
Computer Vision

The 2D projective plane and it’s 

applications 

Hartley Zisserman Ch 2. In particular: Ch 2.1-4, 2.7, 

Estimation: HZ: Ch 4.1-4.2.5,   4.4.4-4.8 cursorly

(Szelisky: Ch 2.1.1, 2.1.2)
Richard Hartley and Andrew Zisserman, Multiple View Geometry, 

Cambridge University Publishers, 2nd ed. 2004



Homogeneous coordinates

0=++ cbyax ( ) ( ) 0=1x,y,a,b,c
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( ) ( ) 0≠∀,~ ka,b,cka,b,c
TT

Homogeneous representation of 2D points and lines

equivalence class of vectors, any vector is representative

Set of all equivalence classes in R3(0,0,0)T forms P2

( ) ( ) 0≠∀,1,,~1,, kyxkyx
TT

The point x lies on the line l if and only if

Homogeneous coordinates

Inhomogeneous coordinates ( )T
yx,

( )T
321 ,, xxx but only 2DOF

Note that scale is unimportant for incidence relation

0=xlT



Points from lines and vice-versa

l'lx 

Intersections of lines 

The intersection of two lines and    is l l'

Line joining two points

The line through two points  and     is x'×x=lx x'
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Ideal points and the line at infinity

 T0,,l'l ab 

Intersections of parallel lines 

( ) ( )TT
and ',,=l'  ,,=l cbacba

Example
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Note that in P2 there is no distinction 

between ideal points and others
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Homogeneous 
coordinates
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• Perspective imaging models 2d projective space

• Each 3D ray is a point in P2 : homogeneous coords. 

• Ideal points

• P2   is   R2   plus a “line at infinity” l∞

The 2D projective plane

Projective 
point

l∞

x

y

X

Y

1
Z= Inhomogeneous 

equivalent



Lines

HZ • Ideal line ~ the plane parallel to the image 

A

B

C

l =X=
l
T
X = X

T
l  =  AX + BY + CZ   =  0

l∞ =

0

0

1

• Projective line ~ a plane through the origin

For any 2d projective property, a dual property holds 

when the role of points and lines are interchanged. 
Duality:
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The line joining two points The point joining two lines
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Conics

Curve described by 2nd-degree equation in the plane
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Five points define a conic

For each point the conic passes through
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Tangent lines to conics

The line l tangent to C at point x on C is given by l=Cx

l
x

C



Dual conics

0=ll *
C

T
A line tangent to the conic C satisfies 

Dual conics = line conics = conic envelopes

1-*
CC In general (C full rank):



Degenerate conics

A conic is degenerate if matrix C is not of full rank

TT ml+lm=C

e.g. two lines (rank 2)

e.g. repeated line (rank 1)

Tll=C

l

l

m

Degenerate line conics: 2 points (rank 2), double point (rank1)

( ) CC ≠
**Note that for degenerate conics 



Conics: summary

•Conic: 
– Euclidean geometry: hyperbola, ellipse, parabola & degenerate

– Projective geometry: equivalent under projective transform

– Defined by 5 points

•Tangent line

•Dual conic C*
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Projective transformations

A projectivity (=homography) is an invertible mapping h 

from P2 to itself such that three points x1,x2,x3 lie on 

the same line if and only if h(x1),h(x2),h(x3) do.

Definition:

A mapping h:P2P2 is a projectivity if and only if there 

exist a non-singular 3x3 matrix H such that for any point 

in P2 represented by a vector x it is true that h(x)=Hx

Theorem:

Definition: Projective transformation
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Mapping between planes

central projection may be expressed by x’=Hx

(application of theorem)



More examples 



Projective transformations

• Homographies, collineations, projectivities

• 3x3 nonsingular H
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l0 = HàTl

xTl = 0 x0Tl0 = 0

maps P2 to P2

8 degrees of freedom

determined by 4 corresponding points

x0 =Hx• Transforming Lines?

