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How do we develop a consistent mathematical
framework for projection calculations?
Mathematically:

Intuitively: « Cartesian coordinates:
. X
< (xy,2) > (f 2, £ 7)
image Z Z
plane * Projectively: x = PX




The equatlon of prOJectlon

e Similar triangles: —




The equatlon of prOJectlon

 Similar triangles:
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The equation of projection

e Similar triangles:

* Projection eq (x,y,2) > (f 5, f X)



The camera matrix

u Vv
Uv.w)- (W’W) (u,v)

« Homogenous coordinates for 3D
— four coordinates for 3D point, 3 for a 2D

(
(U |( 10 0 o )Yf\
V O |
w) 10 0 / J ‘

\ / T _
« \When coordinate systems are not aligned
— Projective: x image coordinates, X 3D coord, and P an arbitrary 3x4 matrix
- x=PX
— Euclidean

—  X=[R|T]X




_ Upcoming 2 weeks

* Projection equation
X;=P:X

e Resection:

Given image points and 3D points calculate camera projection
matrix.



Upcomlng 3 weeks

- intersection_

* Projection equation
X;=P:X

* Intersection:
-X,P; —X

Glven image points and camera projections in at least 2 views
calculate the 3D points (structure)



Upcoming 4 weeks

1eW geometr

* Projection
equation
X;=P:X
e Structure from
motion (SFM)

— Xi— Pi’ X

Given image points in at least 2 views calculate the 3D points
(structure) and camera projection matrices (motion)

Estimate projective structure

*Rectify the reconstruction to metric (autocalibration)



\-VIEW geometry

Affme factorlzatlon

[Carlo Tomasi IPInD theS|s @CMU > Faculty offer at Stan ord] .

« Affine camera

P, =[M|t]

*Projection (
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Challenges In Computer Vision:
10ES dor rowd

lengths

depth



Distant objects are smaller
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« Will the scissors cut the paper in the
middle?



« Will the scissors cut the paper in the middle?
NO!
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Visual ambiguity

s the probe contacting the wire?



*|s the probe contacting the wire? NO!



Visual ambiguity

o ) .

«|s the probe contacting the wire?



*|s the probe contacting the wire? NO!
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_ AVisualizing perspective: D
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Perspectograph
1500°s



3D world

common to draw image plane
in front of the focal point

Centre of
projection
O




Challenges with measurements in
multiple images:

* Distances/angles change
« Ratios of dist/angles change

e Parallel lines intersect



Invariants:

* Points map to points

* Intersections are preserved
* Lines map to lines

* Collinearity preserved

» Ratios of ratios (cross ratio)
« Horizon

horizon



___Vanishing points
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e each set of parallel lines
(=direction) meets at a
different point

— The vanishing point for this direction
— How would you show this?

e Sets of parallel lines on the
same plane lead to collinear

vanishing points.

— The line is called the horizon for that
plane

horizon




G .ometrlc propertles of prOJectlon

 Points go to points

* Lines go to lines
 Planes go to whole image
« Polygons go to polygons

« Degenerate cases

— line through focal point to
point

— plane through focal point
to line




* (because lines project to
lines)

=




_Junctions are constrained

T -
- P - ) . . ,‘:,-?.‘\.;'

e This leads to a
process called “line
labelling”

— one looks for consistent
sets of labels, bounding
polyhedra

— disadv - can’t get the lines
and junctions to label from
real images

ATTOW: Fork:




We will develop a framework to express projection
as Xx=PX, where x Is 2D image projection, P a
projection matrix and X is 3D world point.



5aSIC geometric transtormations:

Translation |

* A translation is a straight line movement of an

object from one postion to another.

A point (x,y) is transformed to the point (x’,y’) by adding the
translation distances T, and T,

X' =x+T,

y =y+1
Z;A:Z—l_TZ Y'a

Translation

><"



Coordinate rotation
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«Example: Around y-axis

1! cosv 0 sinv]| [z
P =y | = 0 1 0 [y} =R,p
0

COSV




Euler angles

e Note: Successive rotations. Order matters.

