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Abstract

As an object moves through the field of view of a camera, the images of the object may
change dramatically. This is not simply due to the translation of the object across the
image plane. Rather, complications arise due to the fact that the object undergoes
changes in pose relative to viewing camera, changes in illumination relative to light
sources, and may even be partially or fully occluded. Thus to successfully track an
object, complications arising from varying pose, illumination, and partial occlusion
must be accounted for. In this paper, we develop an efficient, general framework for
object tracking — one which addresses each of these complications. We first develop
a computationally efficient method for handling the geometric distortions produced
by changes in pose. We then combine geometry and illumination into an algorithm
that tracks large image regions using no more computation than would be required
to track with no accommodation for illumination changes. Finally, we augment these
methods with techniques from robust statistics and treat occluded regions on the object
as statistical outliers. Throughout, we present experimental results performed on live
video sequences demonstrating the effectiveness and efficiency of our methods.
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1 Introduction

Visual tracking has emerged as an important component of systems in several application
areas including vision-based control [1, 32, 38, 15], human-computer interfaces [10, 14, 20],
surveillance [30, 29, 19|, agricultural automation [27, 41], medical imaging [12, 4, 45] and
visual reconstruction [11, 42, 48]. The central challenge in visual tracking is to determine the
image position of a target region (or features) of an object as it moves through a camera’s field
of view. This is done by solving what is known as the temporal correspondence problem: the
problem of matching the target region in successive frames of a sequence of images taken at
closely-spaced time intervals. The correspondence problem for visual tracking has, of course,
much in common with the correspondence problems which arise in stereopsis and optical flow.
It differs, however, in that the goal is not to determine the exact correspondence for every
image location in a pair of images, but rather to determine, in a gross sense, the movement of
an entire target region over a long sequence of images. What makes tracking difficult is the
extreme variability often present in the images of an object over time. This variability arises
from three principle sources: variation in object pose, variation in illumination, and partial
or full occlusion of the target. When ignored, any one of these three sources of variability is
enough to cause a tracking algorithm to lose its target.

In this paper, we develop a general framework for region tracking which includes models
for image changes due to motion, illumination, and partial occlusion. In the case of motion,
all points in the target region are presumed to be part of the same object allowing us the
luxury — at least for most applications — of assuming that these points move coherently
in space. This permits us to develop low-order parametric models for the image motion of
points within a target region—models that can be used to predict the movement of the points
and track the target through an image sequence. In the case of illumination, we exploit the
observations of [25, 17, 5] to model image variation due to changing illumination by low-
dimensional linear subspaces. The motion and illumination models are then woven together
in an efficient algorithm which establishes temporal correspondence of the target region
by simultaneously determining motion and illumination parameters. These parameters not
only shift and deform image coordinates, but also adjust brightness values within the target

region to provide the best match to a fixed reference image. Finally, in the case of partial



occlusion, we apply results from robust statistics [16] to show that this matching algorithm is
easily extended to include automatic rejection of outlier pixels in a computationally efficient
manner.

The approach to matching described in this paper is based on comparing the so-called
sum-of-squared differences (SSD) between two regions, an idea that has been explored in
a variety of contexts including stereo matching [35], optical flow computation [2], hand-eye
coordination [38], and visual motion analysis [44]. Much of the previous work using SSD
matching for tracking has modeled the motion of the target region as pure translation in
the image plane [48, 38|, which implicitly assumes that the underlying object is translating
parallel to the image plane and is being viewed orthographically. For inter-frame calcula-
tions such as those required for optical flow or motion analysis, pure translation is typically
adequate. However, for tracking applications in which the correspondence for a finite size
image patch must be computed over a long time span, the pure translation assumption is
soon violated [44]. In such cases, both geometric image distortions such as rotation, scaling,
shear, and illumination changes introduce significant changes in the appearance of the target
region and, hence, must be accounted for in order to achieve reliable matching.

Attempts have been made to include more elaborate models for image change in region
tracking algorithms, but with sizable increases in the computational effort required to estab-
lish correspondence. For example, Rehg and Witkin [40] describe energy-based algorithms
for tracking deforming image regions, and Rehg and Kanade [39] consider articulated ob-
jects undergoing self-occlusion. More recently, Black and Yacoob [8] describe an algorithm
for recognizing facial expressions using motion models which include both affine and simple
polynomial deformations of the face and its features. Black and Jepson [7] develop a robust
algorithm for tracking a target undergoing changes in pose or appearance by combining a
simple parametric motion model with an image subspace method [37]. These algorithms
require from several seconds to several minutes per frame to compute, and most do not
address the problems of changes in appearance due to illumination.

In contrast, we develop a mathematical framework for the region tracking problem that
naturally incorporates models for geometric distortions and varying illumination. Using this
framework, we show that the computations needed to perform temporal matching can be

factored to greatly improve algorithm efficiency. The result is a family of region-tracking



algorithms which can easily track large image regions (for example the face of a user at a
workstation, at a 30 Hz frame rate) using no special hardware other than a standard digitizer.

To date, most tracking algorithms achieving frame-rate performance track only a sparse
collection of features (or contours). For example, Blake et al. [9] and Isaard and Blake [33]
describe a variety of novel methods for incorporating both spatial and temporal constraints
on feature evolution for snake-like contour tracking. Lowe [34] and Gennery [21] describe
edge-based tracking methods using rigid three-dimensional geometric models. Earlier work
by Ayache [3] and Crowley [13] use incrementally constructed rigid models to constrain image
matching.

