Projects

- Any Q/A or any help TA and I can provide?
- Feel free to engage in dialogue with TA/me on how to proceed
- Think about how to connect the project to course material.
- Interaction encouraged.
 - Attribute contributions to the people/sources

Light and Reflectance

Dana Cobzas Neil Birkbeck Martin Jagersand

most of course until now ...

- SFM to reconstruct 3D points from 2D feature points (camera geometry, projective spaces ...)
 - Feature correspondence : correlation, tracking assumes image constancy constant illumination, no specularities, complex material
 - 10,100 or even 1000 3D points is not a complete scene or object model
- No notion of object surface
- No notion of surface properties (reflectance)

Now ...

- View surface as a whole different surface representations
- Consider interaction of surface with light explicitly model light, reflectance, material properties
 - Reconstruct whole objects = surface (detailed geometry)
 - Reconstruct material properties = reflectance

SFM

Surface estimation

Ex CapGui obj

Reflectance estimation

Brief outline

- Image formation camera, light, reflectance
- Radiometry and reflectance equation
- BRDF
- Light models and inverse light
- Shading, Interreflections
- Image cues shading
 - Photometric stereo
 - Shape from shading
- Image cues stereo
- Image cues general reflectance
- Multi-view methods
 - Volumetric space carving
 - Graph cuts
 - Variational stereo
 - Level sets
 - Mesh

Lec 1

Lec 2

Lec 3

Lecture 1

Radiometry Light and Reflectance

Image formation

Shading Shadows Specular highlights [Intereflections] [Transparency] Image formation Light Shape Reflectance Texture Camera

Images 2D + [3D shape]

Light [+ Reflectance+Texture]

Various things we can model

- 1. Cameras
- 2. Radiometry and reflectance equation
- 3. BRDF surface reflectance Lambertian BRDF
- 4. Light representation –
- 5. Image cues: shading, shadows, interreflections
- 6. Recovering Light (Inverse Light)

2. Radiometry

- Foreshortening and Solid angle
- Measuring light : radiance
- Light at surface : interaction between light and surface
 - irradiance = light arriving at surface
 - BRDF
 - outgoing radiance

 <u>Special cases and simplifications</u> : Lambertain, specular, parametric and non-parametric models

Geometry and Foreshortening

Two sources that look the same to a receiver must have same effect on the receiver;

Two receivers that look the same to a source must receive the same energy.

Solid angle

The <u>solid angle</u> subtended by a region at a point is the area projected on a unit sphere centered at the point

Measured in steradians (sr)
Foreshortening : patches that look the same, same solid angle.

$$d\omega = \frac{dA\cos\theta_n}{r^2}$$

Integration inf in spherical coord: $d\omega = \sin \theta \ d\theta \ d\phi$

Radiance – emitted light

<u>Radiance</u> = power traveling at some point in a direction per unit area perp to direction of travel, per solid angle

- unit = watts/(m²sr)
- constant along a ray

$$L(\mathbf{x},\theta,\phi) = \frac{P}{(dA\cos\theta)d\omega}$$

Radiance transfer :

Power received at dA_2 at dist r from emitting area dA_1

$$P_{1\to 2} = LdA_1 \cos \theta_1 \left(\frac{dA_2 \cos \theta_2}{r^2}\right) \quad P_{1\to 2} = P_{2\to 1}$$
$$d\omega_{21}$$

dA

Light at surface : irradiance

<u>Irradiance</u> = unit for light arriving at the surface

 $dE(\mathbf{x}) = L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$

<u>Total power</u> = integrate irradiance over all incoming angles

$$E(\mathbf{x}) = \int_{0}^{2\pi\pi/2} \int_{0}^{2\pi\pi/2} L(\mathbf{x},\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$
$$d\omega$$

Light leaving the surface and BRDF

many effects :

- transmitted glass
- reflected mirror
- scattered marble, skin
- travel along a surface, leave some other
- absorbed sweaty skin

