Geometric Computer Vision Review and Outlook

Statement of the second statement of

What is Computer Vision?

- Three Related fields
 - Image Processing: Changes 2D images into other 2D images
 - Computer Graphics: Takes 3D models, renders 2D images
 - Computer vision: Extracts scene information from 2D images and video
 - e.g. Geometry, "Where" something is in 3D,– Objects "What" something is"
- What information is in a 2D image?
- What information do we need for 3D analysis?

Only special cases can be solved.

Computer Vision

The equation of projection

Intuitively:

Mathematically:

• Cartesian coordinates:

Projectively:

 $\mathbf{x} = P\mathbf{X} \quad P: 3 \times 4 \quad \frac{\text{Projection matrix}}{\text{Projection matrix}}$ $\mathbf{x} = K\begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{X} \quad K: 3 \times 3 \quad \frac{\text{Camera matrix (internal params)}}{R, \mathbf{t}} \quad \frac{\text{Rotation, translation (ext. params)}}{R, \mathbf{t}}$

The 2D projective plane

Х_∞ = У

- Perspective imaging models 2d projective space
- Each 3D ray is a point in P^2 : homogeneous coords.
- Ideal points
- P^2 is R^2 plus a "line at infinity"

Duality: For any 2d projective property, a dual property holds when the role of points and lines are interchanged.

$$I = X_1 \times X_2$$

The line joining two points

$$X = I_1 \times I_2$$

The point joining two lines

Projective transformations

- Homographies, collineations, projectivities
- 3x3 nonsingular H

2 3

- maps *P*² to *P*²
 8 degrees of freedom
 determined by 4 corresponding points
- Transforming Lines?

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$x' = Hx$$

subspaces preserved $\mathbf{x}^T \mathbf{l} = 0$ $\mathbf{x}'^T \mathbf{l}' = 0$ substitution $x^T H^T \mathbf{l}' = 0$ dual transformation $\mathbf{l}' = H^{-T} \mathbf{l}$

Planar Projective Warping

 $x_i' = Hx_i$ $i = 1 \dots 4$

A novel view rendered via four points with known structure

ΗZ

Geometric strata: 2d overview

1 - 2 31

Group	Transformation	Invariants	Distortion	
Projective	$H - \begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Cross ratio		
8 DOF	$\prod_{P} - \begin{bmatrix} \mathbf{v}^T & \mathbf{v} \end{bmatrix}$	IntersectionTangency		
Affine	$\begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Parallelism		$2 dof l_{\infty}$
6 DOF	$H_A = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	• Relative dist in 1d • Line at infinity \mathbf{l}_{∞}		
Metric	[sR t]	Relative distances		2 dof
4 DOF	$H_{S} = \begin{bmatrix} \mathbf{O}^{T} & 1 \end{bmatrix}$	• Angles • Dual conic C^*_{∞}		$\langle C^{\infty}_{*} \rangle$
Euclidean	$\begin{bmatrix} R & \mathbf{t} \end{bmatrix}$	• Lengths		
3 DOF	$H_E = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	• Areas		

Projective 3D space

•Points

$$\mathbf{X} = (x_1, x_2, x_3, x_4), \quad x_4 \neq 0$$
$$(x_1, x_2, x_3, 0)$$

 $(x_1, x_2, x_3, x_4) \rightarrow (x_1 / x_4, x_2 / x_4, x_3 / x_4)$ $(X, Y, Z, 1) \leftarrow (X, Y, Z)$

•Planes

$$\boldsymbol{\pi} = (\pi_1, \pi_2, \pi_3, \pi_4)$$
$$\boldsymbol{\pi}^T \mathbf{X} = \mathbf{0}$$

Points and planes are dual in 3d projective space.

•Lines: 5DOF, various parameterizations

•Projective transformation:

-4x4 nonsingular matrixH-Point transformation $\mathbf{X}' = H\mathbf{X}$ -Plane transformation $\boldsymbol{\pi}' = H^{-T}\boldsymbol{\pi}$

•Quadrics:
$$\mathbf{Q} = \mathbf{X}^T Q \mathbf{X} = 0$$

-4x4 symmetric matrix Q-9 DOF (defined by 9 points in general pose)

Geometric strata: 3d overview

and the second	- E. El an		. Astes	
Group	Transformation	Invariants	Distortion	
Projective	$H - \begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Cross ratio	\square	
15 DOF	$\prod_{P} - \begin{bmatrix} \mathbf{v}^T & \mathbf{v} \end{bmatrix}$	IntersectionTangency		
Affine	$\begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Parallelism	\square	$\pi_{\infty}^{3\text{DOF}}$
12 DOF	$H_A = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	• Relative dist in 1d • Plane at infinity π_{∞}		
Metric	$\begin{bmatrix} sR & t \end{bmatrix}$	Relative distances		5DOF
7 DOF	$H_{S} = \begin{bmatrix} \mathbf{O}^{T} & 1 \end{bmatrix}$	• Angles • Absolute conic Ω_{∞}		
Euclidean	$\begin{bmatrix} R & \mathbf{t} \end{bmatrix}$	• Lengths		
6 DOF	$H_E = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	AreasVolumes		

