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Registration based Tracking

• Find the optimal warp or geometric 
transformation that registers each image in 
a sequence with the template
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t=1 tT=0 t-1

…

Tracking Lucas-Kanade algorithm

• Create tracking loop, iterate for each new image

Init p=0, Template T

For t = 1… 

1. Receive    I(t+1)

2. Compute  dIm = I(t+1, x+p) – T

3. Solve    -Im_t = M u

- Use u = M\Im_t

4. Update  p = p + u u

p p + uT

Template sourced 

from pixel window 

shifted by the state 

vector p



Registration based Tracking
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Motivation
• Learning/detection based trackers are not suitable 

for tasks requiring fast and high precision tracking
– Visual Servoing
– Virtual reality
– SLAM
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MTF Usage Example – Multi Target 
Tracking
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UAV Trajectory Estimation

Online Image Mosaicing

usage_example_multi_obj_tracking.mp4
usage_example_uav.mp4
usage_example_mosaic.mp4


Motivation

• Progress in registration based tracking has 
become fragmented since Lucas Kanade[Lucas81]

– myriad of contributions that are not well connected

• An intuitive way exists to relate these by 
decomposing the tracking task into three 
modules
– most contributions are confined to only one or two 

of these modules

• Modular Tracking Framework (MTF)[Singh16] to 
easily plug in new methods

6

B. Lucas, T. Kanade, “An iterative image registration technique with an application to stereo vision”, 1981
A. Singh, M. Jagersand, “Modular Tracking Framework: A Unified Approach to Registration based Tracking”, 
2016, available at: http://webdocs.cs.ualberta.ca/~vis/mtf/
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State Space Model

• A warping function or geometric 
transformation that represents the set of 
allowable image motions of the object
– embodies any constraints placed on the warp 

parameter space
• search efficiency 

• alignment precision 

– includes
• degrees of freedom (DOF) of allowed motion

• actual parameterization of the warping function
8



Registration: from trans u
to warp w(x,p)

Find parameters of a warping function such that:

for all template points



• Translation : S = 2

– 𝐰 𝐱𝑘 , 𝐩 =
𝑥𝑘 + 𝑝1
𝑦𝑘 + 𝑝2

• Isometry/Euclidean : 𝑆 = 3

– 𝐰 𝐱𝑘 , 𝐩 =
𝑥𝑘 cos 𝑝1 − 𝑦𝑘 sin 𝑝1 + 𝑝2
𝑥𝑘 sin 𝑝1 + 𝑦𝑘 cos 𝑝1 + 𝑝3

• Similitude/Similarity: 𝑆 = 4

– 𝐰 𝐱𝑘 , 𝐩 =

𝑝4
𝑥𝑘 cos 𝑝1 − 𝑦𝑘 sin 𝑝1 + 𝑝2
𝑥𝑘 sin 𝑝1 + 𝑦𝑘 cos 𝑝1 + 𝑝3

• Affine : 𝑆 = 6

– 𝐰 𝐱𝑘, 𝐩 =

1 + 𝑝1 𝑥𝑘 − 𝑝2𝑦𝑘 + 𝑝3
1 + 𝑝1 𝑦𝑘 + 𝑝2𝑥𝑘 + 𝑝4

State Space Model – Examples
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• Homography : 𝑆 = 8