In practice, feature-based and region-based methods can be viewed as complementary
techniques. In edge-rich environments such as a manufacturing floor, working with sparse
features such as edges has the advantage of computational simplicity — only a small area
of the image contributes to the tracking process, and the operations performed in that
region are usually very simple. Furthermore, edge-based methods use local derivatives and,
hence, tend to be insensitive to global changes in the intensity and/or composition of the
incident illumination. However, in less structured situations strong edges are often sparsely
distributed in an image, and are difficult to detect and match robustly without a strong
predictive model [33]. In such cases, the fact that region-based methods make direct and
complete use of all available image intensity information eliminates the need to identify and
model a special set of features to track. By incorporating illumination models and robust
estimation methods and by making the correspondence algorithm efficient, the robustness
and performance of our region tracking algorithms closely rivals that achieved by edge-based
methods.

The remainder of this article is organized as follows. Section 2 establishes a framework for
posing the problem of region tracking for parametric motion models and describes conditions
under which an efficient tracking algorithm can be developed. Section 3 then shows how
models of illumination can be incorporated with no loss of computational efficiency. Section
4 details modifications for handling partial target occlusion via robust estimation techniques.
Section 5 presents experimental results from an implementation of the algorithms. Finally,
Section 6 presents a short discussion of performance improving extensions to our tracking

algorithm.



2 Tracking Moving Objects

In this section, we describe a framework for the efficient tracking of a target region through
an image sequence. We first write down a general parametric model for the set of allowable
image motions and deformations of the target region. We then pose the tracking problem as
the problem of finding the best (in a least squares sense) set of parameter values describing
the motions and deformations of the target through the sequence. Finally, we describe how

the best set of parameters can be efficiently computed.

2.1 On Recovering Structured Motion

We first consider the problem of describing the motion of a target region of an object through
a sequence of images. Points on the surface of the object, including those in the target region,
are projected down into the image plane. As the object moves through space, the projected
points move in the image plane. If the 3-D structure of the object is known in advance,
then we could ezactly determine the set of possible motions of the points in the images. In
general, this information is not known in advance. Therefore, we approximate the set of
possible motions by a parametric model for image motions.

Let I(x,t) denote the brightness value at the location x = (z,%)” in an image acquired at
time ¢ and let V4I(x,t) denote the spatial gradient at that location and time. The symbol
to denotes an identified “initial” time and we refer to the image at time t; as the reference
image. Let the set R = {x1,Xs,...,Xn} be a set of N image locations which define a target
region. We refer to the brightness values of the target region in the reference image as the
reference template.

Over time, the relative motion between the target object and the camera causes the image
of the target to shift and to deform. Let us model the image motion of the target region
of the object by a parametric motion model f(x; u) parameterized by p = (11, 2, . - -, pin) 7,
with f(x;0) = x and N > n. We assume that f is differentiable in both g and x. We call
p the motion parameter vector. We consider recovering the motion parameter vector for
each image in the tracking sequence as the equivalent to “tracking the object.” We write
p*(t) to denote the ground truth values of these parameters at time t, and p(t) to denote

the corresponding estimate. The argument ¢ will be suppressed when it is obvious from its



context.

Suppose that a reference template is acquired at time ¢, and that initially p*(t,) =
p(to) = 0. Let us assume for now that the only changes in subsequent images of the target
are completely described by f, i.e. there are no changes in the illumination of the target. It

follows that for any time t > ¢, there is a parameter vector p*(t) such that
I(x,ty) = I(f(x; u*(t)), t) for all x € R. (1)

This a generalization of the so-called image constancy assumption [28]. The motion param-
eter vector of the target region can be estimated at time ¢ by minimizing the following least
squares objective function

O(p) = X (I(f(x; p), 1) — I(x,t0))*. (2)

XER

For later developments, it is convenient to rewrite this optimization problem in vector
notation. To this end, let us consider images of the target region as vectors in an /N dimen-
sional space. The image of the target region at time ¢, under the change of coordinates f
with parameters u, is written as

I(f(x1, p),t)
I(p,t) = I(f(xa, 1), 1) ' (3)
I(f(xn, p),t)
This vector is subsequently referred to as the rectified image at time ¢ with parameters p.

We also make use of the partial derivatives of I with respect to the components of p and

the time parameter ¢. These are written as

(91 I i(f(XZalJ')a
L. (p,t) = B =" ; (4)

and

_lthQ, s
It(“,t):%: (£( 5u) t) (5)



where 1 <7 < n.

Using this vector notation, the image constancy assumption (1) can be rewritten as

I(w’(1),t) = 1(0, %)

and (2) becomes

O(p) = [[(n, ) — 1(0, 2)|. (6)
In general, (6) is a non-convex objective function. Thus, in the absence of a good starting
point, this problem will usually require some type of costly global optimization procedure to
solve [6].

In the case of visual tracking, the continuity of motion provides such a starting point.
Suppose that, at some arbitrary time ¢ > t,, the geometry of the target region is described
by p(t). We recast the tracking problem as one of determining a vector of offsets, du such
that p(t + 7) = u(t) + du from an image acquired at ¢ + 7. Incorporating this modification

into (6), we redefine the objective function as a function on du
O(0m) = [[T(p(t) + o, t + 7) — 1(0, %) ||*. (7)

If the magnitude of the components of du are small, then it is possible to apply continuous
optimization procedures to a linearized version of the problem [7, 28, 35, 47, 44]. The

linearization is carried out by expanding I(u + du,t + 7) in a Taylor series about p and ¢,
I(p+ op,t+7) =I(p,t) + M(p, t) o + 71(pe, ) + heo-t, (8)

where h.o.t denotes higher order terms of the expansion, and M is the Jacobian matriz of 1
with respect to p, i.e. the N X n matrix of partial derivatives which can be written in column

form as

M(p, ) = [Ty (11, 8) [ Ly (g2, 2] - - Ty, (12, 1)) (9)
While the notation above explicitly indicates that the values of the partial derivatives are
a function of the evaluation point (u,t), these arguments will be suppressed when obvious
from their context.

