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The equation of projection

Mathematically:

• Cartesian coordinates:

• Projectively: x = PX
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How do we develop a consistent mathematical 

framework for projection calculations?

Intuitively:



The equation of projection

• Similar triangles:
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The equation of projection
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• Similar triangles:

• Projection eq
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The camera matrix

• Homogenous coordinates for 3D
– four coordinates for 3D point, 3 for a 2D

• When coordinate systems are not aligned
– Projective: x image coordinates, X 3D coord, and P an arbitrary 3x4 matrix

– x = PX
– Euclidean

– x = [R|T]X
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• Projection equation

xi=PiX

• Resection:

– xi,X       Pi

Upcoming 2 weeks
Multi-view geometry - resection

Given image points and 3D points calculate camera projection 

matrix.



• Projection equation

xi=PiX

• Intersection:

– xi,Pi            X

Upcoming 3 weeks
Multi-view geometry - intersection

Given image points and camera projections in at least 2 views 

calculate the 3D points (structure)



• Projection 

equation

xi=PiX

• Structure from 

motion (SFM)

– xi Pi, X

Upcoming 4 weeks
Multi-view geometry - SFM

Given image points in at least 2 views calculate the 3D points 

(structure) and camera projection matrices (motion)

•Estimate projective structure

•Rectify the reconstruction to metric (autocalibration)



N-view geometry
Affine factorization 

(HZ Ch 17, 18)
[Carlo Tomasi PhD thesis @CMU  > Faculty offer at Stanford] 

•Affine camera 

•Projection

•n points, m views: measurement matrix
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M 2x3 matrix; t 2D vector
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Assuming isotropic zero-mean Gaussian noise, factorization achieves ML affine 

reconstruction. 
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SVD!!



Challenges in Computer Vision:
What images don’t provide

lengths

depth



Distant objects are smaller



Visual ambiguity

•Will the scissors cut the paper in the 

middle?



Ambiguity

•Will the scissors cut the paper in the middle? 

NO!



Visual ambiguity

•Is the probe contacting the wire?



Ambiguity

•Is the probe contacting the wire? NO!



Visual ambiguity

•Is the probe contacting the wire?



Ambiguity

•Is the probe contacting the wire? NO!



History of Perspective

RomanPrehistoric:



Perspective: Da Vinci



Visualizing perspective: Dürer

Perspectograph

1500’s



Parallel lines meet

common to draw image plane

in front of the focal point

Centre of 

projection

Image 

plane

3D world



Perspective Imaging Properties

90

Challenges with measurements in 
multiple images:

• Distances/angles change

• Ratios of dist/angles change

• Parallel lines intersect



What is preserved?

horizon

Invariants:

• Points map to points

• Intersections are preserved

• Lines map to lines

• Collinearity preserved

• Ratios of ratios (cross ratio)

• Horizon

What is a good way to represent imaged geometry? 



Vanishing points

• each set of parallel lines 

(=direction) meets at a 

different point
– The vanishing point for this direction

– How would you show this?

• Sets of parallel lines on the 

same plane lead to collinear 

vanishing points.   
– The line is called the horizon for that 

plane

horizon



Geometric properties of projection

• Points go to points

• Lines go to lines

• Planes go to whole image

• Polygons go to polygons

• Degenerate cases
– line through focal point to 

point

– plane through focal point 

to line



Polyhedra project to polygons

• (because lines project to 

lines)



Junctions are constrained

• This leads to a 

process called “line 

labelling”
– one looks for consistent 

sets of labels, bounding 

polyhedra

– disadv - can’t get the lines 

and junctions to label from 

real images



Back to projection

• Cartesian coordinates: ( x, y, z )  ( f
x

z
, f
y

z
)

We will develop a framework to express projection 

as x=PX, where x is 2D image projection, P a 

projection matrix and X is 3D world point.



Basic geometric transformations:
Translation

•A translation is a straight line movement of an 

object from one postion to another.
A point (x,y) is transformed to the point (x’,y’) by adding the 

translation distances Tx and Ty:

x’ = x + Tx

y’ = y + Ty

z’ = z + Tz



Coordinate rotation

•Example: Around y-axis

p0 =
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Euler angles

•Note: Successive rotations. Order matters.

R = RzRyRx

=
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Rotation and translation

•Translation t’ in new o’ coordinates

p0 =

cos ÷ 0 sin ÷

0 1 0

à sin ÷ 0 cos ÷
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Basic transformations 
Scaling

• A scaling transformation alters the scale of an object. 

