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Homogeneous representation of 2D points and lines
ax+by+c=0 (a,b,C)T (x,y;L): 0

The point x lies on the line I if and only if
I'x =0

Note that scale is unimportant for incidence relation
(abo) ~kabe) vk#0  (x,y1) ~k(x, y1) vk #0

equivalence class of vectors, any vector is representative
Set of all equivalence classes in R®—(0,0,0)™ forms P?2

Homogeneous coordinates (Xt X2,X3)T but only 2DOF
Inhomogeneous coordinates \X, y)T



Points from lines and vice-versa
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Intersections of lines

The intersection of two lines | and I'is X =IxI

Line joining two points
The line through two points X and X' is | = xx X

Example | Note:
xx x'= [x]x
X y:]. 0 7 -y
(01-D) vy . with [x].=|-z 0 x
1 x=1 X y -x 0



deal pomts and the line at |nf|n|ty

Intersections of parallel lines

I=(a,b,c) and=(a,b,c)”  IxI=(b-a0)

Example
(b’ _a) tangent vector

(a’ b) normal direction

Xx=1x=2
Ideal points (x,, x,,0)"
Line at infinity 1. =(0,0,)

P2 =R2Ul Note that in P2 there is no distinction
between ideal points and others



he 2D projective plane

| o e . N, N "'f:_;
X ; i Projective o o
o A i ; point Homogeneous | X X
: ! coordinates y y
X ' X = S
y! /
X : 1 ~ Z ‘ ‘ y4 | S # O
| -
P AN
: _ prineipal X - 1 X Inhomogeneous
centre < “— image plane y - Z y QQUiVGIQHT
* Perspective imaging models 2d projective space .
. . X
« Each 3D ray is a point in P2 : homogeneous coords. y
: Xoo =
* ldeal points 0

* P2 js R? plus a “line at infinity” |_
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- X.,= |Y
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* |deal line ~ the plane parallel to t

* Projective line ~ a plane through the origin
I'X = X'l = AX+BY+CZ

“line at

) infinity"

he image

| = XIXXZ

The line joining two points

l, < 1,

The point joining two lines



Curve described by 2nd-degree equation in the plane

ax” +bxy+cy’+dx+ey+f =0

I X; X
or homogemzed XHA;’W_) /Xa
2 + + 2 + + 2

or in matrix form "o b/2 d/2]

X"Cx=0 with C=|b/2 ¢ ef2
d/2 e/2  f

5DOF: {a:b:c:d:e:f}



Five points define a conic

. ?:,. u.'!;‘
9 > . . . F 38 ) ‘,.’g ~ B 3
For each point the conic passes through
ax’ +bx.y. +cy’ +dx. +ey, + f =0

or
(Xiz’xiyi’in’Xi!yi!l)'C:0 C=(a,b,C,d,e, f)T

stacking constraints yields

XXXy, Vi % oy 1
X; XY, Y2 X ¥, 1
Xs XYs Y3 X Y, 16=0
Xs %Yo Yo X Ya 1
X XsYs Y5 X5 Y5 1]




Tangent lines to COI’]ICS

The line | tangent to C at point X on C is given by |=Cx



Dual conics

A line tangent to the conic C satisfies |' C 1 =0

In general (C fullrank): C =C*

Dual conics = line conics = conic envelopes




Degenerate conics

A conic is degenerate if matrix C is not of full rank
m

e.g. two lines (rank 2) ><|

C=Im"+ml’

e.g. repeated line (rank 1)

c=1 T

Degenerate line conics: 2 points (rank 2), double point (rankl)

Note that for degenerate conics (C*)* *C



Conic:
— Euclidean geometry: hyperbola, ellipse, parabola & degenerate
— Projective geometry: equivalent under projective transform
— Defined by 5 points

inhomogeneous [ a b/2 d/2

ax’ +bxy+cy’ +dx+ey+f =0 C=|b/2 ¢ el2
homogeneous

e Tangent line | =Cx § , St

eDual conicC* 1'C’l1=0




. PrOJectlve transformatlons

-y

Definition:

A projectivity (=homography) is an invertible mapping h
from P2 to itself such that three points X;,X,,X5 lie on
the same line if and only if N(X;),h(X5),h(X3) do.

