
View Dependent Texturing using a Linear Basis
Neil Birkbeck, Dana Cobzas, Martin Jagersand, Adam Rachmielowski, Keith Yerex

University of Alberta
Computing Science

video



Martin Jagersand 
U of Alberta1. Overview of 

Research Interests & Projects
•Mathematical imaging models

•Computer vision

•Medical imaging

•Robotics

•Visual Servoing
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CSA, Neptec, Xiphos and Barrett in 
Space Tele-robotics

Human-in-the-loop 
teleoperation is a current 
mission bottleneck

•Current ground-based 
tele-manipulation 
inefficient
– Transmission delays
– Non-anthophomorphic arms

•Space craft don’t fit 
enough operators

Tele

Shuttle flight trainer, Johnson Space Ctr
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Low budget 3D from video example

•Inexpensive

•Quick and convenient 
for the user

•Integrates with existing 
SW e.g. Blender, Maya

Capture objects
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Low budget 3D from video 

•Inexpensive

•Quick and convenient 
for the user

•Integrates with existing 
SW e.g. Blender, Maya

$100: Webcams, Digital Cams $100,000 Laser scanners etc.
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Low budget 3D from video 

•Inexpensive

•Quick and convenient 
for the user

•Integrates with existing 
SW e.g. Blender, Maya

Modeling geom primitives into scenes: >>Hours

Capturing 3D from 2D video: minutes
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Low budget 3D from video 

•Inexpensive

•Quick and convenient 
for the user

•Integrates with existing 
SW e.g. Blender, Maya
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Modeling Inuit Artifacts

• New acquisition at the UofA: A group of 8 
sculptures depicting Inuit seal hunt

• Acquired from sculptor by Hudson Bay Company
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Modeling Inuit Artifacts

Results:

1. A collection of 3D models of each component

2. Assembly of the individual models into 
animationsand Internet web study material.
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Capturing Macro geometry:

• Shape From Silhouette
– Works for objects
– Robust
– Visual hull not true object surface

• Structure From Motion
– Works for Scenes
– Typically  sparse
– Sometimes fragile (no salient points in scene)

• Space carving
– Use free space constraints

• (Dense “Stereo” -- later)
– Use as second refinement step
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2D Example

(b) New point       event

(a) Initial

(c) Retriangulation

& carving

(d) New camera event

Freespace
Uncarved/
occupied

Cameras

In 3D: Triang � Tetrahedra
Conflicts
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3D Modeling System

•Online, incremental handling of new-information events
– Inputs continuously change online
– Different types of changes trigger tailored processing
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3-tier Macro, Meso, Micro model

• Multi-Tiered Models:
– Commonly:

– Two tiers:  3D Geometry and appearance (* texture mapping) 

– Used in graphics applications, recovered in Vision applications

– Three-Tier

– Macro scale:  describes scene geometry (triangulated mesh) 

– Meso scale: fine scale geometric detail (displacement map) 

– Micro: fine scale geometry and reflectance (Texture basis) 

– Captured by sequential refinement
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Need: Multi-Scale Model

Modeling
(Computer vision)

Rendering
(Computer Graphics)

Geometry

Depth

Dynamic texture

Multi-Scale model: Macro geometry, Mesodepth, Micro texture

Demo



Martin Jagersand 
U of AlbertaThree scales map naturally to CPU and 

GPU hardware layers

Key issue: Efficient memory access and processing

1. Macro: Conventional geometry 
processing

2. Meso: Pixel shader
– Fixed code, variable data access

3. Micro: Shader or Register comb.
– Fixed code, fixed data access

10x

10x

Speedup
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Depth with respect to a plane

Flat texture Displacement 
mapped
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Variational shape and reflectance
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GPU: 83 pixel shader instructions

1. Sample d and ray at N (say15) points.
2. Find point location j of intersection 
3. Approximate d with line, calculate intersection
4. Potentially iterate if needed for accuracy 
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Results:

Over 100 fps on consumer graphics cards

Video
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Spatial texture basis

•Render a temporally varying dynamic texture by 
modulating a linear basis:

•Basis contains spatial derivatives of image

•Rendered by linear blending 
=> fixed execution and data access pattern 

=> very fast implementation in graphics hardware

y1* +y2* +…+ym*
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How/why do dynamic textures work?

I1

t

CAPTURE

I

View Re-projected 
geometry

Texture 
warp

Texture

=

Problem:

Texture 
images 
different

3D geometry and texture warp map between views and texture images
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Sources of errors:

I1

t

CAPTURE
View Re-projected 

geometry

Texture 
warp

Texture

3D geometry and texture warp map between views and texture images

1: Planar error: Incorrect texture coordinates

2: Out of plane error: 
Object surface /= texture plane
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Spatial basis intro

1. Moving sine wave can be modeled:

2. Small image motion

I(t) = sin(u+ at)

I = I0 + ∂u

∂I
∆u +

∂v

∂I
∆v

Spatially fixed basis
2 basis vectors 6 basis vectors

= sin(u) cos(at) + cos(u) sin(at)

= sin(u)y1(t) + cos(u)y2(t)

Spatially fixed basis
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spatio-temporal variation

On the object/texture plane:
– Variation resulting from small warp perturbations

– Taylor expansion:

...)( 00 tohTTviewT +∆+= ∂
∂ µµ

µ∆

= (µ∂
∂+ ...) toh+∆µ

…

Similarly: Can derive linear basis for out of plane and light variation!

