
Optic Flow and Motion Detection

Computer Vision  

Martin Jagersand

Readings:

3DV Ma, Kosecka, Sastry Ch 4.3

Szeliski Ch 5



Image motion

• Somehow quantify the 

frame-to-frame differences 

in image sequences.

1. Image intensity difference.

2. Vector motion=optic flow

3. When computable?

4. Numerical conditioning!

5. Resolution pyramids

6. 3-6 dim image motion 

computation
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Low level video processing “Visual 
motion detecton / optic flow”

•Relating two adjacent frames: (small differences):
Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)



Motion is used to:

•Attention: Detect and 

direct using eye and 

head motions 

•Control: Locomotion, 

manipulation, tools

•Vision: Segment, depth, 

trajectory



Small camera re-orientation

Note: Almost all pixels change!



Classes of motion

•Still camera, single moving object

•Still camera, several moving objects

•Moving camera, still background

•Moving camera, moving objects



Fixed video camera

•Background subtraction
– A static camera is observing a 

scene

– Goal: separate the static 

background from the moving 

foreground

How to come up 

with background 

frame estimate 

without access to 

“empty” scene?



The optic flow field

•Vector field over the image:

[u,v] = f(x,y),  u,v = Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction 
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optic flow field

•Relating two adjacent frames: (small differences):
Im(x+ u; y+ v; t+ ît) = Im(x; y; t)

[u,v] = f(x,y),  u,v = Vel vector, x,y = Im pos



Correspondance for a box

Locations of

points on the object

(the “structure”)

The change in spatial location

between the two cameras (the “motion”)



Motion/Optic flow vectors
How to compute?

Im(x+ îx; y + îy; t+ ît)

– Solve pixel correspondence problem

– given a pixel in Im1, look for same pixels in Im2

• Possible assumptions
1. color constancy:  a patch in I(t) looks the same in I(t)

– For grayscale images, this is brightness constancy

2. small motion:  points do not move very far

– This is called the optical flow problem

Im(x; y; t)



What pixels/patches correspond? 

Time t t+1

(Correspondence between image points – a common challenge:

Optic flow, Tracking, Features)



Image correspondence: Three assumptions

•Brightness consistency

•Spatial coherence

•Temporal persistence



Brightness consistency

Image measurement (e.g. brightness) in a small physical surface 

region remain the same although their image location may 

change.



Spatial coherence

• Neighboring points in the scene typically belong to the same 

surface and hence typically have similar motions.

• Since they also project to nearby pixels in the image, we 

expect spatial coherence in image flow.



Temporal persistence

The image motion of a surface patch changes gradually over time 

– no more than 2-5pixels/frame



Image registration: Three applications

Goal: register a template image T(x) and an input image I(x), 

where x=(x,y)T. (warp I so that it matches T)

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video 

image, t=0. I(x) is the image at time t+1. 

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

T

fixed

I

warp



Simple approach (for translation)

•Minimize brightness difference
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Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

Problems:

•Not efficient

•No sub-pixel accuracy
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Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);
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Optic/image flow

Assume: 
1. Image intensities from object points remain constant over time 

2. Image displacement/motion small

Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)

(Later: 

Subdivide image)

Small rectange of image

Brightness

consistency



Taylor expansion of intensity variation

Keep linear terms

• Use consistency assumption and rewrite:

• Notice: Linear constraint, but no unique solution
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What are the partial derivatives?
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What are the partial derivatives?
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dIm_t = I(t+1)-I(t)

Heath Ch 9



What are the partial derivatives?

0 =
@x

@Im
îx +
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@Im
îy +

@t

@Im
ît

dIm_t = I(t+1)-I(t)

Heath Ch 9

dIm_x = I(x+1,y)-I(x,y)

Matlab: dIm_x = I(:,2:n)-I(:,1:n-1)



Solving for 
optic flow

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
k = n*f 

Image spatial gradient normal n: rIm,                 later: M

The image motion / optic flow f = (îx îy) T,        later u

Image temporal gradient k: @Im/@t,                       later dIm

• Min length solution: Can only detect vectors normal to gradient direction

• The motion of a line cannot be recovered using only local information
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Flatten 2D images into vectors
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Equation for one pixel:

Equations for many pixels:



Solve for optic flow using several 
simultaneous equations

• Typically solve for motion in 2x2, 4x4, 8x8 or larger 
image patches. 