Theorem:

A mapping h:P2—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 represented by a vector X it is true that h(X)=HX

Definition: Projective transformation

h; |

hy,

h21

_h31

h,
h22

h32

h23

h33 B

X
X2
X3

or X=HX
8DOF

projectivity=collineation=projective transformation=homography




I\/Iapplng between planes |

central projection may be expressed by x’=Hx
(application of theorem)



More examples




_Projective transformations

.
-y ) - —— "

« Homographies, collineations, projectivities

* 3x3 nonsingular H (X)) [hy hy byl
maps P2 to P2 X |=| oy hyy hyg | X
8 degrees of freedom ' h h h
X3 [N Ny Ny (X5

determined by 4 corresponding points

i i /I __

 Transforming Lines? r = Hzx
subspaces preserved x1] = 0 x/ T]’ — (0
substitution THIY =0

dual transformation ! — H 1



Homographles a generalization of

S

.-ll

clldean transforms

Projective 0 t| |« Crossratio
P~ . T « Intersection

8 DOF V'V | Tangency
Affine - At | |-Parallelism

Hy=| . - Relative dist in 1
6 DOF O 1] | Lineat infinity |,
Metric SR t] | Relative distances

= « Angles

4 DOF s {OT J « Dual conic C
Euclidean R t] |°Lengths
32 DOE He = o 1 - Areas




Planar Projective Warping




Planar PrOJectlve Warplng

Original Top-down Facing right HZ

Artifacts are apparent where planarity is violated...






Panoramlc Imaging
IC 2 VR, robot nawgatlon .etc

Homographies of the world, unite!






Line at infinity stays at infinity,
but points move along line

X
At A( le
VARRRY %o |= X2

0 VX, +V,X,

Line at infinity becomes finite,

allows to observe vanishing points, horizon,



The line at infinity | is a fixed line under a projective
transformation H if and only if H is an affinity

T (O
A 0
’ -T
Ioo:HA Ioo:|:_tTAT 1:|O — s
1

Note: But points on |, can be rearranged to new points on |



: fflne propertles from |mages

- 0w ; PO e
Projection Rectification
(Imaging) Post-processing
H, Hp




ffine rectification

-~
-

Vl V2:|3X|4 Ioo:VIXVZ Ioo V2

Point transformation for Aff Rect:

1 0 O]
| :[Il l, |3]T’|3¢O Hen=|0 1 0H,

Il |2 |3

Exercise: Verify H_,[I, 1, L] =[0,01]

——— gy



Geometric strata: 2d overvie

-y

Projective 0 t| |« Crossratio
P~ . T « Intersection

8 DOF V'V | Tangency
Affine - At | |-Parallelism

Hy=| . - Relative dist in 1
6 DOF O 1] | Lineat infinity |
Metric SR t] | Relative distances

= « Angles

4 DOF s {OT J « Dual conic C
Euclidean R t] |°Lengths
32 DOE He = o 1 - Areas




Parameter estimation In
IC transforms .

o
s

2D homography
Given a set of (X;,X;”), compute H (x;’=HXx;)
cs428  «3D to 2D camera projection
Given a set of (X,,x;), compute P (x;=PX;)

e Fundamental matrix
Given a set of (X;,X;”), compute F (x.’TFx.=0)

Useful in e Trifocal tensor
Grad researcHaiven a set of (X;,X’,x;”"), compute T




I\/Iath tools 1:

mear S stems

« IfM = N (A is a square matrix), then we can obtain the
solution by simple inversion:

x = A7 1b
« IfM > N, then the system is over-constrained and A
IS not invertible
— Use Matlab “\” to obtain least-squares solution X = A\b to AX =b
internally Matlab uses QR-factorization (cmput418/340) to solve this.

_ Can also write this using pseudoinverse A* = (ATA) AT to obtain
least-squares solution X = A*b



Fitting Lines

- v g | ; ~. s .},:-'

+ A 2-Dpoint X = (X, Y) is on a line with slope M
and intercept D ifand only if y =mx + b

« Equivalently,

(= 1) ()=

» So the line defined by two points X4, X, Is the
solution to the following system of equations:

r1 1 m \ [ y1
ro 1 b —\ yo 3401418
Heath ch 3,7

"""""




« With more than two points, there is no guarantee
that they will all be on the same line

« Least-squares solution obtained from
pseudoinverse 1s line that 1s “closest” to all of the

points

Method of Least Squares {or Linear
Regression)

] *:

Calculated
Yalue ‘:\

L ¥ =dep war
-

o - Observed i) = Elz3E
Y Data Paint X =indep var

b = wintercept

where di=w-y




_Example: Fitting a Line

N - P Ly . Iﬁi' /"\"' v
- b N R
: v ‘ ‘ a ~ \ ‘.a Py .',‘ .}."