Assume:

- surfaces don't fluorescent
- cool surfaces
- light leaving a surface due to light arriving

<u>BRDF</u> = Bi-directional reflectance distribution function

Measures, for a given wavelength, the fraction of incoming irradiance from a direction ω_i in the outgoing direction ω_o [Nicodemus 70]

$$\rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) = \frac{L_o(\mathbf{x}, \theta_o, \phi_o)}{L_i(\mathbf{x}, \theta_i, \phi_i) \cos \theta_i d\omega}$$

<u>Reflectance equation</u> : measured radiance (<u>radiosity</u> = power/unit area leaving surface

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

Radiosity - summary

Radiance	Light energy along a ray	$L(\theta,\phi) = \frac{P}{(dA\cos\theta)d\omega}$
Irradiance	Unit incoming light	$dE(\mathbf{x}) = L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$
Total Energy incoming	Energy at surface	$E_i(\mathbf{x}) = \int_{\omega} L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$
Radiosity	Unit outgoing radiance	$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$
Total energy leaving	Energy leaving the surface	$E_o = \int_{\Omega_o} \left[\int_{\Omega_i} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \right] \cos(\theta_o) d\omega_o$

Example: Sunlight 1kW/m^2 . Artificial light <1/10th

3. BRDF properties

BRDF = Bi-directional reflectance distribution function

Measures, for a given wavelength, the fraction of incoming irradiance from a direction ω_i in the outgoing direction ω_o [Nicodemus 70]

Properties :

- Non-negative
- Helmholtz reciprocity
- Linear

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) \ge 0$$

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_o, \phi_o, \theta_i, \phi_i)$$

From Sillion, Arvo, Westin, Greenberg

 Total energy leaving a surface less than total energy arriving at surface

 $\int_{\Omega_i} L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \ge \int_{\Omega_o} \left[\int_{\Omega_i} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \right] \cos(\theta_o) d\omega_o$

BRDF properties

isotropic (3DOF)

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_i, \theta_o, \phi_i - \phi_o)$$

anisotropic (4 DOF)

[Hertzmann&Seitz CVPR03]

Lambertian BRDF

- Emitted radiance constant/equal in all directions
- Models perfect diffuse surfaces : clay, mate paper, ...
- BRDF = constant = albedo
- One light source = dot product normal and light direction

Diffuse reflectance acts like a low pass filter on the incident illumination.

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

Reflection as convolution

$$\frac{\text{Reflectance}}{\text{equation}} L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$
$$= \int_{\Omega} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(R_{\alpha, \beta}(\theta_i', \phi_i')) \cos(\theta_i) d\omega_i$$

Specular reflection

Smooth specular surfaces

- Mirror like surfaces
- Light reflected along specular direction
- Some part absorbed

Rough specular surfaces

- Lobe of directions around the specular direction
- Microfacets

<u>Lobe</u>

- Very small mirror
- Small blurry mirror
- Bigger see only light sources
- Very big fait specularities

Phong model

Mirror

Diffuse

CS348B Lecture 10

Pat Hanrahan, Spring 2002

Modeling BRDF

Parametric model:

- Lambertian, Phong
- Physically based:
 - Specular [Blinn 1977] [Cook-Torrace 1982][Ward 1992]
 - Diffuse [Hanharan, Kreuger 1993]
 - Generalized Lambertian [Oren, Nayar 1995]
 - Throughly Pitted surfaces [Koenderink et al 1999]
- Phenomenological:
 - [Koenderink, Van Doorn 1996]

summarize empirical data orthonormal functions on the $\mathbf{H}_{S^2} \times \mathbf{H}_{S^2} = \mathbf{K}_{00}$ (\mathbf{H}_{S^2} hemisphere) same topol. as unit disk

(Zernike Polynomials)

 $K_{-22}K_{20}\,K_{22}$

Measuring BRDF

Gonioreflectometers

- Anisotropic 4 DOF
- Non-uniform

BTF [Dana et al 1999]

[Müller 04]

More than BRDF – BSSRDF

(bidirectional surface scattering distribution)

[Jensen, Marschner, Leveoy, Hanharan 01]

Do SFS from here.