By substituting (8) into (7) and ignoring the higher order terms, we have
O(ds) ~ [T(py ) + Myt + 7T, — 1(0, )] (10)
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With the additional approximation 7I;(p,t) ~ I(p,t + 7) — I(, t), (10) becomes
O(dp) = ||M p + I(ps, t + 7) — (0, to)[|. (11)
Solving the set of equations VO = 0 yields the solution
op=—(M"M)"" M" [I(p,t+7) =10, )], (12)

provided the matrix M is full rank. When this is not the case, we are faced with a gener-
alization of the aperture problem, i.e. the target region does not have sufficient structure to
determine all of the elements of u uniquely.

In subsequent developments, it will be convenient to define the error vector e(t + 7) =
I(p(t),t + 7) — I(0, ty). Incorporating this definition into (12), we see that the solution of

(6) at time ¢ + 7 given a solution at time ¢ is
pt+7)=pnlt) — M'M)" M e(t + 1) (13)

where M is evaluated at (u,t).

2.2 An Efficient Tracking Algorithm

From (13), we see that to track the target region through the image sequence, we must

compute the Jacobian matrix M(u,t). Each element of this matrix is given by
mij = I (f(xi; ), 1) (14)
= Vel (f(x;; ), 1) £, (x5 ),

where V¢l is the gradient of I with respect to the components of the vector f. Recall that

the Jacobian matrix of the transformation f regarded as a function of p is the 2 x n matrix

fu(x;p) = lafg;l“ ) | afg;“ ) ... | Lg;;” )] . (15)
By making use of (15), M can be written compactly in row form as
Vel (f(x1; 1), t); fpu(x1; 1)
M(p, 1) = vfl(f(XZQIJ')a.t) £ (x2; 1) (16)

Vel (f(xx: 1), )" £u(xy: 1)
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Because M depends on time-varying quantities, it may appear that it must be completely
recomputed at each time step—a computationally expensive procedure involving the calcu-
lation of the image gradient vector, the calculation of a 2 x n Jacobian matrix, and n 2 x 1
vector inner products for each of the NV pixels of the target region. However, we now show
that it is possible to reduce this computation by both eliminating the need to recompute
image gradients and by factoring M.

First, we eliminate the need to compute image gradients. To do so, let us assume that

our estimate is ezact, i.e. u(t) = pw*(t). By differentiating both sides of (1) we obtain
Vil (x,t0) = £ (x; )" Vel (F(x; ), 1) (17)

where f, is the 2 x 2 Jacobian matrix of f treated as a function of x = (z,y)7,

£ (x: 1) = [af(;;u) | 0f(;zu)] _ (18)
Combining (17) with (16), we see that M can be written as
Vil (x1,t0) T i (x1; ) 7 £ (x1; )
M(p) = Vil (x2,t0)" fx(>f2; p)~ (%25 1) (19)

Vil (x5, t0)" fie(xn; ) " fpu(xnv; )

It follows that for any choice of image deformations, the image spatial gradients need only
be calculated once on the reference template. This is not surprising given that the target at
time ¢ > t, is only a distortion of the target at time ¢y, and so its image gradients are also
a distortion of those at t;. This transformation also allows us to drop the time argument of
M and regard it solely as a function of w.

The remaining non-constant factor in M is a consequence of the fact that, in general, fy
and fy, involve components of pu and, hence, implicitly vary with time. However, suppose
that we choose f so that f'! f;, can be factored into the product of a 2 x k& matrix I' which

depends only on image coordinates, and a k X n matrix 3 which depends only on p as

£ (x; ) 7 fu (x5 ) = T(x) Z(p).- (20)
For example, as discussed in more detail below, one family of such factorizations results

when f is a linear function of the image coordinate vector x.



Combining (19) with (20), we have

Vxl(xl, to)T F(Xl)
M(IJ,) _ vxI(Xg, to) F(Xg)

| S(1) = Mo S(p) (21)
VXI(XN, to)T F(XN)

As a result, we have shown that M can be written as a product of an constant N X k matrix

M, and a time-varying k£ X n matrix X.

We can now exploit this factoring to define an efficient tracking algorithm which operates

as follows:

offline:

e Define the target region.
e Acquire and store the reference template.

e Compute and store Mgy and A = My’ M.

online:

e Use the most recent motion parameter estimate u(t) to rectify the target region

in the current image.

e Compute e(t + 7) by taking the difference between the rectified image and the

reference template.

e Solve the system STAX o = X7 Mo’ e(t + 7) for du, where T is evaluated at
p(t).

e Compute p(t+ 7) = p(t) + o.

The online computation performed by this algorithm is quite small, and consists of two n x k
matrix multiplies, k& N-vector inner products, n k-vector inner products, and an n x n linear
system solution, where k& and n are typically far smaller than N.

We note that the computation can be further reduced if X is invertible. In this case, the

solution to the linear system can be expressed as



qu=—-X T(Me"Mg) Mo e(t + 1), (22)

where 77 = (X717 is evaluated at u(t). The factor (My" Mg) My’ can be computed
offline, so the online computation is reduced to n N-vector inner products and n n-vector

inner products.

2.3 Some Examples

2.3.1 Linear Models

Let us assume that f(x; p) is linear in x. Then we have
f(x;p) = A(p)x + u(p) (23)

and, hence, fy = A. It follows that £ 'fy, is linear in the components of x and the factoring

defined in (20) applies. We now present three examples illustrating these concepts.

