Image cues
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Shading

Shadows /
Specular hjghlights
Silhouette




Image cues

Shading [reconstructs normals]

shape from shading (SFS) /
photometric stereo

[ignore, filtered]

Specular highlights
P Jhig [parametric BRDF]

Texture [reconstructs 3D]

stereo (relates two views)

Silhouette [reconstructs 3D]
shape from silhouette

[Focus]



Geometry from shading
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Shading reveals 3D shape geometry

Shape from Shading Photometric Stereo

One image Several images, different lights
Known light direction Unknown Lambertian BRDF
Known BRDF (unit albedo) 1. Known lights

lll-posed : additional constraints | | 2. Unknown lights
(intagrability ...)

[Horn] Reconstruct normals [Silver 80, Woodman 81]
Integrate surface




Shading

Lambertian reflectance

E(x) = pL;(x,6,,¢)c0s6, = p(nel,)
RN

albedo | | normal light dir

Fixing light, albedo, we can express reflectance only as
function of normal.



Surface parametrization

Surface s(x,y)=(x,y, f(x,y))
Tangent plane g)s( (10 %j %=(0,1,%j

Normal vector — _as o _(of of )
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Lambertian reflectance map
(p’q’_l) >/<’)\(

1+ +
CHE R E(p.a)=Lp e
L+ p? 071+ p) 4+

Local surface orientation that produces equivalent intensities are
guadratic conic sections contours in gradient space




Photometric stereo

One image =one light direction Two images = two light directions

e

Radiance of one pixel constrains A third image disambiguates
the normal to a curve between the two.

Normal = intersection of 3 curves

Specular reflectance




Photometric stereo

[Birkbeck]

S

One image, one light direction Given: n>=3 images with different known
light dir. (infinite light)

| (X) = B(X) = ,O(X)n(X) o |i Assume: Lambertain object

orthograhic camera

ignore shadows, interreflections

n images, n light directions

[T
|1
T
Iz

2 | p()n(x) =

1 (X) | Recover PX)=p(x)Nn(x)

15 (X) b(x)|

;. Ap()n(x) = 1(X) | Albedo = magnitude
: b (%)
T T b(x) :

| 1, (X)) Normal = normalized |[b(x)|




Depth from normals (1)

[D. Kriegman]

Integrate normal (gradients p,q) across the image

: Sin)1p|e approach — integrate along a curve from (Xx,, Y,)
X, Y
ks =1 f(x0)|1. From n=(,,n,n) p=n/n, gq=n/n,

2. Integrate p=of /0x along (X,0) to get f(x,0)
3. Integrate q=0of /oy along each column

(x.y)
F(Y) = 0% o)+ | (pdx+qdy)

(X0+Yo0)



Depth from normals (2)

(x.y)
()= (% Yo)+ | (pdx+qdy)

(X0+Yo0)

Integrate along a curve from (X,,Y,)
Might not go back to the start
because of noise — depth is not
unique

Impose integrability
A normal map that produces a
unique depth map is called integrable  [Escher] no integrability

op _oq., oof oof
Enforced by oy ox oyox ox oy




Impose integrabilty

[Horn — Robot Vision 1986]
Solve f(x,y) from p,q by minimizing the cost functional

[[ (f.—p)?+(f, —a)*dxdy

image

» [terative update using calculus of variation

» [ntegrability naturally satisfied

= F(X,y) can be discrete or represented in terms of basis functions
Example : Fourier basis (DFT)-close form solution

[Frankfot, Chellappa
A method for enforcing integrability in SFS Alg.
PAMI 1998]




Example integrability
[Neil Birkbeck ]

Images with different light

normals Integrated depth original reconstructed
surface




Image cues
Shading, Stereo,
Specularities

Readings: See links on web page
Books: Szeliski 2.2, Ch 12

Forsythe Ch 4,5 (Lab related) .pdf
on web site)

Color (text\JIe)

Shading
Shadows
Specular h

ghlights

Silhouette

|




All Images

It iIs possible to

= Unknown lights and normals :

reconstruct the surface and light positions ?
* What is the set of images of an object under all

possible light conditions ?

[Debevec et al]



Space of all iImages

Problem:

» Lambertian object

» Single view, orthographic camera

= Different illumination conditions (distant illumination)

1. 3D subspace: + convex obj 3D subspace
[Moses 93][Nayar,Murase 96][Shashua 97] (no shadows)

2. lllumination cone: Convex cone

[Belhumeur and Kriegman CVPR 1996]

Linear
3. Spherical harmonic representation: combination of
[Ramamoorthi and Hanharan Siggraph 01] harmonic imag.