– 𝐰 𝐱𝑘 , 𝐩 =
1+𝑝1 𝑥𝑘+𝑝2𝑦𝑘+𝑝3

1+𝑝7 𝑥𝑘+𝑝8𝑦𝑘+1
,
1+𝑝4 𝑦𝑘+𝑝5𝑥𝑘+𝑝6

1+𝑝7 𝑥𝑘+𝑝8𝑦𝑘+1

𝑇

• SL3 Homography[Benhimane04] : 𝑆 = 8

– 𝐰 𝐱𝑘 , 𝐩 = 𝑮 ො∗
𝑥𝑘
𝑦𝑘

• 𝑮 = 𝐞𝐱𝐩 σ𝑖=1
8 𝑝𝑖𝑨𝑖 ∈ 𝕊𝕃(3) , 𝑨𝑖 ∶ 𝔰𝔩(3) basis

• Corner Homography : 𝑆 = 8

– 𝐰 𝐱𝑘 , 𝐩 = 𝑮 ො∗
𝑥𝑘
𝑦𝑘

• 𝑮 = argmin
𝑴

σ𝑖=1
4 𝑴 ො∗

𝑐𝑖𝑥
𝑐𝑖𝑦

−
𝑐𝑖𝑥 + 𝑝2𝑖−1
𝑐𝑖𝑦 + 𝑝2𝑖

2

• ฬ𝑐𝑖 =
𝑐𝑖𝑥
𝑐𝑖𝑦

1 ≤ 𝑖 ≤ 4 : bounding box corners

𝑮 ො∗
𝑥
𝑦 =

𝑔00𝑥+𝑔01𝑦+𝑔02

𝑔20𝑥+𝑔21𝑦+𝑔22
,
𝑔10𝑦+𝑔11𝑥+𝑔12

𝑔20𝑥+𝑔21𝑦+𝑔22

𝑇

with 𝑮 =

𝑔00 𝑔01 𝑔02
𝑔10 𝑔11 𝑔12
𝑔20 𝑔21 𝑔22

State Space Model – Examples (cont’d)
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State Space Model – Examples (Demo)
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(in 2 weeks) Homography = 
Planar Projective Warping

HZ

A novel view rendered via four 
points with known structurexi

0 = Hxi

i = 1. . .4

xi xi
0



Results – State Space Models (Demo)
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Search Method

• Optimization method that finds the SSM 
parameters corresponding to the warped 
patch that maximizes the AM similarity 
function.

• Two main categories:
– Gradient descent

• Newton or Gauss Newton method

– Stochastic Search
• Sampling based

15



Simple image registration algorithm
SSD error norm

Exhaustive search:

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

(Gauss) Newton optimization:

Solve

u = M\Im_t
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Search Method – Examples (Gradient Descent)

• Variants of Lucas Kanade (LK)[Baker01] method
– Forward Additive (FALK)

• 𝚫𝐩𝐭 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝚫𝐩𝐭

𝑓 𝐈𝟎 𝐱 , 𝐈𝐭 𝐰 𝐱, 𝐩𝐭−𝟏 + 𝚫𝐩𝐭

– 𝐩𝐭 = 𝐩𝐭−𝟏 + 𝚫𝐩𝐭

– Inverse Additive (IALK)
• uses constant approximation of 𝛁𝐈𝐭 computed from 𝐈𝟎

– Forward Compositional (FCLK)

• 𝚫𝐩𝐭 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝚫𝐩𝐭

𝑓 𝐈𝟎 𝐱 , 𝐈𝐭 𝐰 𝐰 𝐱,𝚫𝐩𝐭 , 𝐩𝐭−𝟏

– 𝐩𝐭 = 𝐩𝐭−𝟏 ∘ 𝚫𝐩𝐭

– Inverse Compositional (ICLK)

• 𝚫𝐩𝐭 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝚫𝐩𝐭

𝑓 𝐈𝟎 𝐰 𝐱,𝚫𝐩𝐭 , 𝐈𝐭 𝐰 𝐱, 𝐩𝐭−𝟏

– 𝐩𝐭 = 𝐩𝐭−𝟏 ∘ 𝚫𝐩𝐭
−𝟏

• Efficient Second Order Minimization (ESM)[Benhimane04]

– combines FCLK and ICLK

17
S. Baker, I. Matthews, “Equivalence and Efficiency of Image Alignment Algorithms”, 2001
S. Benhimane, E. Malis, “Real-time image-based tracking of planes using efficient second-order minimization”, 2004



Homogenous coordinates:
How to translate a 2D point:

•Old way: x’ = x+dx

•New way: x’=M*dx = M o dx

•Can chain many transf: x’=M1*M2*dx

•Euclidean transform SE2:
p

TR
p 










1000
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• Nearest Neighbor Search (NN) [Dick13]