subspaces preserved

xTHTl0 = 0substitution

dual transformation



Group Transformation Invariants Distortion

Projective

8 DOF

• Cross ratio

• Intersection

• Tangency

Affine

6 DOF

• Parallelism

• Relative dist in 1d

• Line at infinity

Metric

4 DOF

• Relative distances

• Angles

• Dual conic

Euclidean

3 DOF

• Lengths

• Areas

Homographies a generalization of
affine and Euclidean transforms
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Planar Projective Warping

HZ

A novel view rendered via four 
points with known structurexi

0 = Hxi

i = 1. . .4

xi xi
0



Planar Projective Warping

HZOriginal Top-down Facing right

Artifacts are apparent where planarity is violated...



2d Homographies

2 images of a plane

2 images from the same viewpoint (Perspectivity)



Panoramic imaging
Appl: Quicktime VR, robot navigation etc.

Homographies of the world, unite!



Image mosaics are stitched by 
homographies

HZ



Action of affinities and projectivities
on line at infinity






















































2211

2

1

2

1

0
v

xvxv

x

x

x

x

v

AA
T

t



















































00
0 2

1

2

1

x

x

x

x

v

AA
T

t

Line at infinity becomes finite, 

allows to observe vanishing points, horizon,

Line at infinity stays at infinity, 

but points move along line



The line at infinity
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The line at infinity l is a fixed line under a projective 
transformation H if and only if H is an affinity

Note: But points on l can be rearranged to new points on l



Affine properties from images

Projection

(Imaging)
Rectification

Post-processing



Affine rectification
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Group Transformation Invariants Distortion

Projective

8 DOF

• Cross ratio

• Intersection

• Tangency

Affine

6 DOF

• Parallelism

• Relative dist in 1d

• Line at infinity

Metric

4 DOF

• Relative distances

• Angles

• Dual conic

Euclidean

3 DOF

• Lengths

• Areas

Geometric strata: 2d overview
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Parameter estimation in 
geometric transforms

•2D homography
Given a set of (xi,xi’), compute H (xi’=Hxi)

•3D to 2D camera projection
Given a set of (Xi,xi), compute P (xi=PXi)

•Fundamental matrix
Given a set of (xi,xi’), compute F (xi’

TFxi=0)

•Trifocal tensor 
Given a set of (xi,xi’,xi”), compute T

cs428

Useful in

Grad research



Math tools 1:
Solving Linear Systems

• If m = n (A is a square matrix), then we can obtain the 

solution by simple inversion:

• If m > n, then the system is over-constrained and A
is not invertible 

– Use  Matlab “\”   to obtain least-squares solution x = A\b to Ax =b 
internally Matlab uses QR-factorization (cmput418/340) to solve this.

– Can also write this using pseudoinverse A+ = (ATA)-1AT to obtain 

least-squares solution x = A+b



Fitting Lines

• A 2-D point x = (x, y) is on a line with slope m

and intercept b if and only if y = mx + b
• Equivalently,

• So the line defined by two points x1, x2 is the 

solution to the following system of equations:

340/418

Heath ch 3,7



Fitting Lines

• With more than two points, there is no guarantee 

that they will all be on the same line

• Least-squares solution obtained from 

pseudoinverse is line that is “closest” to all of the 

points

courtesy of
Vanderbilt U.



Example: Fitting a Line

• Suppose we have points (2, 1), (5, 2), (7, 3), 

and (8, 3)
• Then 

and x = A+b = (0.3571, 0.2857)T

Matlab: x = A\b



Example: Fitting a Line



Homogeneous Systems of Equations

• Suppose we want to solve Ax = 0

• There is a trivial solution x = 0, but we don’t want 

this.  For what other values of x is Ax close to 0?

