pure translation and no noise is present, then we expect thath1(x) = 0 after this step. Any remaining residual can be attributed to geometric distortions in thesecond group of parameters, linearization error or noise. To recover scale changes and shear, wede�ne for an image location x = (x; y)tgsx(x) = x gx(x); (15)gsy(x) = y gy(x);g(x) = y gx(x); (16)and the linear system for computing scaling and shear parameters isXx2W 264 gsxgsx gsxgsy gsxggsygsx gsygsy gsygggsx ggsy gg 375264 sxsy 375 = Xx2W 264 h1 gsxh1 gsyh1 g 375 : (17)As before, gsx; gsy , and g can be precomputed as can the inverse of the matrix on the left handside. The residual is h2(x) = h1(x)� gsx(x)sx � gsy(x)sy � gr(x): (18)After all relevant stages of processing have been complete,r = qPx2W h2(x)2jWj (19)is stored as the match value of the state vector.One potential problem with this approach is that the brightness and contrast of the target areunlikely to remain constant which may bias the results of the optimization. The solution is tonormalize images to have zero �rst moment and unit second moment. We note that with thesemodi�cations, solving (4) for rigid motions (translation and rotation) is equivalent to maximiz-ing normalized correlation [24]. Extensions to the SSD-based region tracking paradigm for morecomplex lighting models can be found in [21].Another problem is that the image gradients are only locally valid. In order to guaranteetracking of motions larger than a fraction of a pixel, these calculations must be carried out atvarying levels of resolution. For this reason, a software reduction of resolution is carried out at thetime of window acquisition. All of the above calculations except for image scaling are computed atthe reduced resolution, and the estimated motion values are appropriately rescaled. The trackingalgorithm changes the resolution adaptively based on image motion. If the computed motion valuefor either component of d0 exceeds 0:25; the resolution for the subsequent step is halved. If theinterframe motion is less than 0:1, the resolution is doubled. This leads to a fast algorithm fortracking fast motions and a slower but more accurate algorithm for tracking slower motions.If we consider the complexity of tracking in terms of arithmetic operations on pixels (asymp-totically, these calculations dominate the other operations needed to solve the linear system) wesee that there is a �xed overhead of one di�erence and multiply to compute h0: Each parametercomputed requires an additional multiply and addition per pixel. Computing the residual values11



Size 40 � 40 60 � 60 80 � 80 100 � 100Reduction 4 2 4 2 4 2 4 2Rigid 1.5 5.6 3.2 9.5 6.1 17.7 9.4 28.3A�ne 3.7 8.4 8.1 15.6 14.4 28.5 22.5 43.1Figure 5. The time in milliseconds consumed by one cycle of tracking for various instantiations of the SSDtracker. The �rst row shows the timings for rigid motion (translation and rotation), and the second rowshows the time for full a�ne deformations.consumes a multiply and addition per pixel per parameter value. In addition to parameter estima-tion, the initial brightness and contrast compensation consume three additions two multiplies perpixel. Thus, to compute the algorithm at a resolution d requires 15=d2 multiplies and 1 + 16=d2additions per pixel (neglecting warping costs). It is interesting to note that at a reduction factorof d = 4; the algorithm compares favorably with edge detection on comparable sized regions.To get a sense of the time consumed by these operations, several test cases are shown in Figure 5.The �rst row shows the time needed to track rigid motions (translation and rotation) and the secondshows the time taken for tracking with full a�ne deformations. The times include both warpingand parameter estimation; the times given in Figure 1 can be subtracted to determine the timeneeded to estimate parameter values. In particular, it is important to note that, because the timeconsumed by a�ne warping is nearly constant with respect to resolution, parameter estimationtends to dominate the computation for half and full resolution tracking, while image warping tendsto dominate the computation for lower resolution tracking. With the exception of 100�100 imagesat half resolution, all updates require less than one frame time (33:33 ms.) to compute. Comparingwith Figure 4, we observe that the time needed to track a 40� 40 region at one-fourth resolutionis nearly equivalent to that needed to track a comparably-sized edge segment as expected from thecomplexity analysis given above.To get a sense of the e�ectiveness of a�ne tracking, Figure 6 shows several images of a box asa 100� 100 region on its surface was tracked at one-fourth resolution. The lower series of images isthe warped image which is the input to the SSD updating algorithm. We see that except for minorvariations, the warped images are identical despite the radically di�erent poses of the box.2.2 Networks of FeaturesOne goal of X Vision is to make it simple to quickly prototype tracking systems from existingcomponents, and then to add application-speci�c constraints quickly and cleanly. This is accom-plished by extending the state-based representation used in image-level features with additionalinfrastructure to support hierarchical imposition of geometric and physical constraints on featureevolution.More speci�cally, we de�ne composite features to be features that compute their state fromother basic and composite features. We allow two types of feature composition. In the �rst case,information ow is purely \bottom-up." Features are combined solely to compute informationfrom their state vectors without altering their tracking behavior. For example, given two pointfeatures it may be desirable to present them as the line feature passing through both. A feature12