Suppose a point (x,y) is transformed to the point (x',y') by 

a scaling with scaling factors Sx and Sy, then:

x'  =  x Sx

y'  =  y Sy

z'  =  z Sz

• A uniform scaling is produced if Sx = Sy = Sz . 



Basic transformations 
Scaling

The previous scaling transformation leaves the origin 

unaltered. If the point (xf,yf) is to be the fixed point, the 

transformation is:

x'  =  xf + (x - xf) Sx

y'  =  yf + (y - yf) Sy

This can be rearranged to give:

x'  =  x Sx +  (1 - Sx) xf

y'  =  y Sy +  (1 - Sy) yf



Affine Geometric Transforms

In general, a point in n-D space transforms by

P’ = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:
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In 3-D space (or n-D), this can generalized as a matrix equation:

p’ = R p + T     or    p = Rt (p’ – T)



A Simple 2-D Example

p = (1,0)’

Suppose we rotate the coordinate

system through 45 degrees (note

that this is measured relative to the

rotated system!
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Matrix representation and 
Homogeneous coordinates

• Often need to combine several transformations to build 
the total transformation. 

• So far using affine transforms need both add and multiply

• Good if all transformations could be represented as matrix 
multiplications then the combination of transformations 
simply involves the multiplication of the respective 
matrices

• As translations do not have a  2 x 2  matrix representation, 
we introduce homogeneous coordinates to allow a  3 x 3 
matrix representation.



How to translate a 2D point:

•Old way:

•New way:



Relationship between 3D 
homogeneous and inhomogeneous 

• The Homogeneous coordinate corresponding to the point 
(x,y,z) is the triple  (xh, yh, zh, w) where:

xh =  wx
yh =  wy
zh =  wz

We can (initially) set  w = 1.

• Suppose a point  P = (x,y,z,1) in the homogeneous 
coordinate system is mapped to a point 
P' = (x',y',z’,1) by a transformations, then the 
transformation can be expressed in matrix form.



•For the basic transformations we have:
– Translation

– Scaling
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Homogeneous coordinates



Geometric Transforms

Using the idea of homogeneous transforms,

we can write:

p
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Geometric Transforms

If we compute the matrix inverse, we find that
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R and T both require 3 parameters.  These correspond

to the 6 extrinsic parameters needed for camera calibration

Recall inhomogenous inversion:

p’ = R p + T     or    p = Rt (p’ – T)



Rotation about a Specified Axis

•It is useful to be able to rotate about any axis in 

3D space

•This is achieved by composing 7 elementary 

transformations (next slide)



Rotation through  about Specified 
Axis

x
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initial position
translate P1

to origin

rotate so that 

P2 lies on z-axis

(2 rotations)

rotate axis
to orig orientation

translate back



Comparison:

•Homogeneous coordinates
– Rotations and translations are represented in a uniform way

– Successive transforms are composed using matrix products: y = 

Pn*..*P2*P1*x

•Affine coordinates
– Non-uniform representations: y = Ax + b

– Difficult to keep track of separate elements



Camera models and projections
Geometry part 2.

•Using geometry and homogeneous 

transforms to describe:
– Perspective projection

– Weak perspective projection

– Orthographic projection
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y



The equation of perspective 
projection

• Cartesian coordinates:
– We have, by similar triangles, that (x, y, z) -> 

(f x/z, f y/z, -f)

– Drop the third coordinate, and get

( x, y, z )  ( f
x

z
, f
y

z
)



The equation of projection

• Similar triangles:
z

y



The equation of projection

• Similar triangles:
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The equation of projection
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• Similar triangles:

• Projection eq
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Stereo Vision

• GOAL: Passive 2-
camera system for 
triangulating 3D 
position of points in 
space to generate a 
depth map of a 
world scene.