• Over determined equation system:

dIm =  M*u

• Can be solved in least squares sense using Matlab

u = M\dIm

• Can also be expressed using QR factorization: 

(QTM)u = QTdIm [Q, R] = qr(M), QTM=R

(Don’t compute  u = (MTM)-1*MTdIm Ill conditioned – see 340)
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Intuitive connection
images - equations
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Summary: Solve for optic flow using 
several simultaneous equations

• Taylor expansion for each patch:

• Over determined equation system:

dIm =  M*u

• Can be solved in least squares sense using Matlab

u = M\dIm
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Matlab

dIm = I(t+1)-I(t);

[dUm,dVm] = gradient(I(t)) % Or mean of I(t), I(t+1))

%Get an 8x8 patch:

dI = dIm(k:k+8, l:l+8); 

(same for dU, dV)

% Flatten into vector

dIv = dI(:);

M = [dUv dVv];

u = M\dIv
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Geometric view of
overdetermined equations

b = Ax
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Aperture problem

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
n*f = k

• Min length solution: Can only detect vectors normal 
to gradient direction

• The motion of a line cannot be recovered using only 
local information
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Aperture problem 2



The flow continuity constraint

• Flows of nearby pixels or 

patches are (nearly) equal

• Two equations, two 

unknowns:
n1 * f = k1

n2 * f = k2

• Unique solution f exists, 

provided n1 and n2 not 

parallel

f

n

f



Sensitivity to error

• n1 and n2 might be almost

parallel

• Tiny errors in estimates of k’s 

or n’s can lead to huge errors 

in the estimate of f

f

n

f



Conditions for solvability

– SSD Optimal (u, v) satisfies Optic Flow equation

Better: [u,s,v] = svd(A), s=diag(l1, l2) Heath Ch3.5 

When is this solvable?          
• ATA should be invertible 

• ATA entries should not be too small (noise)

• ATA should be well-conditioned

• Study eigenvalues:

– l1/ l2 should not be too large (l1 = larger eigenvalue)



Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);
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Optic Flow Real Image Challenges:

•Can we solve for accurate optic flow vectors 

everywhere using this image sequence?



Edge

– gradients very large or very small

– large l1, small l2



Low texture region

– gradients have small magnitude

– small l1, small l2



High textured region

– gradients are different, large magnitudes

– large l1, large l2



Observation

•This is a two image problem BUT
– Can measure sensitivity by just looking at one of the images!

– This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...
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Review “Visual motion detection / 
optic flow”

•Relating two adjacent frames: (small differences):
Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)

Vector

Field

[         ]îx îy



Correspondence between image points
Motion, Optic flow, Tracking, Features

Time t t+1



Image correspondence: Three assumptions

•Brightness consistency

•Spatial coherence

•Temporal persistence



Solve for optic flow using several 
simultaneous equations

• Taylor expansion for each patch:

• Over determined equation system:

dIm =  M*u

• Can be solved in least squares sense using Matlab

u = M\dIm
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Intuitive connection
images - equations
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Matlab

dIm = I(t+1)-I(t);

[dUm,dVm] = gradient(I(t)) %dUm = I(x+1,y,t) - I(x,y,t)

%Get an 8x8 patch:

dI = dIm(k:k+8, l:l+8); 

(same for dU, dV)

% Flatten into vector

dIv = dI(:);

M = [dUv dVv];

u = M\dIv
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Problems in Optic flow computation

•What are the potential causes of errors in this 

procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

•When our assumptions are violated
– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

–window size is too large

–what is the ideal window size?



Iterative Refinement

• Used in SSD/Lucas-Kanade tracking 

algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp / shift pixels I(t+1) = H towards I(t) using the estimated flow 

field

- use image warping techniques – ie OpenGL texture rendering

3. Repeat until convergence

(Iteration just like in 340 Newton methods, Heath Ch 5.)