Figure 6. Several images of a planar region and the corresponding warped image used by the tracker. Theimage at the left is the initial reference image.(henceforth, feature refers to both basic and composite features) can participate in any number ofsuch constructions. In the second case, the point of performing feature composition is to exploithigher level geometric constraints in tracking as well as to compute a new state vector. In this case,information ows both upward and downward.We further de�ne a feature network to be a set of nodes connected by arcs directed either upwardor downward (a feature and its subsidiary feature can be linked in both directions). Nodes representfeatures, and links represent the information dependency between a composite feature and the fea-tures used to compute its state. To implement these functions, we associate a state-computationprocedure with the incoming links to a node, and a constraint-propagation procedure with theoutgoing links.A complete feature tracking cycle consists of: 1) traversing the downward links from each top-level node by executing the associated constraint-propagation procedure until basic features arereached; 2) performing low-level detection in every basic feature; and 3) traversing the upward linksof the graph by executing the state-computation procedure of each node. State prediction can beadded to this cycle by including it in the downward constraint propagation phase. Thus, a featuretracking system is completely characterized by the topology of the network, the identity of thebasic features, and the state computation and constraint propagation functions for each non-basicfeature node.A concrete example is a feature tracker for the intersection of two non-collinear contours. Thiscomposite feature has a state vector C = (x; y; �; �)T describing the position of the intersectionpoint, the orientation of one contour, and the orientation di�erence between the two contours. Theconstraint-propagation function for corners is implemented as follows. From image edges withstate L1 = (x1; y1; �1; r1)T and L2 = (x2; y2; �2; r2)T , the distance from the center of each trackingwindow to the point of intersection the two edges can be computed as�1 = ((x2 � x1) sin(�2)� (y2 � y1) cos(�2))= sin(�2 � �1);�2 = ((x2 � x1) sin(�1)� (y2 � y1) cos(�1))= sin(�2 � �1):Given a known corner state vector, we can choose \setpoints" ��1 and ��2 describing where toposition the edge trackers relative to the intersection point. With this information, the states of13



the individual edges can be adjusted as follows:xi = xc � ��i cos(�i);yi = yc � ��i sin(�i); (20)for i = 1; 2: Choosing ��1 = ��2 = 0 de�nes a cross pattern. If the window extends h pixels alongthe edge, choosing ��1 = ��2 = h=2 de�nes a corner. Choosing ��1 = 0 and ��2 = h=2 de�nes a teejunction, and so forth.Conversely, given updated state information for the component edges, the state-computationfunction computes: xc = x1 + �1 cos(�1); (21)yc = y1 + �1 sin(�1);�c = �1;�c = �2 � �1:The tracking cycle for this system starts by using prior predictions of corner state to imposethe constraints of (20) downward. Image-level feature detection is then performed, and �nallyinformation is propagated upward by computing (21).Composite features that have been implemented within this scheme range from simple edgeintersections as described above, to snake-like contour tracking [49], to three-dimensional model-based tracking using pose estimation [32], as well as a variety of more specialized object trackers,some of which are described in Section 3.2.3 Feature TypingIn order to make feature composition simpler and more generic, we have included polymorphictype support in the tracking system. Each feature, basic or composite, carries a type. This typeidenti�es the geometric or physical information contained in the state vector of the feature. Forexample, there are point features which carry location information and line features which carryorientation information.Any composite feature can specify the type of its subsidiary features and can itself carry a type.In this way, the construction becomes independent of a manner with which its subsidiary nodescompute information. So, for example, a line feature can be constructed from two point featuresby computing the line that passes through the features and a point feature can be computed byintersecting two line features. An instance of the intersection-based point feature can be instantiatedeither from edges detected in images or line features that are themselves computed from pointfeatures.3 ApplicationsWe have used X Vision for several purposes including hand-eye coordination [19, 20, 22], a pose-based object tracking system [32], a robust face-tracking system [51], a gesture-based drawingprogram, a six degree-of-freedom mouse [52], and a variety of small video games. In this section,we describe some applications of X Vision which illustrate how the tools it provides|particularlyimage warping, image subsampling, constraint propagation, and typing|can be used to quicklyprototype fast and e�ective tracking systems. 14