COS
sin gp

R = R,R,R,

—sinp 0 " cosy 0 sinv

cosgp 0} 0 I 0
| —sinv 0 cosv

1
0

0

0

COS
sin 1

0
— siny
cos |

c A~ N




Rotatlon and translatlon

cosry (0 sinv

—siny 0 cosv




5asIC trans ormations

* A scaling transformation alters the scale of an object.
Suppose a point (X,y) is transformed to the point (x',y') by
a scaling with scaling factors S, and S,, then:

X' = XS,
Yy o=yS,
' =173,

« A uniformyscaling is produced |fyh y=

Scaling about the Or g in




5asIC trans ormations

The previous scaling transformation leaves the origin

unaltered. If the point (X;,Y;) Is to be the fixed point, the
transformation is:

X' = Xf+(X'Xf) Sx

Y =Yt Y-V Sy
This can be rearranged to give:

X' % XS, + (1-S) %X +,

y'3yS, + (1-5)y;
=\

R

Y

X, x

Scaling about (x;,y,)

J



Affine Geometric Transform

S

S A

In general, a point in n-D space transforms by
P’ = rotate(point) + translate(point)
In 2-D space, this can be written as a matrix equation:
(x'j _ [Cos(@) - Sin(@))(xj . [txj
y' Sin(@) Cos(@) )\ 'y ty
In 3-D space (or n-D), this can generalized as a matrix equation:

pPP=Rp+T or p=R'(p'-T)



) (Cos(z/4) -Sin(z/4))(1

']_ Sin(z/4) Cos(r/4) j(oj
Cos(z/4)

]: Sin(ﬂ/4)j

Sin(z/4) Cos(x/4) \1

(=Sin(z/4)
_(Cos(n/4)]

_ [Cos(n/4) —Sin(rz/ 4))[0}

system through 45 degrees (note
that this is measured relative to the

Suppose we rotate the coordinate [
rotated system! [



Matrlx representation and
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e Often need to combine several transformations to build
the total transformation.

» So far using affine transforms need both add and multiply

« Good If all transformations could be represented as matrix
multiplications then the combination of transformations
simply involves the multiplication of the respective
matrices

« As translations do not have a 2 X 2 matrix representation,
we introduce homogeneous coordinates to allow a 3 x 3
matrix representation.






Relationship between 3D

‘_ gpoeneous and inhomogeneous

* The Homogeneous coordinate corresponding to the point
(X,y,z) is the triple (X, Y;, Z,, W) where:

X, = WX
Yh = WY
Z, = WZ

We can (initially) set w = 1.

« Suppose a point P =(X,y,z,1) in the homogeneous
coordinate system is mapped to a point
P'=(x"y',z’,1) by a transformations, then the
transformation can be expressed in matrix form.



Matrix representatlon and

e For the basic transformations we have:

—Translation
KA 1 0 0 1,7 [x
|y _]o 10 1|y
2/ 0 0 1 T, 2
_scaling | W - L0 0 0 14 Lwd
'] s, 0 0 07 [a7
D y | _ |0 sy 0 Yy
2/ 0 0 s, O 2
_w L0 0 0 14 Lwd




~

Using the idea of homogeneous transforms,
we can write:

R T
0001p

R and T both require 3 parameters.

=,
Il

cose —sing 0 cosv 0 sinv]| [1 0 0
R = [singp COS 0] 0 I 0 0 cosy —siny
0 0 11 | —sinv 0 cosv| |0 siny cosy |




_ Geometric Transforms

»

F or

o ) .

If we compute the matrix inverse, we find that
R ~-R'T"
000 1 ,

R and T both require 3 parameters. These correspond
to the 6 extrinsic parameters needed for camera calibration

Recall inhomogenous inversion:
pP=Rp+T or p=Ri(p—-T)



,‘ otatlon about a Specmed AXIS

«|t is useful to be able to rotate about any axis in
3D space

This is achieved by composing 7 elementary
transformations (next slide)



Rotatlon through 0 apout Specified

Y P2 Y y
P1

X X X

Z Z ransiate P1 rotate so that
initial position to origin P2 lies on z-axis
(2 rotations)
Y y Y P2

P1

X X X
rotate through .
z 9 yi rotate axis 7 translate back

} requ’d angle, 8 to orig orientation



*Homogeneous coordinates

— Rotations and translations are represented in a uniform way

— Successive transforms are composed using matrix products: y =
Pn*. *P2*P1*x

« Affine coordinates

— Non-uniform representations: y = Ax + b
— Difficult to keep track of separate elements