Pure Translation: In the case of pure translation, the allowed image motions are param-

eterized by the vector u = (u,v) giving
f(x;u) =x+u. (24)
It follows immediately that £y and fy, are both the 2 x 2 identity matrix, and therefore
M, = [L;(to) |I,(%0)] (25)

and X is the 2 x 2 identity matrix.
The resulting linear system is nonsingular if the image gradients in the template region

are not all collinear, in which case the solution at each time step is just
du = —(M; M) 'Mj e(t + 7). (26)

Note that in this case A = —(M{§M;) 'M], a constant matrix which can be computed

offline.
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Translation, Rotation and Scale: Objects which are viewed under scaled orthography
and which do not undergo out-of-plane rotation can be modeled using a four parameter model
consisting an image-plane rotation through an angle 6, a scaling by s, and a translation by

u. The change of coordinates is given by
f(x;u,0,s) = sR(0)x+u (27)
where R(f) is a 2 x 2 rotation matrix. After some minor algebraic manipulations, we obtain

F(X):ll 0 —y x] (28)

01 =z y
and
IR(—6) 0 0
2(0,s) = 0 10 (29)
o 01

From this My can be computed using (21) and, since X is invertible, the solution to the

linear system becomes
= —-X"T(Mg"Mo) Mo e(t + 1) (30)

This result can be explained as follows. The matrix My is the linearization of the system
about § = 0 and s = 1. At time ¢ the target has orientation #(¢) and s(¢). Image rectification
effectively rotates the target by —6 and scales by % so the displacements of the target are
computed in the original target coordinate system. X1 then applies a change of coordinates
to rotate and scale the computed displacements from the original target coordinate system

back to the actual target coordinates.

Affine Motion: The image distortions of planar objects viewed under orthographic pro-
jection are described by a six-parameter linear change of coordinates. Suppose that we
define

p = (uv,a,bcd)' (31)
fx;p) = lz 2]x+[5]:Ax+u (32)

After some minor algebraic manipulations, we obtain

10x0y0]

F(X):[OIOxOy (33)
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and

At 0 0
Suw=| 0 At 0o |, (34)
0 0 Al

Note that 3 is once again invertible which allows for additional computational savings as

before.

2.3.2 Nonlinear Motion Models
The separability property needed for factoring does not hold for any type of nonlinear motion.
However, consider a motion model of the form

f(x;u,v,a) = x + l - 172%2 ] (35)

where x = (z,y)’. Intuitively, this model performs a quadratic distortion of the image
according to the equation y = 1/2az?. For example, a polynomial model of this form was
used in [8] to model the motions of lips and eyebrows on a face. Again, after several algebraic

steps we arrive at

100 0
Llx) = lo 1z x2/2] (36)
and
1 00
0 10
2= _, 0 0 (37)
0 01

Note this general result holds for any distortion which can be expressed exclusively as either
y = f(z) or x = g(y). However, adding more freedom to the motion model, for example
combining affine and polynomial distortion, often makes factoring impossible. One possibility
in such cases is to use a cascaded model in which the image is first rectified using an affine
distortion model, and then the resulting rectified image is further rectified for polynomial

distortion.

2.4 On the Structure of Image Change

The Jacobian matrix M plays a central role in the algorithms described above, so it is infor-

mative to digress briefly on its structure. If we consider the rectified image as a continuous
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time-varying quantity, then its total derivative with respect to time is

%:M‘;—’:Ht or I=Mp+1,. (38)
Note that this is simply a differential form of (8). Due to the image constancy assumption
(1), it follows that I = 0 when g = p*. This is, of course, a parameterized version of Horn’s
optical flow constraint equation [28].

In this form, it is clear that the role of M is to relate variations in motion parameters
to variations in brightness values in the target region. The solution given in (13) effectively
reverses this relationship and provides a method for interpreting observed changes in bright-
ness as motion. In this sense, we can think of the algorithm as performing correlation on
temporal changes (as opposed to spatial structure) to compute motion.

To better understand the structure of M, recall that in column form, it can be written

in terms of the partial derivatives of the rectified image:
M = [L;; [T, | - - [T ] (39)

Thus, the model states that the temporal variation in image brightness in the target region
is a weighted combination of the vectors I,,. We can think of each of these columns (which
have an entry for every pixel in the target region) as a “motion template” which directly
represents the changes in brightness induced by the motion represented by the corresponding
motion parameter. For example, in the top row of Figure 1, we have shown these templates
for several canonical motions of an image of a black square on a white background. Below,
we show the corresponding templates for a human face.

The development in this section has assumed that we start with a given parametric
motion model from which these templates are derived. Based on that model, the structure
of each entry of M is given by (15) which states that

m;; = Vil - £, e (40)

=X;
The image gradient V¢l defines, at each point in the image, the direction of strongest
intensity change. The vector f,; evaluated at x; is the instantaneous direction and magnitude

of motion of that image location captured by the parameter p;. The collection of the latter

for all pixels in the region represents the motion field defined by the motion parameter p;.
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Target Image X Translation Y Translation Rotation Scale

Target Tmage X Translation Y Translation Rotation Scale

Figure 1: Above, the reference template for a bright square on a dark background the motion
template for four canonical motions. Below, the same motion templates for a human face.

Thus, the change in the brightness of the image location x; due to the motion parameter p;
is the projection of the image gradient onto the motion vector.

This suggests how our techniques can be used to perform structured motion estimation
without an explicit parametric motion model. First, if the changes in images due to motion
can be observed directly (for example, by computing the differences of images taken before
and after small reference motions are performed), then these can be used as the motion
templates which comprise M. Second, if a one or more motion fields can be observed (for
example, by tracking a set of fiducial points in a series of training images), then projecting
each element of the motion field onto the corresponding image gradient yields motion tem-
plates for those motion fields. The linear estimation process described above can be used to

interpret time-varying images in terms of those basis motions.