[Barsi and Jacobs PAMI 2003] (practical 9D basis)



3D Illlumination subspace

Lambertian reflection: | = pnel=Dbel
. - p— — g u
(one image point x) b', 5

Whole image : () =x=Bl B=| ..
(image as vector |) b'n | [nx3 scene

The set of images of a Lambertain scene surface with no shadowing is a
subset of a 3D subspace. [Moses 93][Nayar,Murase 96][Shashua 97]

Allimages _  basiS_ Al lights
L ={x|x=Bl,VIeR} N
I X3 _
. L ) H H H H
: e Y
“Xq Xo XXy B
X1 Xy pn

nxm nx3 3xm




Reconstructing the basis

L={x|x=BIl,VIeR’} = Any three images without shadows span L.
» L —represented by an orthogonal basis B.
" How to extract B from images ?




Example of photometric variation
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Example of photometric variation




Shadows

SO
S; S,
S; S,
S5
5 X,
No shadows L ={x|x=BI, VI R’}
Shadows x = max(Bl.,0) Ex: images with all pixels
Single light source lluminated n _
= L. intersection of L with an orthant i of R" L, =L{x|xeR" I, >20,Vj}

corresponding cell of light source directions S, for which the same pixels are
in shadow and the same pixels are illuminated.
= P(L;) projection of L;that sets all negative components of L; to O (convex cone)

The set of images of an object produces by a single light source is :
U ={x|x=max(BI,0), vl e R*}=( JR(L)




Shadows and multiple lights

Shadows, multiple lights X:Z max(Bl;,0)

The image illuminated with two light sources |, |,, lies on the line
between the images of x; and x,.

The set of images of an object produces by an arbitrary number of lights is
the convex hull of U = illumination cone C.




llHlumination cone

The set of images of a any Lambertain object under all light conditions is a
convex cone in the image space.

[Belhumeur,Kriegman: What is the set of images of an object under all
possible light conditions ?, [JCV 98]

lllumination Cone

Sy

= i J‘E (
> \/Xl

Single light source images 2:1gt source

. N-dimensional image
lie on cone boundary X Image Space
1




Do ambiguities exist ?

Can two different objects produce the same illumination
cone ? YES “Bas-relief” ambiguity

Convex object
* B span L
= Any AeGL(3), B'=BA span L
= |=B"S"=(BA)(A1S)=BS
Same image B lighted with S
and B™ lighted with S”

When doing PCA the resulting basis is generally not
normal*albedo




GBR transformation

[Belhumeur et al: The bas-relief ambiguity [JCV 99]

Surface integrability :
Real B, transformed B"=BA is integrable only for General Bas
Relief transformation.

10
A=G'=|0 2 -v
00 1

f (X y)=Af (X, y)+ px+vy




Uncalibrated photometric stereo

= Without knowing the light source positions, we can recover
shape only up to a GBR ambiguity.

1. From n input images compute B* (SVD)
2. Find A such that B* A close to integrable
3. Integrate normals to find depth.

Comments

» GBR preserves shadows [Kriegman, Belhumeur 2001]

= |f albedo is known (or constant) the ambiguity G reduces to a
binary subgroup [Belhumeur et al 99]

* Interreflections : resolve ambiguity [Kriegman CVPRO5]



Spherical harmonic representation

Theory : infinite no of light directions
space of images infinite dimensional
[lllumination cone, Belhumeur and Kriegman 96]
Practice : (empirical ) few bases are enough

[Hallinan 94, Epstein 95]

Simplification : Convex objects (no
shadows, intereflections)

[Ramamoorthi and Hanharan: Analytic PCA construction for Theoretical
analysis of Lighting variability in images of a Lambertian object: SIGGRAPHO01]

[Barsi and Jacobs: Lambertain reflectance and linear subspaces: PAMI 2003]



Basis approximation
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Spherical harmonics basis

= Sphere analog to the Fourier basis on the line or square
= Angular portion of the solution to Laplace equation in spherical

coordinates V?y =0
= Orthonormal basis for the set of all functions on the surface of

the sphere

— |
Ylm(gi ¢) — \/(211;—_1) EI ; I|m| (COS H)elm¢

Normalization Legendre Fourier
factor functions basis



lllustration of SH

gl Ylm(9’¢) — Nl\m\Pl\m\ (COS g)eim¢

u=(x,Y,z)=(cosgsin 8,sin gsin 6, cos )
[ Positive
B Negative

X,Y,Z space
coordinates;

@,¢ polar

coordinates

Y e . o ~
odd components Y, =Y, £IY,,~ even components



Example of apprOX|mat|on

Efficient rendering
= known shape
= complex illumination

(compressed)