Camera models and projections

«Using geometry and homogeneous

transforms to describe:
— Perspective projection
— Weak perspective projection
T —Orthographic projection

y 4 £

y




projection

2 D

\"4'. "\',v,‘

N, %
» Cartesian coordinates:
— We have, by similar triangles, that (x, y, z) ->
(fx/z, fylz, -f)
— Drop the third coordinate, and get

(x2.2) > (f 2./ %)
J




The equatlon of prOJectlon

e Similar triangles: —




The equatlon of prOJectlon

 Similar triangles:
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The equation of projection

e Similar triangles:

* Projection eq (x,y,2) > (f 5, f X)



_ Stereo Vision

 GOAL.: Passive 2-
camera system for -
triangulating 3D =
position of points in i
space to generate a
depth map of a
world scene.

e« Humans use stereo
vision to obtain
depth




Stereo depth calculatlon

DISPARITY= (XL - XR)

Similar triangles:
Z = (fIXL) X
Z= (f/XR) (X-d)

Solve for X:
(FIXL) X = (f/XR) (X-d)
X = (XLd)/ (XL- XR)

Solve for Z:

_d*f
z = (XL - XR)




~

» To get several images
slide camera along ruler

* FOr a non-square camera:
tape it to a square object

e Track 10-100 salient

points. (Can also “click”
on them with ginput)

 Reconstruct 3D point
cloud



Lab 3D “stereo”
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 Alternatively: Move
object along ruler

* In both cases make sure
motion is parallel to
camera plane. (Only case
these simplified 3D
“Stereo” equations are
valid for)




Epipolar constraint

- -~

» . S

EPIPOLAR

P.(x; =,
X
- EPIPOLAR___
\ . LINE Y
; Pt c e, b “‘

Special case: parallel cameras — epipolar lines are parallel and aligned with rows



« Left image * Right image
Resolution = 1280 x 1024 Baselined = 1.2m

pixels Q: How wide is the
f = 1360 pixels hallway



How wide Is the hallway?
| General stratec

 Similar triangles:

*Need depth Z
*Then solve for W




How wide Is the hallway?

anS |n solutlon

1. Compute focal length f in meters from pixels

2. Compute depth Z using stereo formula (aligned
camera planes)

3. Compute width:



f = 1360 pixels

f = 1360 ——%*0.224 =0.238m

1280

0.224m is 1280 pixels



~_ How wide...

W
JCAEL,L -

Disparity: XL — XR =0.07m * Depth

(Note in the disparity calculation the choice of 1.2*0.238
reference (here the edge) doesn’t matter. But in the _ : —
case of say X-coordinate calculation it should be 0.07
w.r.t. the center of the image as in the stereo '
formula derivation

4.1m



How w1de. i

Similar triangles:

w=zY
f

« The width of the hallway
IS:

W = 41"‘0135 2.3m
0.238




The camera matrix

(X, y.2) > (=, £ )
VA V4

« Homogenous coordinates for 3D
— four coordinates for 3D point, 3 for a 2D

oy (10 o o\(?

LVJ_|O 0 Z

4 \o 0 / 7,
U v

(U 1V 1W) (VT’VT): (U’V)



The camera matrix

. PRSI
‘ . (/ ‘ - 3 "' ~‘.‘.‘-5,
L ~ - e
- W g . M. R

(X, y.2) > (=, £ )
VA V4

« Homogenous coordinates for 3D
— Verify homogenous matrix form is the same:

(X
‘x ) (10 o o\Y
Y [=|01 0 0 .
VA 0 0 0
1)\ % AT
\ UV, X .y
UV W) (o) = () —>(fz,fz)



The camera matrix

. =) .

« Homogenous coordinates for 3D
— equivalence relation (X,Y,Z,T) isthesameas (k X,kKY,kZKkT)

e o oY) (U (1000

R Vi =0 f 00
VJ_|01OOZ ,

] W
w) {0 0 /f O)\T/ W) (0 0 1 O)\T/

|12

Canonical form: Y
Left 3x3 Vi=0100

Identity matrix W) (0 0 1 0/




The camera matrix

u Vv
Uv.w)- (W’W) (u,v)

« Homogenous coordinates for 3D
— four coordinates for 3D point, 3 for a 2D

(
(U |( 10 0 o )Yf\
V O |
w) 10 0 / J ‘

\ / T _
« \When coordinate systems are not aligned
— Projective: x image coordinates, X 3D coord, and P an arbitrary 3x4 matrix
- x=PX
— Euclidean