4. Light representations

Light source –

theoretical framework [Langer, Zucker-What is a light source]
Point light sources

Infinite

$$L_o(\mathbf{x}) = \rho(\mathbf{x}) E \cos \theta_i = \rho(\mathbf{x}) \mathbf{N}(\mathbf{x}) \bullet \mathbf{L}$$

Nearby

$$L_o(\mathbf{x}) = \rho(\mathbf{x}) \frac{E \cos \theta_i(\mathbf{x})}{r^2} = \rho(\mathbf{x}) \frac{\mathbf{N}(\mathbf{x}) \bullet \mathbf{L}(\mathbf{x})}{r^2}$$

Choosing a model

- infinite sun
- finite distance to source is similar in magnitude with object size and distance between objects
 - indoor lights

Area sources

Examples : white walls, diffuse boxes Radiosity : adding up contributions over the section of the view hemisphere subtended by the source

$$L_{o}(x) = \rho(x) \int_{source} E(Q) \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} dA_{Q}$$

Enviromental map

Illumination hemisphere Large number of infinite point light sources

[Debevec]

5. Image cues shading, shadows, specularities ...

Shading

Lambertian reflectance
$$L_o(\mathbf{x}) = \rho L \cos \theta = \rho L (\mathbf{N} \bullet \mathbf{L}_i)$$

Shading = observed <u>smooth</u> color variation due to <u>Lambertian</u> reflectance

Specular highlights

High frequency changes in observed radiance due to general BRDF (shiny material)

Shadows (local)

1. Point light sources

Points that cannot see the source – modeled by a visibility binary value

attached shadows = due to object geometry (self-shadows)

Interreflections

Local shading – radiosity only due to light sources

[computer vision, real-time graphics]

Global illumination – radiosity due to radiance reflected from light sources as well as surfaces

[computer graphics]

White room under bright light. Below cross-section of image intensity [Forsyth, Zisserman CVPR89]

Transparency

Special setups for image aquisition

Enviroment mating [Matusik et al Eurographics 2002] [Szeliski et al Siggraph 2000]

6. Inverse light

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

Deconvolution of light from observed radiance

Assumptions:

- known camera position
- known object geometry
- [known or constant BRDF]
- [uniform or given texture]

Estimating multiple point light sources Estimating complex light : light basis

Estimating point light sources

Lambertian reflectance – light from shading

Infinite single light source

$$L_o(\mathbf{x}) = \rho(\mathbf{x})L\cos\theta = \rho L(\mathbf{N}(\mathbf{x}) \bullet \mathbf{L})$$

- known or constant albedo p
- known N(x)
- recover L (light color) and L (direction) from >= 4 points.

Multiple light sources

Calibration sphere Critical points/curves

- Sensitive to noise

[Yang Yuille 91] [Bouganis 03]

Estimating complex light

Recover a discrete illumination hemisphere

directions between light and camera rays

Specular highlights appear approximately at mirror

Diffuse reflectance acts like a low pass filter on the incident illumination.

Can only recover low frequency components. Use other image cues !

Light from specular reflections

Recovered hemisphere

Capture light direcly using a mirror sphere

[Nishimo, Ikeuchi ICCV 2001]

Estimating complex light

Light from cast shadows

[Li Lin Shun 03] [Sato 03]

- Shadows are caused by light being occluded by the scene.
- The measured radiance has high frequency components introduced by the shadows.

$$L_{o}(\mathbf{x}, \theta_{o}, \phi_{o}) = \int_{\Omega} V(\mathbf{x}, \theta_{i}, \phi) \rho L(\theta_{i}, \phi_{i}) \cos(\theta_{i}) d\omega_{i}$$