Faugeras '95

Tasks in Geometric Vision

- •**Tracking:** Often formulated in 2D, but tracks 3D objects/scene
- Visual control: Explicit 2D geometric constraints implicitly fulfills a 3D motion alignment
- •3D reconstruction: Computes an explicit 3D model from 2D images

AND ADDING

Camera model: Relates 2D – 3D

[Dürer]

 $\mathbf{x} = P\mathbf{X}$ $P:3 \times 4$ **Projection matrix** $\mathbf{x} = K\begin{bmatrix} R & \mathbf{t} \end{bmatrix} \mathbf{X}$ $K:3 \times 3$ **Camera matrix (internal params)** R, \mathbf{t} **Rotation, translation (ext. params)**

2D-3D geometry - resection

Projection equation
 x_i=P_iX

• Resection: $-x_i, X \longrightarrow P_i$

Given image points and 3D points calculate camera projection matrix.

2D-3D geometry - intersection

- Projection equation
 - $x_i = P_i X$
- Intersection:
 - $-x_i, P_i \longrightarrow X$

Given image points and camera projections in at least 2 views calculate the 3D points (structure)

2D-3D geometry - SFM

- Projection equation
 - $x_i = P_i X$
- Structure from motion (SFM) $-x_i \rightarrow P_i, X$

Given image points in at least 2 views calculate the 3D points (structure) and camera projection matrices (motion)

- •Estimate projective structure
- •Rectify the reconstruction to metric (autocalibration)

Reconstructing scenes

'Small' scenes (one, few buildings)

- SFM + multi view stereo
- man made scenes: prior on architectural elements
- interactive systems

City scenes (several streets, large area)

- aerial images
- ground plane, multi cameras

SFM + stereo [+ GPS] depth map fusions

Large scale (city) modeling

Modeling dynamic scenes

Modeling (large scale) scenes

[Adam Rachmielowski

SFM + stereo

Man-made environments :

- straight edges
- family of lines
- vanishing points

[Dellaert et al 3DPVT06] [Zisserman, Werner ECCV02]

SFM + stereo

dominant planes

plane sweep – homog between 3D pl. and camera pl.

[Zisserman, Werner ECCV02]

[Bischof et al 3DPVT06]

SFM + stereo

refinement – architectural primitives

(a)

[Zisserman, Werner ECCV02 ...]

SFM+stereo

• Refinement – dense stereo

ARC 3D Webservice

A Family of Web Tools for Remote 3D Reconstruction WWW.arc3d.be

[Pollefeys, Van Gool 98,00,01]

Façade – first system

Based on SFM (points, lines, stereo) Some manual modeling View dependent texture

[Debevec, Taylor et al. Siggraph 96]

Priors on architectural primitives

 $\Pr(\mathbf{M}\boldsymbol{\theta}|\mathbf{D}\mathbf{I}) \; \alpha \; \Pr(\mathbf{D}|\mathbf{M}\boldsymbol{\theta}\mathbf{I}) \Pr(\mathbf{M}\boldsymbol{\theta}\mathbf{I})$

= $\Pr(\mathbf{D}|\mathbf{M}\boldsymbol{\theta}_{L}\boldsymbol{\theta}_{S}\boldsymbol{\theta}_{T}\mathbf{I}) \Pr(\boldsymbol{\theta}_{T}|\boldsymbol{\theta}_{L}\mathbf{M}\mathbf{I})$ $\Pr(\boldsymbol{\theta}_{S}|\boldsymbol{\theta}_{L}\mathbf{M}\mathbf{I}) \Pr(\boldsymbol{\theta}_{L}|\mathbf{M}\mathbf{I})$

prior

Occluded windows

 $\theta-\text{parameters}$ for architectural priors

type, shape, texture

- M model
- D data (images)

I – reconstructed structures (planes, lines ...)

[Cipolla, Torr, ... ICCV01]

Interactive systems

[Torr et al. Eurogr.06, Siggraph07]

Video, sparse 3D points, user input $Pr(M|DI) \propto Pr(D|MI) Pr(M|I)$. M – model primitives D- data I – reconstructed geometry

Solved with graph cut

VideoTrace

VideoTrace

City modeling – aerial images

(c) 2D Image Creation

[Heiko Hirschmuller et al - DLR]

Airborne pushbroom camera

Semi-global stereo matching (based on mutual information)

City modeling – ground plane

City modeling - example

(a)

[Cornelis, Van Gool CVPR06...]