—  X=[R|T]X




« Homogenous coordinates for 3D
— four coordinates for 3D point
— equivalence relation (X,Y,Z,T) isthesameas (k X,kKY,kZkT)
e Turn previous expression into HC’s
— HC’s for 3D point are (X,Y,Z,T)
— HC’s for point in image are (U,V,W)

oy 10 o (ﬂ(§\

4 =|o 1 0 0
W |o 0 }/ 0 -
\ N\,




e |ssue

— camera may not be at the origin, looking down the z-axis
— extrinsic parameters

— one unit in camera coordinates may not be the same as one
unit in world coordinates

— Intrinsic parameters - focal length, principal point,
aspect ratio, angle between axes, etc.

(X
(U (Transforma tion  ( Transforma tion  Transforma tion v
V | =] representing representi ng representi ng ,
(W ) \intrinsic parameters )\ projection model )\ extrinsic parameters ) T

Note: f moved from proj to intrinsics!



Intrinsic Parameters ., .

-y ) %

.
.-
N g . N, N ""_" T

Intrinsic Parameters describe the conversion from
metric to pixel coordinates (and the reverse)

Xmm = - (Xpix _ Ox) Sy
Ymm = - (ypix — Oy) Sy

or
(X)) (— /s, 0 0, ) x

y = 0 —f/sy o, [y =M..p
\W/ pix \ 0 0 1 /\W)mm

Note: Focal length is a property of the camera and can be
Incorporated as above






Relative location

- _Camera-Laser .

« Camera e
R=10d
—:’.’.fg g
\ """"""""""""""""""""""""""""" B
T=(16,6,-9)’ \
v




In homogeneous coordmates

e Rotation: e Translation
] ] 1 0 0 16
cos— 10 O sin—10 - 0 1 0 6
e N 10 (1) : 10 (001 -9
|~ S11N — COS — i O O O 1



« Camera internal « Camera
parameters projection

1278.6657 0 256 1 0 0 O
Pcamera = 0 1659.5688 240 0 1 0 O
0 0 1 0 0 1 0

16 0.6612

0 0\ /1 0 0
1 0 o)[l0 10 6 ~10.55 | _ ?gigg
0174 0 0985 0|0 0 1 -9 108.0 o 47
o o o 1/ \o o0 o0 1 1 |

Extrinsic rot and translation



_Full prOJectlon model

a.Trom clic
& . N, in mé"i 3
PrETR,
22262 1279 0 256\ /1 0 0 0 0'%85 (1) _0(')174 166 ?‘fﬁﬁ
16755 | = 0 1660 240 | [0 1 0 0| oqm 0 o905 ol | 1080
97.47 () () 1 0 0 1 0 0 0 0 1 1
(X
(U (Transforma tion  \(Transforma tion  Transforma tion v
V | =] representing representi ng representi ng ,
(W ) \intrinsic parameters )\ projection model )\ extrinsic parameters | T

u Vv
UV W)= () = ()

22202 207 Image pixel
16755 | — ( e ) ( 226 ) coordinates
97.47
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e |_aser measured 3D
structure

&
. 160
140
—2l 120



e |ssue

— camera may not be at the origin, looking down the z-axis
— extrinsic parameters

— one unit in camera coordinates may not be the same as one
unit in world coordinates

— Intrinsic parameters - focal length, principal point,
aspect ratio, angle between axes, etc.

(X
(U (Transforma tion  ( Transforma tion  Transforma tion v
V | =] representing representi ng representi ng ,
(W ) \intrinsic parameters )\ projection model )\ extrinsic parameters ) T

Note: f moved from proj to intrinsics!



O”h \ Image plane o1 Obj
Wp

parap

Xpersp

/0 X,(origin)

Camera center

Perspective: non-linear

Weak perspective: linear approx

Orthographic: lin, no scaling

Para-perspective: lin




Orthographlc prOJectlon ‘




The fundamental model for

.ortorahlc projection..,

ﬂ'/ - P " -
' -~ s . G\ :5 ‘,'a - 'w;_”ip

Vi=|0 1 0
VR L
\0 0 0 1




Perspectlve and Orthographlc

perspective Orthographic
(parallel)



e |SSue

— perspective effects, but not V= Ty
over the scale of individual

objects T — f / Z

— collect points into a group at
about the same depth, then
divide each point by the depth
of its group