0T

Small if         small

and       smooth

µ∆
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variability

Image “warp”

Image variability caused by an imperfect warp

First order approximation

Concrete examples
– Image plane

–Out of plane 
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warp (homography)
• Homography warp

• Projective variability:

• Where ,

and 
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Out-of-plane variability

•Let angle for ray to scene point

•Pre-warp texture plane rearrangement:

•Texture basis

∆Tp = d(u,v)
∂u
∂T,

∂v
∂T
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Texture 
plane

Scene

= Bpyp

Depth w.r.t. model facet
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Photometric variation

Analytic formulafor irradiance for a convex Lambertian 
object under distant illumination (with attached shadows)  
- spherical harmonics

[Barsi and Jacobs, Ramamoorthi and Hanrahan 2001] 
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Example of photometric variation
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Composite variability

Similarly, composite texture intensity variability

Can be modeled as sum of basis

∆T = ∆Ts+∆Td +∆Tl +∆Te

∆T = Bsys +Bdyd +Blyl +∆Te

Planar   Depth      Light  Res Err

= By+∆Te
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How to compute?

From a 3D graphics model: 
1. Texture intensity derivatives

2. Jacobian of warp or 
displacement function

• Results in about 20 
components: 

– T0

– 8 for planar, 

– 2 out-of plane (parallax), 

– 3-9 light

From video:

• We can expect an 
approximately 20dim 
variation in the space of 
all input texture images. 

=> Extract this subspace
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from images (cont)…

1. Take input video sequence, use SFS/SFM 
geometry to warp into texture space

I1

CAPTUREInput Images GeometryTexture 
warp

… …

…

2. Extract a 20-dim 
subspace through PCA

PCA

TexDemo
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and PCA basis the same?

• Same up to a linear transform!

• Experimental verification: planar homog

Derivatives

PCA

1 74
99% 
agreement
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Mapping from Images to Texture
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scale levels
1. Macro:

� SFM, SFS can generate coarse geometry but not detailed 
enough for realistic rendering

� Integrate tracking and structure computation

Scale: dozen pixels and up 

2. Meso :

� Refine coarse geometry and acquire reflectance– variational 
surface evolution

Scale: 1-dozen pixels

3. Micro spatial basis :

� Represents appearance and corrects for small geometric texture 
errors limited by linearity of image Scale: 0-5 pixels
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Comparison

1. Static texturing: (Many, e.g. Baumgartner et al. 3DSOM)

– Average color projected to point. 
– Better: Pick color minimizing reprojection error over all input images
Works when model geometry is close to ground truth and light simple

2. Viewdependent texture (Debevec et al)

– Pick color from closest input photograph (or interpolate from nearest 3)
Works when possible to store large numbers of images

3. Lumigraph / Surface light field (Buehler et al / Wood et al)

– Store all ray colors (plenoptic function) intersecting a proxy surface
Works if proxy surface close to true geometry

4. Dynamic texture (Ours: Jagersand ’97/ Matusik / Ikeuchi99 /Vasilescu04...

– Derive a Taylor expansion and represent derivatives of view dependency
Works for light and small (1-5 pixel) geometric displacements.

videos
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4 test cases

1. Simple Geom: SFS alone ok

2. General Geom: SFS + Variational 
Shape and Reflectance fitting 
(+View dep texture)

3. Complex Light: Dynamic Texture / 
Lumigraph

4. Challenge for Computer Vision
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4 test cases

1. Simple Geom: SFS alone ok

2. General Geom: SFS + 
Variational Shape and 
Reflectance fitting (+View dep 
texture)

3. Complex Light: Dynamic 
Texture / Lumigraph

4. Challenge for Computer 
Vision
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Example of render differences

• Jade Elephant
– Complex Reflectance (specularities and scattering) 

Input           Static            ViewDep    Lumigr.      DynTex

Specular highlight
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Tracking with a dyntex model + AR
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Capturing non-rigid animatable models
current PhD project, Neil Birkbeck
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Capturing non-rigid animatable models
current PhD project, Neil Birkbeck

For better movies see: 
http://webdocs.cs.ualberta.ca/~birkbeck/phd/
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Non-rigid and articulated motion

Our approach
-displacement and flow on proxy

-represent motion with linear basis
-variational formulation

PhD work of Neil Birkbeck, Best thesis prize winner
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Non-rigid and articulated motion

PhD work of Neil Birkbeck, Best thesis prize winner
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Non-rigid and articulated motion

• Humans ubiquitous in graphics applications

• A practical, realistic model requires 
– Skeleton

– Geometry (manually modeled, laser scanned)

• Physical simulation for clothes, muscle

– Texture/appearance (from images)

– Animation (mocap, simulation, artist)



Questions?

More information:

•Downloadable renderer+models
www.cs.ualberta.ca/~vis/ibmr

•Capturing software + IEEE VR tutorial text
www.cs.ualberta.ca/~vis/VR2003tut

•Main references for this talk: 

Jagersand et al “Three Tier Model” 3DPVT 2008 ….

Jagersand “Image-based Animation…” CVPR 1997

•More papers: www.cs.ualberta.ca/~jag
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•Computer vision

•engineer