Tracking Lucas-Kanade algorithm

Solving for the translational motion of a patch H

Over determined equation system:

-Im_t =            M          u

• Solve least squares using matlab

u = M\Im_t

• Update:  “Newton step”                  ……

p = p + u

• For k=1,2,…  Im_t = Im(t+1,x+p) – Im(t, x)
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How to source Im(.,x+p) ?

•When p is not integer interpolate pixels
Im(.,x+[1.2,1.5]) = .8*.5*Im(.,x+1,y+1) +.2*.5*Im(.,x+2,y+1)+… 

k=0

k=2

k=1p



Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms 

dominate)

– How might we solve this problem?



Reduce the resolution!
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9 Image Pyramids



2

/

1

/

2

0

0

5

M

o

t

i

o

n 

e

s

t

i

m

a

t

i

o

n

6

0 Pyramid Creation

•“Laplacian” Pyramid
– Created from Gaussian

pyramid by subtraction

Ll = Gl – expand(Gl+1)

filter mask

“Gaussian” Pyramid
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1 Octaves in the Spatial Domain

•Bandpass Images

Lowpass Images
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2 Pyramids

•Advantages of pyramids
– Faster than Fourier transform

– Avoids “ringing” artifacts

•Many applications
– small images faster to process

– good for multiresolution processing

– compression

– progressive transmission

•Known as “mip-maps” in graphics community

•Precursor to wavelets
– Wavelets also have these advantages 
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3

Laplacian

level

4

Laplacian

level

2

Laplacian

level

0

left pyramid right pyramid blended pyramid
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4 Pyramid Blending



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.



Q

MC/Frame 

Buffer

VLC

Q-1

IDCT

DCT

Prediction

Input
Mux

Decoded Picture

MCFD

-
+

Motion Vectors

Intra/Non-intra

Video compression codec

•Uses optic flow computation

Buffer

Q=f(B)
B: Buffer Occupancy

Output



Compressed movie decoding

•I = intensity frame(s) (DCT compressed)

•P = motion vectors

•B=reconstr.

interpolated

motion

Stream:

•IPBBB…

•Frames P,B also residual im



HW accelerated computation of flow 
vectors 

•Norbert’s trick: Use an mpeg-card to speed 

up motion computation



Other applications:

•Video tracking – Next lecture topic and L1.2

•Motion control, robots and animals (we will cover later)

•Image segmentation

•Recursive depth recovery:  



Lab:

•Assignment1:

•Purpose:
– Intro to image capture and 

processing

– Hands on optic flow 

experience

•See www page for 

details.

•Suggestions welcome!



Image registration 

WHAT is image registration 

Transform

a “source” image 

to match a “target” image 



Image registration 

WHAT is image registration 

Transform a “source” image to 

match a “target” image 



Image registration: Three applications

Goal: register a template image T(x) and an input image I(x), 

where x=(x,y)T. (warp I so that it matches T)

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video 

image, t=0. I(x) is the image at time t+1. 

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

4. Quadrilaterals, triangles, pixels…

T

fixed

I

warp



Medical image registration 

WHAT is image registration 

Transform a “source” image to 

match a “target” image 

Medical image registration  



Medical image registration 

WHAT is image registration 

Transform a “source” image to 

match a “target” image 

Medical image registration  



 Data (source, target)

 different medical images 

modalities (MRI, XRay, 

CT…)

 pre-acquired medical images 

with real-time images (video)

 patient data with an atlas

 For:

 atlas generation

 augmented reality (surgery)

 better diagnosis

 data analysis

Medical applications 



Formulation 

Very similar to tracking and optic flow.

I
A

I
B

Transform a “source” image to 

match a “target” image 

Find best transformation T 

through the minimization of an 

energy

min
T

Sim(I
A

- T(I
B
)) 



Formulation 
Very similar to tracking and optic flow.