– generate samples by warping 𝐈𝟎 𝐱

– find the nearest neighbor to 𝐈𝐭(𝐰 𝐱, 𝐩𝐭−𝟏 ) and 
update 𝐩𝐭−𝟏 with the inverse of the corresponding 
𝚫𝐩𝐭

– combined with ICLK for stability (NNIC)

• Particle Filter (PF) [Kwon14]

– generate samples by warping 𝐈𝐭(𝐰 𝐱, 𝐩𝐭−𝟏 ) 

– compute weight for each and estimate 𝚫𝐩𝐭 as 
weighted average of samples

Search Method – Examples (Stochastic)
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T. Dick et. al, “Realtime Registration-Based Tracking via Approximate Nearest Neighbor Search”, 2013
J. Kwon, H. S. Lee, F. C. Park, K. M. Lee, “A Geometric Particle Filter for Template-Based Visual Tracking”, 2014



Appearance Model

• A similarity measure between two image 
patches:

– candidate warped patch from the current image 

– template extracted from the initial image

• Two main categories:

– SSD like

– Robust[Richa12]
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R. Richa, R. Sznitman, G. Hager, “Robust Similarity Measures for Gradient-based Direct Visual Tracking”, 2012



• Sum of Squared Differences (SSD)[Baker01]

– 𝑓 𝐈𝟎, 𝐈𝐭 = −
1

2
∥ 𝐈𝟎−𝐈𝐭 ∥

2

• Sum of Conditional Variance (SCV)[Richa11]

– 𝑓 𝐈𝟎, 𝐈𝐭 = −
1

2
∥ 𝐸 𝐈𝐭ห𝐈𝟎 −𝐈𝐭 ∥

2

– Using several joint distributions computed from corresponding 
sub regions of 𝐈𝐭 and 𝐈𝟎 gives a variant called LSCV[Richa14]

• Reversed Sum of Conditional Variance (RSCV)[Dick13]

– 𝑓 𝐈𝟎, 𝐈𝐭 = −
1

2
∥ 𝐈𝟎−𝐸 𝐈𝟎ห𝐈𝐭 ∥2

• Zero mean Normalized Cross Correlation (ZNCC)[Ruthotto10]

– 𝑓 𝐈𝟎, 𝐈𝐭 = −
1

2
∥
𝐈𝟎−μ0

σ0
−
𝐈𝐭−μt

σt
∥2

Appearance Model – Examples 
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R. Richa, R. Sznitman, R. Taylor, G. Hager, “Visual Tracking Using the Sum of Conditional Variance”, 2011
R. Richa, et. al, “Direct visual tracking under extreme illumination variations using the sum of conditional variance”, 2014
L. Ruthotto, “Mass-preserving registration of medical images”, 2010



• Mutual Information (MI)[Dame10]

– 𝑓 𝐈𝟎, 𝐈𝐭 = σ𝑖𝑗𝑷𝑰𝒕𝑰𝟎(𝑖, 𝑗)𝐥𝐨𝐠
𝑷𝑰𝒕𝑰𝟎 𝑖,𝑗

𝑷𝑰𝒕 𝑖 𝑷𝑰𝟎 𝑗

• Cross Cumulative Residual Entropy (CCRE)[Richa12]

– 𝑓 𝐈𝟎, 𝐈𝐭 = σ𝑖𝑗𝑷𝑰𝒕𝑰𝟎
∗ (𝑖, 𝑗)𝐥𝐨𝐠

𝑷𝑰𝒕𝑰𝟎
∗ 𝑖,𝑗

𝑷𝑰𝒕
∗ 𝑖 𝑷𝑰𝟎 𝑗

• Normalized Cross Correlation (NCC)[Scandaroli12]

– 𝑓 𝐈𝟎, 𝐈𝐭 =
𝐈𝟎−μ0

σ0
.
𝐈𝐭−μt

σt

Appearance Model – Examples (cont’d)
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A. Dame, E. Marchand, “Accurate Real-time Tracking Using Mutual Information”, 2010
G. G. Scandaroli, M. Meilland, R. Richa, “Improving NCC-Based Direct Visual Tracking”, 2012