• Humans use stereo 
vision to obtain 
depth



Stereo depth calculation:
Simple case, aligned cameras

Z

X(0,0)                  (d,0)

f
XL XR

Z = (f/XL) X

Z=  (f/XR) (X-d)

(f/XL) X = (f/XR) (X-d)

X = (XL d) / (XL - XR)

Z  =  
d*f

(XL - XR)

DISPARITY= (XL - XR)

Similar triangles:

Solve for X:

Solve for Z:



Lab: 3D “Stereo”

• To get several images  

slide camera along ruler

• For a non-square camera: 

tape it to a square object

• Track 10-100 salient 

points. (Can also “click” 

on them with ginput)

• Reconstruct 3D point 

cloud



Lab 3D “stereo”

• Alternatively: Move 

object along ruler

• In both cases make sure 

motion is parallel to 

camera plane. (Only case 

these simplified 3D 

“Stereo” equations are 

valid for)



Epipolar constraint

Special case: parallel cameras – epipolar lines are parallel and aligned with rows 



Stereo measurement example:

• Left image

Resolution = 1280 x 1024 
pixels

f = 1360 pixels

• Right image

Baseline d = 1.2m

Q: How wide is the 
hallway



How wide is the hallway?
General strategy

•Similar triangles:

•Need depth Z

•Then solve for W

f

v

Z

W
 W

Z

f

v



How wide is the hallway?
Steps in solution:

1. Compute focal length f in meters from pixels

2. Compute depth Z using stereo formula (aligned 

camera planes)

3. Compute width:

Z  =  
d*f

(XL - XR)

f

v
ZW 



Focal length:

0.224m is 1280 pixels

0.238m224.0*
1280

1360
f

f = 1360 pixels

Here screen projection is metric image plane.



How wide…
Depth calculation

Disparity: XL – XR = 0.07m
(Note in the disparity calculation the choice of 

reference (here the edge) doesn’t matter. But in the 
case of say X-coordinate calculation it should be 
w.r.t. the center of the image as in the stereo 
formula derivation

• Depth

XR = 0.074mXL = 0.144m

mZ 1.4
07.0

238.0*2.1
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How wide…?
Answer:

• Similar triangles:

• The width of the hallway 
is: 

W

Z

f

v

mW 3.2
238.0

135.0
*1.4 

f

v
ZW 

V = 0.135m



The camera matrix

• Homogenous coordinates for 3D
– four coordinates for 3D point, 3 for a 2D
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The camera matrix

• Homogenous coordinates for 3D
– Verify homogenous matrix form is the same:
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The camera matrix

• Homogenous coordinates for 3D
– equivalence relation  (X,Y,Z,T)  is the same as  (k X, k Y, k Z,k T) 
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The camera matrix

• Homogenous coordinates for 3D
– four coordinates for 3D point, 3 for a 2D

• When coordinate systems are not aligned
– Projective: x image coordinates, X 3D coord, and P an arbitrary 3x4 matrix

– x = PX
– Euclidean

– x = [R|T]X
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The camera matrix

• Homogenous coordinates for 3D
– four coordinates for 3D point

– equivalence relation  (X,Y,Z,T)  is the same as  (k X, k Y, k Z,k T) 

• Turn previous expression into HC’s
– HC’s for 3D point are (X,Y,Z,T)

– HC’s for point in image are (U,V,W)
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• Issue
– camera may not be at the origin, looking down the z-axis

– extrinsic parameters

– one unit in camera coordinates may not be the same as one 
unit in world coordinates

– intrinsic parameters - focal length, principal point, 
aspect ratio, angle between axes, etc.

Camera parameters
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Note: f moved from proj to intrinsics!



Intrinsic Parameters

Intrinsic Parameters describe the conversion from

metric to pixel coordinates (and the reverse)

xmm = - (xpix – ox) sx

ymm = - (ypix – oy) sy
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Note: Focal length is a property of the camera and can be 

incorporated as above



Example:
A real camera

• Laser range finder • Camera



Relative location
Camera-Laser 

• Camera • Laser

R=10deg

T=(16,6,-9)’



In homogeneous coordinates

• Rotation: • Translation

T =

1 0 0 16

0 1 0 6

0 0 1 à 9

0 0 0 1

0

B
@

1

C
AR =

cosà 10 0 sinà 10

0 1 0

à sinà 10 0 cosà 10

2

4

3

5



Full projection model

• Camera internal 

parameters

• Camera 

projection

0:985 0 à 0:174 0

0 1 0 0

0:174 0 0:985 0

0 0 0 1

0
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@

1

C
A

1 0 0 16

0 1 0 6

0 0 1 à 9

0 0 0 1

0
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1

C
A

0:6612

à 10:55

108:0

1

0

B
@

1

C
A =

22262

16755

97:47

 !

pcamera =

1278:6657 0 256

0 1659:5688 240

0 0 1

 !
1 0 0 0

0 1 0 0

0 0 1 0

 !