Exact image 9 terms approximation

[Ramamoorthi and Hanharan: An efficient representation for irradiance
enviromental map Siggraph 01]

Not good for hight frequency (sharp) effects ! (specularities)




Relation between SH and PCA

[Ramamoorthi PAMI 2002]

Prediction: 3 basis 91% variance
5 basis 97%

Empirical: 3 basis 90% variance
5 basis 94%

42% 33% 16% 4% 2%




Summary: Image cues

M(textp[e)
Shading

Shadows /
Specular hjghlights
Silhouette




Properties of SH

Function decomposition
f piecewise continuous function on the surface of the sphere

TOENIPIAMD

1=0 m=-I

f, = j f (U)Y “im(U)du

where

Rotational convolution on the sphere

Funk-Hecke theorem:
k circularly symmetric bounded iIntegrable 2

function on [-1,1] k(u)_Zk,Ylo

47zk

K*Y, =Y, o m




Reflectance as convolution

L ambertian reflectance

One light R(u')=1(u)pmax(0,ueu’)

Lambertian kernel  k(ueu') =max(0,ueu’)

Integrated light ~ R(U') = j k(ueul(u)du

SH representation

light Lambertian kernel
o0 I 0

[(u) = z Z .Y, () K= ZkIYIO
1=0 m=—I 1=0

Lambertian reflectance (convolution theorem)

= 2’,;([..”” SMAAA

=0 m=-I




Convolution kernel

Lambertian kernel
k(ueu')=max(0,ueu')

k=>"kY,
1=0

Asymptotic behavior of k; for large |

-2 -5/2
k ~172 1 ~I

= Second order approximation
accounts for 99% variability

= k like a low-pass filter

[Basri & Jacobs 01]
[Ramamoorthi & Hanrahan 01]

e[S
>
Il
[EEY

G J(2l (Ij n>2,even

2'(1-D(1+2)\1/2
0 n>2,odd




From reflectance to images

Unit sphere = general shape
Rearrange normals on the sphere

o |
Reflectance on a sphere R=kx*|= Z Z oY
=0 m=-I

o0

|
Image point with normal n, L=>" > pilnYim (M)

1=0 m=-I




Shape from Shading

Given: one image of an object illuminated with a distant light source
Assume: Lambertian object, with known, or constant albedo (usually assumes 1)

orthograhic camera
known light direction

ignore shadows, interreflections

Recover: normal§

\

R(p,q)

Radiance of one pixel constrains
the normal to a curve

ILL-POSED

s(X,y)=(X,y, f(x,y))

Surface
: of of
Gradient space 7 _a
P p o q o
Normal n=(p,q,-1)
. 1
N=——— (p,q,-1)
Jp?+q?+1

Lambertian reflectance: depends
only on n (p,q):
n(x)el

E(x) =cos(n(x),l) = Hn(x)H




-

Image info | shading Recovers | Integrated normals

= Defined by Horn and others in the 70’s.
= Variational formulation

Ot!j!(:t(l(x, y)—E(IJ,CI))dedy=0bjj£Ct (X, y)—&z’zq:qlz]'jl] dxdy+ e ] (@_Z_gj dxdy

regularization
» Showed to be ill —posed [Brooks 92] (ex . Ambiguity convex/concave)

object

= Classical solution — add regularization, integrability constraints
» Most published algorithms are non-convergent [Duron and Maitre 96]



Examples of results
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Pentland’s method 1994

Synthetic images



Well posed SFS

[Prados ICCV03, ECCV04] reformulated SFS as a well-posed problem

E(x) =cos(n(x),L) = n(x)-L Lambertian reflectance

Orthographic camera Perspective camera

f(x)(x,-1)

s={(x, T (X)) | x=(u,v) e Q} s={f (X)(x,—1)|x=(u,v) e O}
n(s(x)) = (VI (x),-1) n(s(x)) = (AVF (), f(X)+X-VFf (X))

100= = OVNEC ) o) (g = AVEOIe(f () +xVE(X)
\/1+ Vi) \/ A2VE Q) + (f (X) +X- VE (X)?

Hamilton-Jacobi equations - no smooth solutions;

H(x,Vu) =0 - require boundary conditions




Well-posed SFS (2)

Hamilton-Jacobi equations - no smooth solutions;
- require boundary conditions

Solution
1. Impose smooth solutions — not practical because of image noise
2. Compute viscosity solutions [Lions et al.93] (smooth almost everywhere)

still require boundary conditions
E. Prados :general framework — characterization viscosity solutions.
(based on Dirichlet boundary condition)
efficient numerical schemes for orthogonal and perspective camera
showed that SFS is a well-posed for a finite light source

[Prados ECCV04]




Shading: Summary

Space of all images : Lambertian object
Distant illumination

One view (orthographic)

+ Convex objects

1. 3D subspace 3D subspace

2. lllumination cone: Convex cone
Linear combination
of harmonic imag.