Results – Appearance Models (Demo)

FCLK with Homography
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High textured region

– gradients are different, large magnitudes

– large l1, large l2



Appearance model
Test images
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Appearance model
L^2 ||T-I||^2 aka “SSD”
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Appearance model
RSCV – Reversed Sum of Conditional Variance
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• Search Method (SM)

– Finds the warp that maximizes the similarity measure

System design

5
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System Design
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Evaluation Benchmarks
TMT

UCSB

PAMI

LinTrack



Evaluation Methodology - Datasets

• 4 large publicly available datasets with a total of 
over 100K frames

– TMT

– UCSB

– LinTrack

– PAMI

• Each sequence tested from 10 different starting 
points for an effective total of nearly 600K frames

32

Dataset

Without Subsequences With Subsequences

Sequences
Total 
Frames

Trackable
Frames

Sub-
sequences

Total 
Frames

Trackable 
Frames

TMT 109 70592 70483 1090 390470 389380

UCSB 96 6889 6793 960 41170 40210

LinTrack 3 12477 12474 30 68700 68670

PAMI 28 16511 16483 280 91400 91120

Total 236 106469 106233 2360 591740 589380



Evaluation Methodology – Performance Metric

• Alignment Error 𝐸𝐴𝐿

– 𝑬𝑨𝑳 =
𝟏

𝟒
𝑪𝑡𝑟𝑎𝑐𝑘 − 𝑪𝑔𝑡

• Success Rate (SR) 
– x axis : error threshold 𝑡𝑝 ∈ 0, 20

– y axis : fraction of frames with 𝐸𝐴𝐿 < 𝑡𝑝
– each sequence tracked from 10 different starting points

– measures both accuracy and robustness

• Failure Rate (FR)
– reinitialize whenever 𝐸𝐴𝐿 exceeds 20

– count the number of such failures

– additional metric for tracking robustness 33
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NNIC: 9.353

LMS:13.825

LMES:10.599

DSST:11.650
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Struck:10.697

GOTURN: 1.514

Results: Learning vs. 2DOF Registration 
Based Trackers (Accuracy)
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Euclidean pixel registration error



RBT vs Learn vs GoTurn
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Results: Learning vs. 2DOF Registration 
Based Trackers (Speed)
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Results –Learning Based Trackers (Demo)

ZNCC with Translation 42
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Results – Search Methods (Demo)
• The four variants of Lucas Kanade fail at different times
• Sequences from TMT

RSCV with Homography
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Results – Search Methods (Demo)
• The four variants of Lucas Kanade fail at different times 
• Sequence from UCSB
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Results – Search Methods (Demo)
• NN has more jitter than LK type SMs

– decreases with more samples
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Results – Search Methods (Demo)
• NNIC is more robust to motion blur
• Sequence from UCSB
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Conclusions

Questions ?Conclusions
• Tested different combinations of sub modules leading 

to several interesting observations that were missing in 
the original papers. 
– used two large datasets with over 77,000 frames in all to 

ensure statistical significance.

• Compared robust similarity metrics with traditional 
SSD type measures.

• Compared formulations against online learning based 
trackers to validate their usability for precise tracking

• Provided an open source tracking framework called
MTF using which all results can be reproduced 
– can also address practical tracking requirements with its 

efficient C++ implementation

MTF is available at: http://webdocs.cs.ualberta.ca/~vis/mtf/ along with all datasets 
and this presentation 49

http://webdocs.cs.ualberta.ca/~vis/mtf/


Project and Research opportunities 
in video tracking

• Combine learning and registration tracking search 
methods
– Direct deep network methods not precise

– Predict with deep network, refine with registration

• New appearance models
– Kullback-Liebler divergence

– AM based on deep features

• More detailed experimental evaluation
– Study failure causes in individual frames, solve those

– Our TMT benchmark data marked up for this (per-
fame annotation of blur, motion etc.)
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Results – Appearance Models (Demo)

FCLK with Homography
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Results – Appearance Models (Demo)
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Results – State Space Models (Demo)
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Results – State Space Models (Demo)
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Results – State Space Models
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