line length sampling tracking speed � of position(pixels) rate (msec/cycle) (pixels)A B A B24 1 9.3 7.7 0.09 0.0112 2 5.5 4.5 0.10 0.008 3 3.7 3.3 0.07 0.036 4 3.0 2.7 0.05 0.042 12 1.9 1.6 0.05 0.041 24 1.5 1.3 0.05 0.07Figure 7. Speed and accuracy of tracking rectangles with various spatial sampling rates. The �gures incolumn A are for a tracker based on four corners computing independent orientation. The �gures in columnB are for a tracker which passes orientation down from the top-level composite feature.3.1 Pure Tracking ApplicationsEdge-Based Disk Tracking One important application for any tracking system is model-basedtracking of objects for applications such as hand-eye coordination or virtual reality. While a genericmodel-based tracker for three-dimensional objects for this system can be constructed [32], X Visionmakes it possible to gain additional speed and robustness by customizing the tracking loop usingobject-speci�c geometric information.On example of this customization process is the development of a tracker for rectangular oppydisks that we use as test objects in our hand-eye experiments (described below). Given the availabletools, the most straightforward rectangle tracker is a composite tracker which tracks four corners,which in turn are composite trackers which track two lines each as described in Section 2.1.2. Noadditional constraints are imposed on the corners.This method, while simple to implement, has two obvious disadvantages First, in order to trackquickly, only a small region of the occluding contour of the disk near the corners is processed. Thismakes them prone to mistracking through chance occlusion and background distractions. Second,each of the line computations is independently computing orientation from image information,making the tracking relatively slow. The �rst problem is handled by increasing the e�ective lengthof the edge trackers by operating them on subsampled windows. The second problem is solved byadding additional constraints to the system. The composite feature for the rectangle computes theorientation of the lines joining the corners and passes this information down to the image-level edgetrackers. The edge trackers then do not need to compute orientation from image information. Thenet e�ect of these two changes is to create a highly constrained snake-like contour tracker [29].Figure 7 contains some timing and accuracy statistics for the resulting algorithm. It showsthat there is little or no loss of precision in determining the location of the corners with reasonablesampling rates. At the same time, we see a 10% to 20% speedup by not computing line orientationsat the image level and a nearly linear speedup with image subsampling level.Region-Based Face Tracking A frontal view of a human face is su�ciently planar to be suc-cessfully tracked as a single SSD region. Figure 8 shows several image pairs illustrating poses ofa face and the warped image resulting from tracking. Despite the fact that the face is nonpla-nar, resulting for example in a stretching of the nose as the face is turned, the tracking is quite15



Figure 8. Above several images of the a face and below the corresponding warped images used by the trackingsystem.e�ective. However, tracking a face as a single region requires a�ne warping over a relatively largeregion which is somewhat slow (about 40 milliseconds per iteration). It can be confused if the faceundergoes distortions which cannot be easily captured by a�ne deformation, and it is sensitive tolighting variations and shadowing. Also, many areas of the face contain no strong gradients, thuscontributing little to the state computation.Figure 9 shows the structure of a more specialized tracking arrangement that uses SSD trackersat the regions of highest contrast | the eyes and mouth. The result is a gain in performance aswell as the ability to recognize isolated changes in the underlying features. For each of the eyesand the mouth, a MultiSSD composite tracker performs an SSD computation for multiple referenceimages. The state of the MultiSSD tracker is computed to be the state of the tracker with the bestmatch value and the numeric identity of this tracker. The constraint function copies this state backdown to the component SSD trackers, forcing \losing" SSD trackers follow the \winner." In e�ect,the MultiSSD feature is a tracker with an n-ary switch.From MultiSSD we derive an Eye tracker which modi�es the display function of MultiSSDto show an open or closed eye based on the state of the binary switch. We also derive Mouthwhich similarly displays an open or closed mouth. Two Eye's compose the Eyes tracker. Thestate computation function of Eyes computes the orientation of the line joining the eyes, whichis propagated to the lower-level Eye trackers, obviating the need to compute orientation fromimage-level information. Thus, the low-level Eye trackers only solve for translation, much as thedisk tracker described above. Since the mouth can move independently, Mouth computes bothtranslation and orientation directly from the image. Finally, the Face tracker comprises Eyes andMouth. It imposes no constraints on them, but it does interpolate the position of the nose basedon the Eyes and Mouth.The tracker is initialized by indicating the positions of the eyes and mouth and memorizingtheir appearance when they are closed and open. When run, the net e�ect is a graphical display ofa \clown face" that mimics the antics of the underlying human face | the mouth and eyes followthose of the operator and open and close as the operator's do as shown in Figure 10. This system16



SSD SSD SSD SSD SSD SSD

MultiSSDMultiSSDMultiSSD

EYEEYE

MOUTH

EYES

FACE

Figure 9. The tracking network used for face tracking.

Figure 10. The \clown face" tracker.17