- Suppose we have points (2, 1), (5, 2), (7, 3),

and (8, 3)

* Then
21 1
5 1 m\ | 2 %A+— —0.1667 —0.0238 0.0714 0.1190
7 1 b | | 3 o 1.1667 0.3810 —0.1429 —-0.4048
8 1

and X = A*b = (0.3571, 0.2857)T
Matlab: X = A\b



Example: Fitting a Line




Hgmogeneous Systems of Equations

’ bo
- ' - | g . -
A N - . - g~ S Wy T
»} . | - - - = a
- Nage ™

« Suppose we want to solve AX = 0

« There is a trivial solution X = O, but we don’t want
this. For what other values of X is A X close to 0?

* This Is satisfied by computing the singular value
decomposition (SVD) A = UDVT (a non-negative
diagonal matrix between two orthogonal matrices) and

taking X as the last column of V
— Note that Matlab returns [U, D, V] = svd(A)




Line-Fitting as a

‘ .
A \ £ 3 'y =
\ < 9 - ) . : Nt 2"
: e ~ - g
A 2 ; < * -

« A 2-D homogeneous point X = (X, Y, 1)Tison
the linel = (@, b, €)' only when
ax+by+c=0
« We can write this equation with a dot product:
Xe| = O, and hence the following system is
implied for multiple points X4, X,, ..., X!
ik
21
s 1=20
T 340/418
Xn Heath example 3.21




ample: Homogeneous Line- Flttlng

« Again we have 4 points, but now in homogeneous form:

(2,1,1).(5 2,1).(7,3,1),and (8, 3, 1)

 Qur system is:

(21 1\,
| 521 B
AX=1| 7 3 4 i —
\ 8 3 1
« Taking the SVD of A, we get: compare to X = (0.3571, 0.2857)"
~0.9183 0.2334 | 0.3197
V=| 03690 -02128|-0.0047|| 2270
~0.1431 —0.9488 | 0.2816 '
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Parameter estimation In
IC transforms .

i
s

2D homography
Given a set of (X;,X;”), compute H (x;’=HXx;)
cs428  «3D to 2D camera projection
Given a set of (X,,x;), compute P (x;=PX;)

« Fundamental matrix
Given a set of (X;.X;’), compute F (x;TFx;=0)

SN e Trifocal tensor

Grad researchjven a set of (x,x;’,x;”), compute T




Estimating Homography H
y . dlven image 00INtS X . v,

HZ Ch 4



Imber of measurements £ uwed

» At least as many independent equations as degrees of
freedom required

« Example:

X'| [hy h, hg|x
7‘«)9’('=|Hz)1( N, Ny || Y

W h31 "]32 133 | 1

2 independent equations / point
8 degrees of freedom

4x2=>8



_ Approximate solutions

. B .
- ‘. < h-‘l

-y \‘/\‘

* Minimal solution
4 points yield an exact solution for H

* More points
— No exact solution, because measurements are inexact
(“noise”
— Search for “best” according to some cost function
— Algebraic or geometric/statistical cost



Estlmatlng H: The Direct Linear
(DLT Alorl@m_

HZCh41

"""""

* X; =HX; is an equation involving homogeneous

vectors, so HX; and X; need only be in the same
direction, not strictly equal

(1)=(%)

* We can specify “same directionality” by using a
cross product formulation:

XixHx, =0



Direct Linear Transformation




Direct Linear Transformation

« Equations are linear in h
Ah=0
* Only 2 out of 3 are linearly independent

(indeed, 2 eqg/pt)

B _/,]1\
T re, | ', |
0 — W, X; YiX; 2120
1, T OT 1, T -
_WiXi — XX i ,]3
 /

XA+ YA +WA =0
(only drop third row if w;'#0)
« Holds for any homogeneous representation,

e.g. (X.Yi’,1)



Direct Linear Transformation

>
1

0 Ah =0

size A is 8x9 or 12x9, but rank 8

~ Trivial solution is h=04 is not interesting

1-D null-space yields solution of interest

pick for example the one with HhH =1
Obtain SVD of A. Solution for h
IS last column of V



e Over-determined solution: more than 4 p-p corresp

Ah =0
No exact solution because of inexact measurement

i.e. “noise”

Find approximate solution
- Additional constraint needed to avoid O, e.g.HhH =1
- AN = O not possible, so minimize HAhH



Obijective

Given n=4 2D to 2D point correspondences {x.«Xx;’},
determine the 2D homography matrix H such that x;/=Hx;

Algorithm

(i) For each correspondence x; <»x; compute A.. Usually
only two first rows needed.