Shadow
indicator

Light basis representation

Spherical harmonics basis

- Analog on the sphere to the Fourier basis on the line or circle
- Angular portion of the solution to Laplace equation in spherical coordinates
- Orthonormal basis for the set of all functions on the surface of the sphere $\nabla^2 \psi = 0$

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l|m|}(\cos\theta)e^{im\phi}$$
Normalization
factor
Legendre Fourier
functions basis

Illustration of SH

Properties of SH

Function decomposition

f piecewise continuous function on the surface of the sphere

$$f(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm} Y_{lm}(u)$$

where

$$f_{lm} = \int_{S^2} f(u) Y^*_{lm}(u) du$$

Rotational convolution on the sphere Funk-Hecke theorem:

k circularly symmetric bounded integrable function on [-1,1] $k(u) = \sum_{l=0}^{\infty} k_l Y_{l0}$

$$k * Y_{lm} = \alpha_l Y_{lm} \quad \alpha_l = \sqrt{\frac{4\pi}{2l+1}} k_l$$

convolution of a (circularly symmetric) function k with ϵ spherical harmonic Y_{lm} results in the same harmonic, scaled by a scalar α_l .

Reflectance as convolution

Lambertian reflectance

One light

$$R(u') = l(u)\rho \max(0, u \bullet u')$$

 $k(u \bullet u') = \max(0, u \bullet u')$

Lambertian kernel

Integrated light

$$R(u') = \int_{S^2} k(u \bullet u') l(u) du$$

SH representation

light

$$l(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} l_{lm} Y_{lm}(u)$$

Lambertian kernel

$$k = \sum_{l=0} k_l Y_{l0}$$

Lambertian reflectance (convolution theorem)

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\sqrt{\frac{4\pi}{2l+1}} k_l l_{lm} \right) Y_{lm} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$

Convolution kernel

Lambertian kernel

$$k(u \bullet u') = \max(0, u \bullet u')$$

$$k = \sum_{l=0}^{\infty} k_l Y_{l0}$$

$$k_{l} = \begin{cases} \frac{\sqrt{\pi}}{2} & n = 0\\ \frac{\sqrt{\pi}}{3} & n = 1\\ (-1)^{l/2+1} \frac{\sqrt{(2l+1)\pi}}{2^{l}(l-1)(l+2)} \binom{l}{l/2} & n \ge 2, \text{even}\\ 0 & n \ge 2, \text{odd} \end{cases}$$

Asymptotic behavior of k_l for large l $k_l \approx l^{-2}$ $r_{lm} \approx l^{-5/2}$

- Second order approximation accounts for 99% variability
- k like a low-pass filter

[Basri & Jacobs 01] [Ramamoorthi & Hanrahan 01]

From reflectance to images

Unit sphere \Rightarrow general shape Rearrange normals on the sphere

Reflectance on a sphere

Image point with normal n_i

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$

$$I_i = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \rho_i r_{lm} Y_{lm}(n_i)$$

Example of approximation

Exact image

9 terms approximation

[Ramamoorthi and Hanharan: An efficient representation for irradiance enviromental map Siggraph 01]

Efficient rendering

- known shape
- complex illumination (compressed)

Extensions to other basis

SH light basis limitations:

- Not good representation for high frequency (sharp) effects ! (specularities)
- Can efficiently represent illumination distribution localized in the frequency domain
- BUT a large number of basis functions are required for representing illumination localized in the angular domain.

Basis that has both frequency and spatial support

- → Wavelets
 [Upright CRV 07]
 [Okabe Sato CVPR 2004]
- Spherical distributions
- Light probe sampling [Debe
 - [Debevec Siggraph 2005] [Madsen et al. Eurographics 2003]

[Hara, Ikeuchi ICCV 05]

Basis with local support

Median cut [Debevec Siggraph 2005]

Not localized in frequency!

Wavelet Basis

[Upright Cobzas 07]