— Adv: easy

— Disadv: wrong




‘U) (1 0 O 0 \Y
V=0 120 0 ,
'

Note Z* is a fixed value, usually mean distance to scene



Weak perspective projection for an

Weak perspective projection
o 't
2T

P,=| a, |1t | (7dof)
1| 0 1/k




-ull Affine linear camera

-~

Tk
4 Sa Y o ; o ‘5 ",'
Affine camera (8dof) i |
: g ] _
ax S r2T tl m11 m12 m13 1:1
P,= a, r | Pa=|My My My 1
_ 1) o wk| LO 0 01
| 100 0
P, =[3x3affire |0 1 0 0 [[4x4affine |
000 1

1. Affine camera=camera with principal
plane coinciding with IT,,

2. Affine camera maps parallel lines to
parallel lines

3. No center of projection, but direction of
projection P,D=0
(point on I1,,)



-

¢

X : .
o Image plane
X

Hierarchy of camera models

=) .

-~

parap

X

persp

X &*' R S
- ...' .- v < ."
~) Obj ,’?ﬁ : .:_.}.

&y

/0 X,(origin)

Camera center

Perspective: Ki Ti t7 || Weak perspective: DV Ti ]
IDpersp - ty I:)wp = k -l ty
! 1k t] 1]o" 1
Orthographic: it Para-perspective:
Prn=| 1 1, First order approximation of perspective
0" 1




e Internal calibration:

 Weak calibration:

e Affine calibration:
 Stratification of stereo vision:

- characterizes the reconstructive certainty of
weakly, affinely, and internally calibrated stereo rigs

l

C . up to a similarity (scaled Euclidean transformation)
S1m

A 4

C o Uptoan affine transformation of task space

A 4

C

C inj reconstruction up to a bijection of task space

proj UP to a projective transformation of task space



Visual Invariance

sim
= aff = aff
= proj = proj = proj

— inj — inj inj inj




How do these pointclouds look when projected by
different types of cameras

Points on a circle Points on a wwefi'ame cube
e . Try different
05 1. L PR ry airreren

of e iy Extrinsics
05 05 i A ! j
. t di - Camera locations
ﬂ" ‘:p I

05 a. Sl - Camera rotations
05 = \n\/' Camera parameters

_1 0 -1 -1

Compare to Matlab’s built in 3D plotting



Camera Model Str‘u ture

&*' L

: ' - ’ S B
Assume R and T express camera in world coordinates;th

( R -RT
0 00 1

Combining with a perspective model (and neglecting internal
parameters) yields

C w

P P

(-R' R' T
~R', R, T

y

u=M"= R -RT

Z

f f

J
Note the M is defined only up to a scale factor at this point! If M is
viewed as a 3x4 matrix defined up to scale, it is called the projection
matrix.



Assume R and T express camera in world coordinates, then

( R -RT
0 00 1

Combining with a weak perspective model (and neglecting internal
parameters) yields

C w

P P

~-R, R'T
-R', R,T
u=M"= o R(P-T) [|'P

f

_ J
Where P is the nominal distance to the viewed object



_ Other Models

The affine camera is a generalization of weak
perspective.

The projective camera is a generalization of the
perspective camera.

Both have the advantage of being linear models on real
and projective spaces, respectively.

But in general will recover structure up to an affine or
projective transform only. (ie distorted structure)




Camera Internal Calibration

Intrinsic Parameters describe the conversion from
metric to pixel coordinates (and the reverse)

Xmm = ~ (Xpix_ox) Sy
Ymm = - (ypix_oy) Sy
or
(x) (=1/s, 0 o, ) x)
y| =| O -1/s, o, ||y| =M;p

W) U0 0 1)Aw,

mm



G

Known I
distance — (Xi+1 — X )Sx
q d

known regular offset r

A simple way to get scale parameters; we can
compute the optical center as the numerical center
and therefore have the intrinsic parameters




e |Ssues:

— what are intrinsic parameters of

the camera?

what is the camera matrix?
(intrinsic+extrinsic)

» General strategy:

view calibration object
identify image points
obtain camera matrix by
minimizing error

obtain intrinsic parameters from
camera matrix

e Error minimization:

— Linear least squares
— easy problem numerically
— solution can be rather bad
— Minimize image distance

— more difficult numerical
problem

— solution usually rather good,
but can be hard to find

— start with linear least
squares

— Numerical scaling is an issue