(i) Assemble N 2x9 matrices A, into a single 2Nx9 matrix A
(i) Obtain SVD of A. Solution for h is last column of V
(iv) Determine H from h (reshape)




Since h can only be computed up to scale, ~:
pick h;=1, e.g. hy=1, and solve for 8-vector h

0 0 0 —xw' —yw' —ww' XY YiYi"‘_ —WY;’
XW' YW W 0 0 0 XX VX

Solve using Gaussian elimination (4 points) or
using linear least-squares (more than 4 points)

However, if hyg=0 this approach fails

also poor results if hg close to zero

Therefore, not recommended for general

homographies _

Note hy=H43=0 if origin is mapped to infinit
ITHXx, =)fo 0 1H/0|=0




Algebraic distance

< P C Y - > | -y \%—
DLT minimizes ‘AhH
e=Ah residual vector
€, partial vector for each (x;<>X;’)

algebraic error vector
T I, T 1, T
0 —WiX; Y% h
—wx! 0" —xXx
(i 17N
algebraic distance

2

d,, (X!, Hx, ) = ||ei||2 =

alg

dae(X, X, ) =aZ +aZ where a=(a,,a,,a,)" =X, xX,
> dag (i HX ) = D e = A" =[e]”

Not geometrically/statistically meaningfull, but given good
normalization it works fine and is very fast (use for




DL [:Importance of normalization

—— - /‘ _ b A A A
' 8 ' P "!g 3
6
0.0 0 =% -y =L vx v ¥|..|_,
% v 1 0 0 0 —xx —xy —x| |
02-102 1 ~102 ~102 1 ~10*  ~10¢ ~10% ° /
orders of magnitude difference!
o
- - - -
+ 4+ oy T

Un-normnalized normnalized



Normalizing transformations

e Since DLT is not invariant to coordinate
transforms, what is a good choice of
coordinates?

e.g.
— Translate centroid to origin
— Scaleto a \/E average distance to the origin

— Independently on both images

Or ‘'w+h 0  w/2]
T..=| 0 w+h h/2
0 0 1




Normallzed DLT algorlthm

Obijective
Given n=4 2D to 2D point correspondences {x.«Xx;’},
determine the 2D homography matrix H such that x;/=Hx;
Algorithm

() Normalize points X, =T X, X =T/

norm I’ norm [

(i)  Apply DLT algorithm to X (—)X

i r-1
(i) Denormalize solution H = TnormHTnorm




DL [:Importance of normalization

—— - / iy _ b A A A
' 8 ' P "!g 3
/hl\
{o 0 0 —x —y -1 yx Yy y{}hz 0
X % 10 0 0 —xx =Xy =X
Un-normalized-102~102 1 ~102 ~102 1  ~10% ~104  ~107 N
normalized -1 -1 1 ~1 -1 1 -1 1 -1
T
+ + + -
+ 4+ oy T

Un-normalized normalized



-

Deg

X1
H? ) %a
- ° X2
(case A) X3
Constraints: X;xHx, =0  i=1,2,34

Define: H =x/I"
Then, HX, = x;(ITxi)= 0,i=123
H'x, = x;(ITx4)= kx/,

H” is rank-1 matrix and thus not a homography

If H” is unique solution, then no homography mapping x—x.’(case B)
If further solution H exist, then also aH"+pH (case A)
(2-D null-space in stead of 1-D null-space)



~Solutions from lines, etc.

. /)N

'6. %
- ,,‘ ‘ ' G\ \ w_ (.-

2D homographies from 2D lines
II=H'l Ah=0
Minimum of 4 lines
3D Homographies (15 dof)
Minimum of 5 points or 5 planes
2D affinities (6 dof)
Minimum of 3 points or lines
Conic provides 5 constraints
Mixed configurations?
W\ / / Ce .