• This is satisfied by computing the singular value 

decomposition (SVD) A = UDVT (a non-negative 
diagonal matrix between two orthogonal matrices) and 

taking x as the last column of V
– Note that Matlab returns [U, D, V] = svd(A)



Line-Fitting as a 
Homogeneous System 

• A 2-D homogeneous point x = (x, y, 1)T is on 

the line l = (a, b, c)T only when        

ax + by + c = 0
• We can write this equation with a dot product: 

x•l = 0, and hence the following system is 

implied for multiple points x1, x2, ..., xn:

340/418

Heath example 3.21



Example: Homogeneous Line-Fitting

• Again we have 4 points, but now in homogeneous form: 

(2, 1, 1), (5, 2, 1), (7, 3, 1), and (8, 3, 1)
• Our system is:

• Taking the SVD of A, we get: compare to x = (0.3571, 0.2857)T

a/-b=0.3534

c/-b=0.3113



Computer Vision

The 2D projective plane and it’s 

applications 

Hartley Zisserman Ch 2. In particular: Ch 2.1-4, 2.7, 

Estimation: HZ: Ch 4.1-4.2.5,   4.4.4-4.8 cursorly

(Szelisky: Ch 2.1.1, 2.1.2)
Richard Hartley and Andrew Zisserman, Multiple View Geometry, 

Cambridge University Publishers, 2nd ed. 2004



Parameter estimation in 
geometric transforms

•2D homography
Given a set of (xi,xi’), compute H (xi’=Hxi)

•3D to 2D camera projection
Given a set of (Xi,xi), compute P (xi=PXi)

•Fundamental matrix
Given a set of (xi,xi’), compute F (xi’

TFxi=0)

•Trifocal tensor 
Given a set of (xi,xi’,xi”), compute T

cs428

Useful in

Grad research



Estimating Homography H
given image points x

HZ

A novel view rendered via four 
points with known structurexi

0 = Hxi

i = 1. . .4

xi xi
0

HZ Ch 4



Number of measurements required

• At least as many independent equations as degrees of 

freedom required

• Example: 
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Approximate solutions

•Minimal solution
4 points yield an exact solution for H

•More points
– No exact solution, because measurements are inexact 

(“noise”)

– Search for “best” according to some cost function

– Algebraic or geometric/statistical cost



Estimating H: The Direct Linear 
Transformation (DLT) Algorithm

• xi =HXi is an equation involving homogeneous 

vectors, so HXi and xi need only be in the same 

direction, not strictly equal

• We can specify “same directionality” by using a 

cross product formulation:

0Hxx  ii

HZ Ch 4.1



Direct Linear Transformation
(DLT)
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Direct Linear Transformation
(DLT)

• Equations are linear in h
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Direct Linear Transformation
(DLT)

•Solving for H
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Direct Linear Transformation
(DLT)

•Over-determined solution: more than 4 p-p corresp

No exact solution because of inexact measurement

i.e. “noise”
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DLT algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 

determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) For each correspondence xi ↔xi’ compute Ai. Usually 

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V

(iv) Determine H from h (reshape)



Inhomogeneous solution
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Since h can only be computed up to scale, 

pick hj=1, e.g. h9=1, and solve for 8-vector h
~

Solve using Gaussian elimination (4 points) or 

using linear least-squares (more than 4 points)

However, if h9=0 this approach fails 

also poor results if h9 close to zero

Therefore, not recommended for general 

homographies

Note h9=H33=0 if origin is mapped to infinity
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Algebraic distance

AhDLT minimizes

Ahe residual vector

ie partial vector for each (xi↔xi’)

algebraic error vector
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Not geometrically/statistically meaningfull, but given good 

normalization it works fine and is very fast (use for 

initialization)



DLT:Importance of normalization
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Normalizing transformations

• Since DLT is not invariant to coordinate 

transforms, what is a good choice of 

coordinates?
e.g.