3 Illumination-Insensitive Tracking

The systems described above are inherently sensitive to changes in illumination of the target
region. This is not surprising, as the incremental estimation step is effectively computing a
structured optical flow, and optical flow methods are well-known to be sensitive to illumina-

tion changes [28]. Thus, shadowing or shading changes of the target object over time lead
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to bias, or, in the worst case, complete loss of the target.

Recently, it has been shown that a relatively small number of “basis” images can often
be used to account for large changes in illumination [5, 17, 22, 24, 43]. Briefly, the reason for
this is as follows. Consider a point p on a Lambertian surface and a collimated light source
characterized by a vector s € IR?, such that the direction of s gives the direction of the light

rays and ||s|| gives the intensity of the light source. The irradiance at the point p is given by
E=an-s (41)

where n is the unit inwards normal vector to the surface at p and «a is the non-negative ab-
sorption coefficient (albedo) of the surface at the point p [28]. This shows that the irradiance
at the point p, and hence the gray level seen by a camera, is linear on s € IR®.

Therefore, in the absence of self-shadowing, given three images of a Lambertian surface
from the same viewpoint taken under three known, linearly independent light source di-
rections, the albedo and surface normal can be recovered; this is the well-known method
of photometric stereo [50, 46]. Alternatively, one can reconstruct the image of the surface
under a novel lighting direction by a linear combination of the three original images [43]. In
other words, if the surface is purely Lambertian and there is no shadowing, then all images
under varying illumination lie within a 3-D linear subspace of IRY, the space of all possible
images (where N is the number of pixels in the images).

A complication comes when handling shadowing: all images are no longer guaranteed to
lie in a linear subspace [5]. Nevertheless, as done in [24], we can still use a linear model as
an approximation: a small set of basis images can account for much of the shading changes
that occur on patches of non-specular surfaces. Naturally, we need more than three images
(we use between 8 and 15) and a higher than three dimensional linear subspace (we use 4 or
5) if we hope to provide good approximation to these effects.

Returning to the problem of region tracking, suppose now that we have a basis of image
vectors B1, B,, ..., B,, where the ith element of each of the basis vectors corresponds to
the image location x; € R. Let us choose the first basis vector to be the template image,
i.e. By = I(0,%). To model brightness changes, let us choose the second basis vector to be

a column of ones, i.e. By = (1,1,...,1)”.! Let us choose the remaining basis vectors by

'In practice, choosing a value close to the mean of the brightness of the image produces a more numerically
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performing SVD (singular value decomposition) on a set of training images of the target,
taken under varying illumination. We denote the collection of basis vectors by the matrix
B = [B;|Bs|...|By]

Suppose now that p(t) = p*(t) so that the template image and the current target region
are registered geometrically at time ¢. The remaining difference between them is due to
illumination. From the above discussion, it follows that interframe changes in the current
target region can be approximated by the template image plus a linear combination of the

basis vectors B, i.e.
I(p+op, t +7) =I(p,t) + M + I, + BA + hoot (42)

where the vector A = (A1, Ay, ..., Am)T. Note that because the template image and an image
of ones are included in the basis B, we implicitly handle both variation due to contrast
changes and variation due to brightness changes. The remaining basis vectors are used to
handle more subtle variation — variation that depends both on the geometry of the target
object and on the nature of the light sources.

Using the vector-space formulation for motion recovery established in the previous sec-
tion, it is clear that illumination and geometry can be recovered in one global optimization
step solved via linear methods. Incorporating illumination into (7) we have the following

modified optimization:
O, A) = |[T(a(t) + o, + 7) + BA — 1(0, 1) (43)

Substituting (42) into (43) and performing the same simplifications and approximations

as before, we arrive at
O(dp; A) = [[Mép +BA + I(p(t),t +7) — 1(0, o) || (44)

Solving VO(p, A) = 0 yields

X[ ww] [

)\ BTM BTB BT ] e(t + T)' (45)

In most tracking applications, we are only interested in the motion parameters. We can

eliminate explicit computation of these parameters by first optimizing over X in (44). Upon

stable linear system.
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substituting the resulting solution back into (44) and then solving for du we arrive at
u=-M"'(1-BB"B)"'B")M)"'M (1 - BB'B)'BY) et + 7). (46)

Note that if the columns of B are orthogonal vectors, BT B is the identity matrix.

It is easy to show that in both equations, factoring M into time-invariant and time-
varying components as described above leads to significant computational savings. Since
the illumination basis is time-invariant, the dimensionality of the time-varying portion of
the computation depends only on the number of motion fields to be computed, not on the
illumination model. Hence, we have shown how to compute image motion while accounting
for variations in illumination using no more online computation than would be required to

compute pure motion.

4 Making Tracking Resistant to Occlusion

As a system tracks objects over a large space, it is not uncommon that other objects “intrude”
into the picture. For example, the system may be in the process of tracking a target region
which is the side of a building when, due to observer motion, a parked car begins to occlude
a portion of that region. Similarly the target object may rotate, causing the tracked region
to “slide oftf” and pick up a portion of the background. Such intrusions will bias the motion
parameter estimates and, in the long term can potentially cause mistracking. In this section,
we describe how to avoid such problems. For the sake of simplicity, we develop a solution for
the case where we are only recovering motion parameters; the modifications for combined
motion and illumination models are straightforward.