I
A

I
B

Transform a “source” image to 

match a “target” image 

Find best transformation T 

through the minimization of an 

energy

min
T

Sim(I
A

- T(I
B
)) 

Maching – similarity score : Sim

- depends on data

- simple – same type of data - SSD : sum (I
A
(x) - T(I

B
(x)))2

- different illumination : NCC normalized cross correlation

- different imaging modalities : MI mutual information

Transformation : T

- (linear) rigid, affine [ex. Same patient]

-(nonliear)  image points are allowed to move differently 



Non-rigid registration

Looking for a deformation field (vector field) v that will move each 

voxel in image A to the corresponding voxel in image B

min
v

sum
x

(I
A
(x) – I

B
(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv

Each step is similar to an optic flow problem

min
δv

sum
x

(I
A
(x) – I

B
(x+v+δv))2

δv=-(I
A
(x) – I

B
(x+v))/grad I

B
(x+v)



Non-rigid registration

In practice – motion between images is not small > needs 

regularization and image pyramid to solve robustly 
min

v
sum (I

A
(x) – I

B
(x+v(x)))2 + R(v)

Looking for a deformation field (vector field) v that will move each 

voxel in image A to the corresponding voxel in image B

min
v

sum
x

(I
A
(x) – I

B
(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv

Each step is similar to an optic flow problem



Organizing Optic Flow

Ugrad: Optional

Grad: Cursory reading

All: optional from the 

PCA on vectors (slide  48)

Martin Jagersand



Organizing different kinds of motion

Two examples:

1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low 

dimensional subspace for complex motion



Remember:
The optic flow field

•Vector field over the image:

[u,v] = f(x,y),  u,v = Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction 



Remember last lecture:

•Solving for the motion of a patch

Over determined equation system:

Imt = Mu

•Can be solved in e.g. least squares sense using 

matlab u = M\Imt

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
ux
uy

 !

t
t+1



3-6D Optic flow

•Generalize to many freedooms (DOFs)

Im  = Mu



Example:
All 6 freedoms

X                 Y          Rotation      Scale         Aspect       Shear

M(u) = @Im =@u

M(u) = @Im=@uDifference images

Template



Know what type of motion
(Greg Hager, Peter Belhumeur)

u’i =  A ui + dE.g. Planar Object  => Affine motion model:

It = g(pt, I0)



Mathematical Formulation

• Define a “warped image” g
– f(p,x) = x’ (warping function), p warp parameters

– I(x,t) (image a location x at time t)

– g(p,It) = (I(f(p,x1),t), I(f(p,x2),t), … I(f(p,xN),t))’

• Define the Jacobian of warping function
– M(p,t) =

• Model

– I0 =  g(pt, It ) (image I, variation model g, parameters p)

– DI =  M(pt, It) Dp (local linearization M)

• Compute motion parameters
 Dp = (MT M)-1 MT DI where  M = M(pt,It)        (Remember solve with QR or SVD)

@p

@I
h i



Planar 3D motion

From geometry we know that the correct plane-to-plane 

transform is 

1. for a perspective camera the projective homography

1. for a linear camera (orthographic, weak-, para-

perspective) the affine warp

uw
vw

" #

= Wa(p; a) =

a3 a4

a5 a6

" #

p+

a1

a2

" #

u0

v0

" #

= Wh(xh;h) = 1+h7u+h8v

1
h1u h3v h5
h2u h4v h6

" #



Planar Texture Variability 1
Affine Variability

•Affine warp function

•Corresponding image variability

•Discretized for images

= [B1. . .B6][y1; . . .; y6]
T = Baya

ÉIa =
P

i=1

6

@a i

@ IwÉai = @u

@I ;
@v
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â ã
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@a6
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@a1
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@a6

@v

" #
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Éa6

2

4

3

5
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0 1 0 ã u 0 ã v
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y6

2

4

3

5

uw
vw

" #

= Wa(p; a) =

a3 a4
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" #

p+

a1

a2

" #



On The Structure of M

u’i = A ui + d

Planar Object + linear (infinite) camera

-> Affine motion model

X                 Y          Rotation      Scale         Aspect       Shear

M(p) = @g=@p

a3 a4

a5 a6

" #

= sR(Ê)

a 0

0 1

" #
1 0

h 1

" #



Planar motion under perspective 
projection

•Perspective plane-plane transforms defined by 

homographies



Planar Texture Variability 2
Projective Variability

• Homography warp

• Projective variability:

• Where ,

and 

u0

v0

" #

= Wh(xh;h) = 1+h7u+h8v

1
h1u h3v h5
h2u h4v h6

" #

ÉIh = c1

1
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@I ;
@v

@I
â ã u 0 v 0 1 0 à
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uc2 à
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0 u 0 v 0 1 à
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uc3 à
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2
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3

5
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Éh8

2
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3

5

c1 = 1 + h7u+ h8v

c3 = h2u+ h4v+ h6

c2 = h1u+ h3v+ h5

= [B1. . .B8][y1; . . .; y8]
T = Bhyh



Planar-perspective motion 3

•In practice hard to compute 8 parameter model 

stably from one image, and impossible to  find 

out-of plane variation

•Estimate variability basis from several images:

Computed                   Estimated



Another idea Black, Fleet) Organizing 
flow fields

•Express flow field f in 
subspace basis m

•Different “mixing” 
coefficients a
correspond to different 
motions



Example:
Image discontinuities



Mathematical formulation

Let:

Mimimize objective function:

=

Where

Motion 

basis

Robust error norm



Experiment
Moving camera

•4x4 pixel 

patches

•Tree in 

foreground 

separates well 



Experiment:
Characterizing lip motion

•Very non-rigid!



Questions to think about

Readings: Book chapter, Fleet et al. paper.

Compare the methods in the paper and lecture

1. Any major differences?

2. How dense flow can be estimated (how many 

flow vectore/area unit)?

3. How dense in time do we need to sample?



Summary

• Three types of visual motion extraction
1. Optic (image) flow: Find x,y – image velocities

2. 3-6D motion: Find object pose change in image coordinates 

based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

• Visual motion still not satisfactorily solved 

problem



(Parenthesis)
Euclidean world motion -> image

Let us assume there is one rigid object moving with

velocity T  and w = d R / dt

For a given point P on the object, we have

p = f P/z  

The apparent velocity of the point is

V = -T – w x P

Therefore, we have v = dp/dt = f (z V – Vz P)/z2



Component wise:

f

ywxyw
xwfw

z

fTxT
fv

f

xwxyw
ywfw

z

fTxT
fv

xy

zx

yz

y

yx

zy
xz

x

2

2













Motion due to translation:

depends on depth
Motion due to rotation:

independent of depth



Sensing and Perceiving Motion

Martin 

Jagersand



Counterphase sin grating

•Spatio-temporal pattern
– Time t, Spatial x,y

s(x; y; t) = A cos(Kx cosÊ +Ky sinÊà Ð)cos(!t)



Counterphase sin grating

• Spatio-temporal pattern
– Time t, Spatial x,y

Rewrite as dot product:

=                                      +   

s(x; y; t) = A cos(Kx cosÊ +Ky sinÊà Ð)cos(!t)

2
1(cos([a; b]

x

y

ô õ

à !t) + cos([a; b]
x

y

ô õ

+ !t)

Result: Standing wave is superposition of two moving waves



Analysis:

•Only one term: Motion left or right

•Mixture of both: Standing wave

•Direction can flip between left and right



Reichardt detector

• QT movie



Several
motion models

• Gradient: in 

Computer Vision

• Correlation: In bio 

vision

• Spatiotemporal 

filters: Unifying 

model



Spatial response:
Gabor function

•Definition:



Temporal response:

Adelson, Bergen ’85

Note: Terms from 

taylor of sin(t)

Spatio-temporal D=DsDt



Receptor response to
Counterphase grating

•Separable convolution



Simplified:

•For our grating: (Theta=0)

•Write as sum of components:

= exp(…)*(acos…  +  bsin…)

Ls = 2

A exp
2

àû2(kàK)2
ð ñ

cos(þ à Ð)



Space-time receptive field



Combined cells

• Spat:                             Temp:

• Both:

• Comb:



Result:

•More directionally specific response



Energy model:

•Sum odd and even phase 

components

•Quadrature rectifier



Adaption:
Motion aftereffect



Where is motion processed?



Higher effects:



Equivalence:
Reich and Spat



Conclusion

•Evolutionary motion detection is important

•Early processing modeled by Reichardt detector 

or spatio-temporal filters.

•Higher processing poorly understood