– Translate centroid to origin

– Scale to a           average distance to the origin

– Independently on both images

2

1

norm

100

2/0

2/0

T























 hhw

whwOr



Normalized DLT algorithm

Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 

determine the 2D homography matrix H such that xi’=Hxi

Algorithm

(i) Normalize points  

(ii) Apply DLT algorithm to 

(iii) Denormalize solution

,x~x~ ii


inormiinormi xTx~,xTx~ 

norm

-1

norm TH
~

TH 



DLT:Importance of normalization
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Degenerate configurations

x4

x1

x3

x2

x4

x1

x3

x2
H? H’?

x1

x3

x2

x4

0Hxx  iiConstraints: i=1,2,3,4

TlxH 4

* Define:

  4444

* xxlxxH  kT

  3,2,1  ,0xlxxH 4

*  iii

TThen,

H* is rank-1 matrix and thus not a homography

(case A) (case B)

If H* is unique solution, then no homography mapping xi→xi’(case B)

If further solution H exist, then also αH*+βH (case A) 

(2-D null-space in stead of 1-D null-space)



Solutions from lines, etc.

ii lHl T 0Ah 

2D homographies from 2D lines

Minimum of 4 lines

Minimum of 5 points or 5 planes

3D Homographies (15 dof)

2D affinities (6 dof)

Minimum of 3 points or lines

Conic provides 5 constraints

Mixed configurations? 



Homography: Summary

•Direct Linear Transform

•Inhomogenous solution

•Projective – Affine (- Metric) upgrade

•Non-linear computation (Tracking)



•First 3D proj geom

•Then review and more on camera models

•Then following P estimation



Camera Models
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• Projection equation

xi=PiX

• Resection:

– xi,X       Pi

A 3D Vision Problem: 
Multi-view geometry - resection

Given image points and 3D points 

calculate camera projection matrix.



Estimating camera matrix P

•Given a number of correspondences between 3-

D points and their 2-D image projections Xi 

xi, we would like to determine the camera 

projection matrix P such that xi = PXi for 

all i



A Calibration Target

courtesy of B. Wilburn

XZ

Y

Xi

xi



Estimating P: The Direct Linear 
Transformation (DLT) Algorithm

• xi = PXi is an equation involving homogeneous 

vectors, so PXi and xi need only be in the same 

direction, not strictly equal

• We can specify “same directionality” by using a 

cross product formulation:



DLT Camera Matrix Estimation: 
Preliminaries

•Let the image point xi = (xi, yi, wi)
T

(remember that Xi has 4 elements)

•Denoting the jth row of P by pjT (a 4-element 

row vector), we have: 



DLT Camera Matrix Estimation: Step 1

•Then by the definition of the cross product, 

xi  PXi is:



DLT Camera Matrix Estimation: Step 2

•The dot product commutes, so pjT Xi = XT
i

pj, and we can rewrite the preceding as:



DLT Camera Matrix Estimation: 
Step 3

• Collecting terms, this can be rewritten as a 
matrix product:

where 0T = (0, 0, 0, 0).  This is a    3 x 
12 matrix times a 12-element column vector 

p = (p1T, p2T, p3T)T



What We Just Did



DLT Camera Matrix Estimation: Step 4

• There are only two linearly independent rows here 

– The third row is obtained by adding xi times the first row to yi times the 

second and scaling the sum by -1/wi



DLT Camera Matrix Estimation: Step 4

• So we can eliminate one row to obtain the 

following linear matrix equation for the ith pair of 

corresponding points:

• Write this as Aip = 0



DLT Camera Matrix Estimation: Step 5

• Remember that there are 11 unknowns which 

generate the 3 x 4 homogeneous matrix P
(represented in vector form by p)

• Each point correspondence yields 2 equations 

(the two row of Ai)

We need at least 5 ½ point correspondences to 

solve for p

• Stack Ai to get homogeneous linear system Ap 
= 0



Experiment:



short and long focal length

Radial Distortion 



Radial Distortion 



Radial Distortion 



Correction of distortion

Choice of the distortion function and center

Computing the parameters of the distortion function

(i) Minimize with additional unknowns

(ii) Straighten lines

(iii) …

Radial Distortion 