Extrinsic rot and translation



Full projection model

0:985 0 à 0:174 16

0 1 0 6

0:174 0 0:985 à 9

0 0 0 1
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Coord from clicking 

in laser scan
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Result

• Camera image • Laser measured 3D 

structure



• Issue
– camera may not be at the origin, looking down the z-axis

– extrinsic parameters

– one unit in camera coordinates may not be the same as one 
unit in world coordinates

– intrinsic parameters - focal length, principal point, 
aspect ratio, angle between axes, etc.

Camera parameters
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parameters intrinsic
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Note: f moved from proj to intrinsics!



Hierarchy of different camera models

Camera center

Image plane Object plane

X0(origin)

xpersp

Perspective: non-linear

xparap

Para-perspective: lin

xorth

Orthographic: lin, no scaling

Weak perspective: linear approx

xwp



Orthographic projection

yv

xu







The fundamental model for 
orthographic projection

U
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



Perspective and Orthographic 
Projection

perspective Orthographic 

(parallel)



Weak perspective

ZfT

Tyv

Txu

/




• Issue

– perspective effects, but not 

over the scale of individual 

objects

– collect points into a group at 

about the same depth, then 

divide each point by the depth 

of its group

– Adv: easy

– Disadv: wrong



The fundamental model for weak 
perspective projection






















































T

Z

Y

X

ZfW

V

U

*/000

0010

0001

Note Z* is a fixed value, usually mean distance to scene



Weak perspective projection
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
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Weak perspective projection for an 
arbitrary camera pose R,t



1. Affine camera=camera with principal 

plane coinciding with P∞

2. Affine camera maps parallel lines to 

parallel lines

3. No center of projection, but direction of 

projection PAD=0

(point on P∞)

Affine camera
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Hierarchy of  camera models

Camera center

Image plane Object plane

X0(origin)

xpersp

Perspective:

xparap

Para-perspective:

First order approximation of perspective
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
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Camera Models

Caff

C inj

Cproj

C sim

reconstruction up to a bijection of task space

up to a projective transformation of task space

up to an affine transformation of task space

up to a similarity (scaled Euclidean transformation)

• Internal calibration:
• Weak calibration: 
•Affine calibration: 
•Stratification of stereo vision: 

- characterizes the reconstructive certainty of 
weakly, affinely, and internally calibrated stereo rigs



Visual Invariance

 inj  inj inj inj

 proj

 sim

 aff  aff

 proj  proj



Lab: Try these camera models

How do these pointclouds look when projected by 

different types of cameras

Try different

Extrinsics

- Camera locations

- Camera rotations

Camera parameters

Compare to Matlab’s built in 3D plotting



Perspective Camera Model Structure

Assume R and T express camera in world coordinates, then
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
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Combining with a perspective model (and neglecting internal 

parameters) yields
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Note the M is defined only up to a scale factor at this point!  If M is 

viewed as a 3x4 matrix defined up to scale, it is called the projection 

matrix.



Perspective Camera Model Structure

Assume R and T express camera in world coordinates, then

p
TRR

p wc


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





 
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1000

''

Combining with a weak perspective model (and neglecting internal 

parameters) yields
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Where           is the nominal distance to the viewed object         P



Other Models

• The affine camera is a generalization of weak 
perspective.

• The projective camera is a generalization of the 
perspective camera.

• Both have the advantage of being linear models on real 
and projective spaces, respectively.

• But in general will recover structure up to an affine or 
projective transform only. (ie distorted structure)



Camera Internal Calibration
Recall: Intrinsic Parameters

Intrinsic Parameters describe the conversion from

metric to pixel coordinates (and the reverse)

xmm = - (xpix – ox) sx

ymm = - (ypix – oy) sy
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CAMERA INTERNAL CALIBRATION 

Known

distance

d

known regular offset  r

xii

xxi
i

sxx
d

r

sox
d

rk

)(

)(

1 





A simple way to get scale parameters; we can 

compute the optical center as the numerical center

and therefore have the intrinsic parameters

Compute Sx 

Focal length = 1/ Sx 



Camera calibration

• Issues:
– what are intrinsic parameters of 

the camera?

– what is the camera matrix? 

(intrinsic+extrinsic)

• General strategy:
– view calibration object

– identify image points

– obtain camera matrix by 

minimizing error

– obtain intrinsic parameters from 

camera matrix

• Error minimization:
– Linear least squares

– easy problem numerically

– solution can be rather bad

– Minimize image distance

– more difficult numerical 

problem

– solution usually rather good, 

but can be hard to find

– start with linear least 

squares

– Numerical scaling is an issue