AVARR G




Homography Summary

Direct Linear Transform
* Inhomogenous solution
*Projective — Affine (- Metric) upgrade

*Non-linear computation (Tracking)



First 3D proj geom
* Then review and more on camera models
* Then following P estimation



Mostly pinhole camera model

A

X f o8
MY |= f p,
1| | 1

or A x=P.X

U Transforma tion
V | =] representing
W intrinsic  parameters

— 7
/} \
principal axis
image plane

Transforma tion
representi ng
projection model

Transforma tion
representi ng
extrinsic parameters

—A N < X




A 3D Vision Problem:

lltl-view geometry - resection

e f/\

* Projection equatlon
X;=P:X

e Resection:

Given image points and 3D points .
calculate camera projection matrix. .




_ Estimating camera matrix P

*Given a number of correspondences between 3-
D points and their 2-D image projections X; <>
X;, we would like to determine the camera
projection matrix P such that X; = P X, for

all |



courtesy of B. Wilburn



Estlmatlng P: The Direct Linear
‘ DLT Alor@m_

"""""

* X; =PX: isan equation involving homogeneous

vectors, so PX; and X; need only be in the same
direction, not strictly equal

(1)=(%)

* We can specify “same directionality” by using a
cross product formulation:

XZ'XPX@'ZO



Matrix Estiatik%ry_ -~

]

- .7

- Let the image point X; = (X, Vi, W))"
(remember that X, has 4 elements)

- Denoting the jth row of P by p!T (a 4-element
row vector), we have:

plT plTXi
PX;=| p* |Xi=| p*'X;
p3T p3TXf,;



DL Camera Matrix Estimation: Step 1
;& TR T—— - s e

13
s’/q,‘ P

- ™

» ~ N R 2354

* Then by the definition of the cross product,

XI X PXI IS:

yip>! X; — w;p?l X; 0
wpt!X; —;p3!X; [ =10 | =0
z,p? ! X; — yipt! X, O



DL Camera Matrix Estimation: Step 2
— —— ——— | _ A Ty

w.) % " :: s
- . . : -,-»‘ Pl L e y

* The dot product commutes, so pjT Xi = XTi
P!, and we can rewrite the preceding as:

yiX; p> — w;X; p°
wiX;_Tpl — .SlS‘f,;)(,;‘-rp:3 =0
;X; p? — y;X; p'



amera Matrlx Estlmatlon

 Collecting terms, this can be rewritten as a
matrix product:

ol —w;X! oy X! pl
w,,;X;-T OT —:L‘ZXT p2
—y X, X)) p>
where 0T = (0, 0, 0, 0) This is a 3x)

12 matrix times a 12-element column vecto

— (plT’ 2T, p3T)T



OT —’LUZX,LT sz;}F p]‘
’(UZX,;-F OT —.’L‘,,;X,? p2
—sz? .:L‘zX;F ol p3



D TCamera Matrlx Estimation: Step 4

of —wX; yX] p'
’lU,,;X,;-F OT —LEiX? p2
-y X, X o p>

« There are only two linearly independent rows here

— The third row is obtained by adding X; times the first row to Y; times the
second and scaling the sum by '1/Wi



D TCamera I\/Iatrlx Estimation: Step 4

« So we can eliminate one row to obtain the

following linear matrix equation for the Ith pair of

corresponding points:
1

OT —w,,X’f yZXZT 52 —0
wiX’f 0l —.:UQ;X;-T b3

» Write thisas A;p = 0



DLy Camera Matrix Estimation: Step 5

« Remember that there are 11 unknowns which
generate the 3 x 4 homogeneous matrix P
(represented in vector form by P)

« Each point correspondence yields 2 equations
(the two row of A;)

» We need at least 5 ¥2 point correspondences to
solve for P

- Stack A, to get homogeneous linear system AP

=0



Experiment:




short and long focal length

radial distortion

)

correction

P

linear image







Radial Distortion

ndm] distortio

correction
—

< R
U
N—



Radial Distortion
) R — P
Correction of distortion . =

=z.+L(r)(x—2.)  §=y+ L)Y —ye)

Choice of the distortion function and center

T =2, + (2o — ez ) (K11 + Kor' +..)
Y = Yo+ (Yo — ) (Kar? + Kor® +...)

r= (%o — )" + (o — ¢)°

Computing the parameters of the distortion function
() Minimize with additional unknowns
(i) Straighten lines

(iii) ...