A common approach to this problem is to assume that occlusions create large image
differences which can be viewed as “outliers” by the estimation process [7]. The error metric
is then modified to reduce sensitivity to “outliers” by solving a robust optimization problem

of the form

Or(p) = Y pI(f(x; p),t) — I(x,%0)) (47)

XER

where p is one of a variety of “robust” regression metrics [31].
It is well-known that optimization of (47) is closely related to another approach to robust

estimation—iteratively reweighted least squares (IRLS). We have chosen to implement the
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optimization using a somewhat unusual form of IRLS due to Dutter and Huber [16]. In
order to formulate the algorithm, we introduce the notation of an “inner iteration” which
is performed one or more times at each time step. We will use a superscript to denote this
iteration.

Let du’ denote the value of ju computed by the ith inner iteration with du® = 0. Define
the vector of residuals in the ith iteration r’ as

r'=e(t+7) — M(u)q'. (48)
We introduce a diagonal weighting matrix W* = W (r’) which has entries
wi = 0(ry) = ¢/ (r}) /7. (49)

The inner iteration cycle at time ¢ 4 7 is consists of performing an estimation step by

solving the linear system

STAS !t = 2TM" Wi r' (50)
where X is evaluated at p(t)) and r* and W' are given by (48) and (49), respectively. This
process is repeated for k iterations.

This form of IRLS is particularly efficient for our problem. It does not require recompu-
tation of A or X and, since the weighting matrix is diagonal, does not add significantly to
the overall computation time needed to solve the linear system. In addition, the error vector
e is fixed over all inner iterations, so these iterations do not require the additional overhead
of acquiring and warping images.

As discussed in [16], on linear problems this procedure is guaranteed to converge to a
unique global minimum for a large variety of choices of p. In this article, p is taken to be a
so-called “windsorizing” function [31] which is of the form

R PP o)
where 7 is normalized to have unit variance. The parameter 7 is a user-defined threshold
which places a limit on the variations of the residuals before they are considered outliers.
This function has the advantage of guaranteeing global convergence of the IRLS method

while being cheap to compute. The updating function for matrix entries is

1 if |r| <7

n(r) = {c/|r\ if |r|>71 ° (52)
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As stated, the weighting matrix is computed anew at each iteration, a process which can
require several inner iterations. However, given that tracking is a continuous process, it is
natural to start with an initial weighting matrix that is closely related to that computed at
the end of the previous estimation step. In doing so, two issues arise. First, the fact that
the linear system we are solving is a local linearization of a nonlinear system means that, in
cases when inter-frame motion is large, the effect of higher-order terms of the Taylor series
expansion will cause areas of the image to masquerade as outliers. Second, if we assume that
areas of the image with low weights correspond to intruders, it makes sense to add a “buffer
zone” around those areas for the next iteration to pro-actively cancel the effects of intruder
motion.

Both of these problems can be dealt with by noting that the diagonal elements of W
themselves form an image where “dark areas” (those locations with low value ) are areas of
occlusion or intrusion, while “bright areas” (those with value 1) are the expected target. Let
Q(x) to be the pixel values in the eight-neighborhood of the image coordinate x plus the

value at x itself. We use two common morphological operators [26]

close(x) = max v 53
(x) max (53)
and
ope = i . 54
pen(x) uin v (54)

When applied to a weighting matrix image, close has the effect of removing small areas of
outlier pixels, while open increases their size. Between frames of the sequence we propagate
the weighting matrix forward after applying one step of close to remove small areas of outliers

followed by two or three steps of open to buffer detected intruders.

5 Implementation and Experiments

This section illustrates the performance of the tracking algorithm under a variety of circum-
stances, noting particularly the effects of image warping, illumination compensation, and
outlier detection. All experiments were performed on live video sequences by an SGI Indy

equipped with a 175Mhz R4400 SC processor and VINO image acquisition system.
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Rotation Scale Aspect Ratio Shear

Figure 2: The columns of the motion Jacobian matrix for the planar target and their geo-
metric interpretations.

5.1 Implementation

We have implemented the methods described above within the X Vision environment [23].
The implemented system incorporates all of the linear motion models described in Section
2, non-orthonormal illumination bases as described in Section 3, and outlier rejection using
the algorithm described in Section 4.

The image warping required to support the algorithm is implemented by factoring linear
transformations into a rotation matrix and a positive-definite upper-diagonal matrix. This
factoring allows image warping to be implemented in two stages. In the first stage, an image
region surrounding the target is acquired and rotated using a variant on standard Bresenham
line-drawing algorithms [18]. The acquired image is then scaled and sheared using a bilinear
interpolation. The resolution of the region is then reduced by averaging neighboring pixels.
Spatial and temporal derivatives are computed by applying Prewitt operators on the reduced
scale images. More details on this level of the implementation can be found in [23].

Timings of the algorithm? indicate that it can perform frame rate (30 Hz) tracking of
image regions of up to 100 x 100 pixels at one-half resolution undergoing affine distortions
and illumination changes. Similar performance has been achieved on a 120Mhz Pentium
processor and 70 Mhz Sun SparcStation. Higher performance is achieved for smaller regions,
lower resolutions, or fewer parameters. For example, tracking the same size region while

computing just translation at one-fourth resolution takes just 4 milliseconds per cycle.
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5.2 Planar Tracking

As a baseline, we first consider tracking a non-specular planar object—the cover of a book.
Affine warping augmented with brightness and contrast compensation is the best possible
linear approximation to this case (it is exact for an orthographic camera model and purely
Lambertian surface). As a point of comparison, recent work by Black and Jepson [7] used
the rigid motion plus scaling model for SSD-based region tracking. Their reduced model is
more efficient and may be more stable since fewer parameters must be computed, but it does
ignore the effects of changing aspect ratio and shear.