- 1. feature matching = tracking
- 2. SFM camera pose + sparse 3D points
- 3. Façade reconstruction
 - rectification of the stereo images
 - vertical line correlation
- 4. Topological map generation
 - orthogonal proj. in the horiz. plane
 - voting based carving
- 5. Texture generation
 - each line segment column in texture space

On-line scene modeling : Adam's project

Video

On-line modeling from video

Model not perfect but enough for scene visualization

Application predictive display

Tracking and Modeling

New image Detect fast corners (similar to Harris) SLAM (mono SLAM [Davison ICCV03]) Estimate camera pose Update visible structure

Partial bundle adjustment – update all points

Save image if keyframe (new view – for texture)

Visualization

New visual pose

Compute closet view

Triangulate

Project images from closest views onto surface

SLAM Camera pose 3D structure Noise model Extended Kalman Filter

Model refinement

Modeling dynamic scenes

t.

Aleraid

[Neil Birkbeck]

Multi-camera systems

Several cameras mutually registered (precalibrated) Video sequence in each camera Moving object

Techniques

Naïve : reconstruct shape every frame

- Integrate stereo and image motion cues
- Extend stereo in temporal domain
- Estimate scene flow in 3D from optic flow and stereo

Representations :

- Disparity/depth
- Voxels / level sets
- Deformable mesh hard to keep time consistency

Knowledge:

- Camera positions
- Scene correspondences (structured light)

Spacetime stereo

[Zhang, Curless, Seitz: Spacetime stereo, CVPR 2003] Extends stereo in time domain: assumes intra-frame correspondences

Spacetime stereo: Results

Input: 400 stereo pairs (5 left camera imagest shown here)

Spacetime stereo reconstruction with 9x5x5 window

Spacetime stereo:video

t.

Spacetime photometric stereo

[Hernandez et al. ICCV 2007]

One color camera projectors – 3 different positions Calibrated w.r. camera

Each channel (R,G,B) – one colored light pose Photometric stereo

Spacetime PS - Results

Non-rigid Photometric Stereo with Colored Lights

C. Hernández¹, G. Vogiatzis¹, G.J. Brostow², B. Stenger¹ and R. Cipolla²

> Toshiba Research Cambridge¹ University of Cambridge²

3. Scene flow

[Vedula, Baker, Rander, Collins, Kanade: Three dimensional scene flow,

Scene flow: results

t=1

Camera C₁

Camera C₃

Camera C_n

Camera C₂

[Vedula, et al. ICCV 99]

Scene flow: video

man 19

t.

[Vedula, et al. ICCV 99]

4. Carving in 6D

[Vedula, Baker, Seitz, Kanade: Shape and motion carving in 6D]

6D slab sweeping

Slab = thickened plane (thikness = upper bound on the flow magnitude)

- compute visibility for x¹
- determine search region
- compute all hexel photo-consistency
- carving hexels
- update visibility

(Problem: visibility below the top layer in the slab before carving)

Carving in 6D: results

Time 1

Time 2

Time 1

Time 2

7. Surfel sampling

[Carceroni, Kutulakos: Multi-view scene capture by surfel samplig, ICCV01]

Surfel: dynamic surface element

- shape component : center, normal, curvature
- motion component:
- reflectance component: Phong parameters

$$S = \langle \mathbf{x}_{0}, \mathbf{n}_{0}, \mathbf{k} \rangle$$
$$M = \langle \widetilde{\mathbf{x}}_{t}, \widetilde{\mathbf{x}}_{ut}, \widetilde{\mathbf{x}}_{vt} \rangle$$
$$R = \langle f, k, \{ \rho_{1}, ..., \rho_{P} \} \rangle$$

Reconstruction algorithm

Surfel sampling : results

Modeling humans in motion

Goal: <mark>3D model of the</mark> human

Instantaneous model that can be viewed from different poses ('Matrix') and inserted in an artificial scene (teleconferences)

Our goal: 3D animated human model

 capture model deformations and appearance change in motion

 animated in a video game

GRIMAGE platform- INRIA Grenoble

[Neil Birkbeck] Articulated model

Model based approach

Geometric Model

Skeleton + skinned mesh (bone weights)

50+ DOF (CMU mocap data)

Tracking

- visual hull bone weights by diffusion
- refine mesh/weights

Components

- silhouette extraction
- tracking the course model
- Iearn deformations
- Iearn appearance change

Neil- tracking results

t.

Beyond 3D Non-rigid and articulated motion

- Humans ubiquitous in graphics applications
- A practical, realistic model requires
 - Skeleton
 - Geometry (manually modeled, laser scanned)
 - Physical simulation for clothes, muscle
 - Texture/appearance (from images)
 - Animation (mocap, simulation, artist)

Beyond 3D: Non-rigid and articulated motion

PhD work of Neil Birkbeck, Best thesis prize winner

Computer Vision

Questions?