(practical 9D basis)

2. Spherical harmonic representation:

Reconstruction : Single light source
One image lll-posed

1. Shape from shading Unit albgdo + addltl_onal
Known light constraints

2. Photometric stereo Multiple imag/1 view

Arbitrary albedo
Known light
3. Uncalibrated photometric stereo GBR ambiguity
+ Unknown light Family of solutions



Extension to multiple views

Problem: PS/SFS one view = incomplete object
Solution : extension to multiple views — rotating obj., light var.
Problem: we don’t know the pixel correspondence anymore
Solution: iterative estimation: normals/light — shape

Initial surface from SFM or visual hull

11

Input images Initial surface Refined surface
1. Kriegman et al ICCV05; Zhang, Seitz ... ICCV 03 SFM

2. Cipolla, Vogiatzis ICCV05, CVPR06 Visual hull




Multiview PS+ SFM points

[Kriegman et al ICCV05][Zhang, Seitz ... ICCV 03]

1. SFM from corresponding points:
camera & initial surface (Tomasi
Kanade)

2. lterate:

_ o Images Initial
- factorize intensity matrix : light, | =LN surface
normals, GBR ambiguit
o of n, n,
« Integrate normals Z T — +—
| | 5 LOX N, n,
* Correct GBR using SFM points |
(constrain surface to go close to
points)
Integrated Rendered

surface Final surface




Multiview PS + frontier points
[Cipolla, Vogiatzis ICCV05, CVPRO0G6]

1. initial surface SFS
visual hull — convex envelope of the object

2. Initial light positions from frontier points /f";\ R
plane passing through the point and the camera {7 S \ 5
center is tangent to the object > known normals % ? 6\/\3

= o

3. Alternate photom normals / surface (mesh) ZZ(I oV, i )2
i f fi

V photom normals P

N surface normals — using the mesh 5
mesh —occlusions, correspondence in | Z‘nf —V; ‘



Multiview PS + frontier points




Stereo

s & 99."'-'
[Birkbeck]

[ Assumptions twO Images
Lambertian reflectance

textured surfaces]

Image info | texture
Recover per pixel depth
Approach triangulation of corresponding points

corresponding points
= recovered correlation of small parches around each point
= calibrated cameras — search along epipolar lines




Rectified iImages




Disparity

t Disparity d
z-tx-tx-p

X, X,
; Bf Bf

X L= —
. B X,—X | d

Z=f V / . d
(0,0) (B,0) X




Correlation scores

Point:

Calibrated cameras:  pixelinl, M =RX) =(xYy)
pixelin 1, m, =P, (X)

Small planar patch: N(X, ) &

X=(X,Y, f(X,y)) With respect to first image

1. Plane parallel with image planes, no illumination variation
SAD,, = j l,(m,+m)—1,(m, +m)dm

N(m,)
meN (m,) |, | L L] [,
2. Compensate for illumination change
NCC,= [C,(mC,(m)dm C.(m)=1(m +m)—I.(m) Imean
N mel\'l.‘(mj i |1 D |:| |2
3. Arbitrary plane Dﬂ=(N,d)

[1,m, +m)=1,(H(m, +m)dm  H = R—t';'T

[
] Rt

meN (m;)




Specular surfaces

Reflectance equation

require: BRDF, light position
Image info shading+specular highlights

R, = p(6,,6,6,,¢,)1(6,,4)cos(6))

Approaches

1.

2.
3.
4

Filter specular highlights (brightness, appear at sharp angles)
Parametric reflectance

Non-parametric reflectance map (discretization of BRDF)
Account for general reflectance

Helmholz reciprocity [Magda et al ICCV 01, 1JCV03]
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Shape and Materials by Example

[Hertzmann, Seitz CVPR 2003 PAMI 2005]

Reconstructs objects with general BRDF with no illumination info.
|dea : A reference object from the same material but with known geometry
(sphere) is inserted into the scene.

Reference images

Multiple materials Results ]



Summary of Iimage cues

Reflectance Light + -
stereo | textured Constant [SAD] Rec. texture Needs texture
Lambertian Rec. depth Occlusions
Varving [NGG discont.
arying | ] Complete obj
shading | uniform Constant [SFS] Uniform material
Lamb Not robust
Needs light pose
unif/textured Varying [PS] Unif/varying Do not reconstr
Lamb albedo depth disc.,

one view