We tested both the rigid motion plus scale (RM+S) and full affine (FA) motion models on
the same live video sequence of the book cover in motion. Figure 2 shows the set of motion
templates (the columns of the motion matrix) for an 81 x 72 region of a book cover tracked
at one third resolution. Figure 3 shows the results of tracking. The upper series of images
shows several images of the object with the region tracked indicated with a black frame (the
RM+S algorithm) and a white frame (the FA algorithm). The middle row of images shows
the output of the warping operator from the RM~+S algorithm. If the computed parameters
were error-free, these images would be identical. However, because of the inability to correct
for aspect ratio and skew, the best fit leads to a skewed image. The bottom row shows
the output of the warping operator for the FA algorithm. Here we see that the full affine
warping is much better at accommodating the full range of image distortions. The graph at
the bottom of the figure shows the least squares residual (in squared gray-values per pixel).

Here, the difference between the two geometric models is clearly evident.

5.3 Human Face Tracking

There has been a great deal of recent interest in face tracking in the computer vision lit-
erature [8, 14, 36]. Although faces can produce images with significant variation due to
illumination, empirical results suggest that a small number of basis images of a face gath-
ered under different illuminations is sufficient to accurately account for most gross shading
and illumination effects [24]. At the same time, the depth variations exhibited by facial fea-

tures are small enough to be well-approximated by an affine warping model. The following

2Because of additional data collection overhead, the tracking performance in the experiments presented
here is slower than the stated figures.

21



Frame 0 Frame 50 Frame 70 Frame 120 Frame 150 Frame 230

Residuals: Planar Test
Gray values

40.00

35.00

30.00
25.00

20.00

15.00
NS\ e )

10.00 /\"/ \ y
500 — [N

0.00 50.00 100.00 150.00 200.00 250.00 300.00
Frames

Figure 3: Top, several images of a planar region and the corresponding warped image com-
puted by a tracker computing position, orientation and scale (RM+S), and one computing
a full affine deformation (FA). The image at the left is the initial reference image. Bottom,
the graph of the SSD residuals for both algorithms.
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experiments demonstrate the ability of our algorithm to track a face as it undergoes changes
in pose and illumination, and under partial occlusion. Throughout, we assume the subject is
roughly looking toward the camera, so we use the rigid motion plus scaling (RM+S) motion

model. Figure 1 on page 14 shows the columns of the motion matrix for this model.

5.3.1 Geometry

We first performed a test to determine the accuracy of the computed motion parameters
for the face and to investigate the effect of the illumination basis on the sensitivity of those
estimates. During this test, we simultaneously executed two tracking algorithms: one using
the rigid motion plus scale model (RM+S) and one which additionally included an illumi-
nation model for the face (RM+S+I). The algorithms were executed on a sequence which
did not contain large changes in the illumination of the target. The top row of Figure 4
shows images excerpted from the video sequence. In each image, the black frames denote
the region selected as the best match by RM+S and the white frames correspond to the
best match computed by RM+S+I1. For this test, we would expect both algorithms to be
quite accurate and to exhibit similar performance unless the illumination basis significantly
affected the sensitivity of the computation. As is apparent from the figures, the computed
motion parameters of both algorithms are extremely similar for the entire run — so close
that in many cases one frame is obscured by the other.

In order to demonstrate the absolute accuracy of the tracking solution, below each live
image in Figure 4 we have included the corresponding rectified image computed by RM+S+1.
The rectified image at time 0 is the reference template. If the motion of the target fit the
RM+S motion model, and the computed parameters were exact, then we would expect each
subsequent rectified image to be identical to the reference template. Despite the fact that
the face is non-planar and we are using a reduced motion model, we see that the algorithm
is quite effective at computing an accurate geometric match.

Finally, the graph in Figure 4 shows the residuals of the linearized SSD computation at
each time step. As is apparent from the figures, the residuals of both algorithms are also
extremely similar for the entire run. From this experiment we conclude that, in the absence
of illumination changes, the performance of both algorithms is quite similar — including

illumination models does not appear to reduce accuracy.
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Figure 4: Top row, excerpts from a sequence of tracked images of a face. The black frames
represent the region tracked by an SSD algorithm using no illumination model (RM+S) and
the white frames represent the regions tracked by an algorithm which includes an illumination
model (RM+S+I). In some cases the estimates are so close that only one box is visible.
Middle row, the region within the frame warped by the current motion estimate. Bottom
row, the residuals of the algorithms expressed in gray-scale units per pixel as a function of
time.
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Figure 5: The illumination basis for the face (B). The left two images are included to
compensate for brightness and contrast, respectively, while the remaining four images com-
pensate for changes in lighting direction.

5.3.2 Illumination

In a second set of experiments, we kept the face nearly motionless and varied the illumination.
We used an illumination basis of four orthogonal image vectors. This basis was computed
offline by acquiring ten images of the face under various lighting conditions. A singular value
decomposition (SVD) was applied to the resulting image vectors and the vectors with the
maximum singular values were chosen to be included in the basis. The illumination basis is
shown in Figure 5.

Figure 6 shows the effects of illumination compensation for the illumination situations
depicted in the first row. As with warping, if the compensation were perfect, the images of
the bottom row would appear to be identical up to brightness and contrast. In particular,
note how the strong shading effects of frames 70 through 150 have been “corrected” by the

illumination basis.

5.3.3 Combining Illumination and Geometry

Next, we present a set of experiments illustrating the interaction of geometry and illumi-
nation. In these experiments we again executed two algorithms again labeled RM+S and
RM+S+I. As the algorithms were operating, a light was periodically switched on and off
and the face moved slightly. The results appear in Figure 7. In the residual graph, we see
that the illumination basis clearly “accounts” for the shading on the face quite well, leading
to a much lower fluctuation of the residuals. The sequence of images shows an excerpt near

the middle of the sequence where the RM+S algorithm (which could not compensate for il-
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Figure 6: The first row of images shows excerpts of a tracking sequence. The second row is
a magnified view of the region in the white frame. The third row contains the images in the
second row after adjustment for illumination using the illumination basis shown in Figure 5
(for sake of comparison we have not adjusted for brightness and contrast).
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Figure 7: Top, an excerpt from a tracking sequence containing changes in both geometry and
illumination. The black frame corresponds to the algorithm without illumination (RM+S)
and the write frame corresponds to the algorithm with an illumination basis (RM+S+I).
Note that the algorithm which does not use illumination completely looses the target until
the original lighting is restored. Bottom, the residuals, in gray scale units per pixel, of the
two algorithms as a light is turned on and off.

lumination changes) completely lost the target for several frames, only regaining it after the
original lighting was restored. Since the target was effectively motionless during this period,
this can be completely attributed to biases due to illumination effects. Similar sequences
with larger target motions often cause the purely geometric algorithm to loose the target

completely.

5.3.4 Tracking With Outliers

Finally, we illustrate the performance of the method when the image of the target becomes
partially occluded. We again track a face. The motion and illumination basis are the same
as before. In the weighting matrix calculations the pixel variance was set to 5 and the outlier
threshold was set to 5 variance units.

The sequence is an “office” sequence which includes several “intrusions” including the
background, a piece of paper, a telephone, a soda can, and a hand. As before we executed two

versions of the tracker, the non-robust algorithm from the previous experiment (RM~+S+I)
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and a robust version (RM+S+I1+0). Figure 8 shows the results. The upper series of images
shows the region acquired by both algorithms (the black frame corresponds to RM+S+I, the
white to RM+S+I1+0). As is clear from the sequence, the non-robust algorithm is disturbed
significantly by the occlusion, whereas the robust algorithm is much more stable. In fact, a
slight motion of the head while the soda can is in the image caused the non-robust algorithm
to mistrack completely. The middle series of images shows the output of the warping opera-
tion for the robust algorithm. The lower row of images depicts the weighting values attached
to each pixel in the warped image. Dark areas correspond to “outliers.” Note that, although
the occluded region is clearly identified by the algorithm, there are some small regions away
from the occlusion which received a slightly reduced weight. This is due to the fact that
the robust metric used introduces some small bias into the computed parameters. In areas
where the spatial gradient is large (e.g. near the eyes and mouth), this introduces some false
rejection of pixels.

It is also important to note that the dynamical performance of the tracker is significantly
reduced by including outliers. Large, fast motions tend to cause the algorithm to “turn
oftf” areas of the image where there are large gradients, slowing convergence. At the same
time, performing outlier rejection is more computationally intensive as it requires explicit

computation of both the motion and illumination parameter to calculate the residual values.

6 Discussion and Conclusions

We have shown a straightforward and efficient solution to the problem of tracking regions
undergoing geometric distortion, changing illumination, and partial occlusion. The method
is simple, yet robust, and it builds on an already popular method for solving spatial and
temporal correspondence problems.

Although the focus in this article has been on parameter estimation techniques for track-
ing using image rectification, the same estimation methods can be used for directly controlling
devices. For example, instead of computing a parameter estimate p, the incremental solu-
tions du can be used to control the position and orientation of a camera so to stabilize the
target image by active motion. Hybrid combinations of camera control and image warping

are also possible.
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Figure 8: The first row of images shows excerpts of a tracking sequence with occurrences
of partial occlusion. The black frame corresponds to the algorithm without outlier rejec-
tion (RM+S+I) and the write frame corresponds to the algorithm with outlier rejection
(RM+S+I+0). The second row is a magnified view of the region in the white frame. The
third row contains the corresponding outlier images where darker areas mark outliers. The
graph at the bottom compares the residual values for both algorithms.



One possible objection to the methods is the requirement that the change from frame
to frame is small, limiting the speed at which objects can move. Luckily, there are several
means for improving the dynamical performance of the algorithms. One possibility is to
include a model for the motion of the underlying object and to incorporate prediction into
the tracking algorithm. Likewise, if a model of the noise characteristics of images is available,
the updating method can modified to incorporate this model. In fact, the linear form of the
solution makes it straightforward to incorporate the estimation algorithm into a Kalman
filter or similar iterative estimation procedure.

Performance can also be improved by operating the tracking algorithm at multiple levels
of resolution. One possibility, as is used by many authors [7, 44], is to perform a complete
coarse to fine progression of estimation steps on each image in the sequence. Another possi-
bility, which we have used successfully in prior work [23], is to dynamically adapt resolution
based on the motion of the target. That is, when the target moves quickly estimation is per-
formed at a coarse resolution, and when it moves slowly the algorithm changes to a higher
resolution. The advantage of this approach is that it not only increases the range over which
the linearized problem is valid, but it also reduces the computation time required on each
image when motion is fast.

We are actively continuing to evaluate the performance of these methods, and to extend
their theoretical underpinnings. One area that still needs attention is the problem of deter-
mining an illumination basis online, i.e. while tracking the object. Initial experiments in this
direction have shown that online determination of the illumination basis can be achieved,
although we have not included such results in this paper. As in [7], we are also exploring
the use of basis images to handle changes of view or aspect not well addressed by warping.

We are also looking at the problem of extending the method to utilize shape information
on the target when such information is available. In particular, it is well known [49] that
under orthographic projection, the image deformations of a surface due to motion can be
described with a linear motion model. This suggests that our methods can be extended
to handle such models. Furthermore, as with the illumination basis, it may be possible
to estimate the deformation models online, thereby making it possible to efficiently track

arbitrary objects under changes in illumination, pose, and partial occlusion.
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