
Optic Flow and Motion Detection

Computer Vision

Martin Jagersand

Readings:

3DV Ma, Kosecka, Sastry Ch 4.3

Szeliski Ch 5

Image motion

• Somehow quantify the

frame-to-frame differences

in image sequences.

1. Image intensity difference.

2. Vector motion=optic flow

3. When computable?

4. Numerical conditioning!

5. Resolution pyramids

6. 3-6 dim image motion

computation

1

/

1

6

/

2

0

2

5

3

Low level video processing “Visual
motion detecton / optic flow”

•Relating two adjacent frames: (small differences):
Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)

Motion is used to:

•Attention: Detect and

direct using eye and

head motions

•Control: Locomotion,

manipulation, tools

•Vision: Segment, depth,

trajectory

Small camera re-orientation

Note: Almost all pixels change!

Classes of motion

•Still camera, single moving object

•Still camera, several moving objects

•Moving camera, still background

•Moving camera, moving objects

Fixed video camera

•Background subtraction
– A static camera is observing a

scene

– Goal: separate the static

background from the moving

foreground

How to come up

with background

frame estimate

without access to

“empty” scene?

The optic flow field

•Vector field over the image:

[u,v] = f(x,y), u,v = Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction

1

/

1

6

/

2

0

2

5

9

optic flow field

•Relating two adjacent frames: (small differences):
Im(x+ u; y+ v; t+ ît) = Im(x; y; t)

[u,v] = f(x,y), u,v = Vel vector, x,y = Im pos

Correspondance for a box

Locations of

points on the object

(the “structure”)

The change in spatial location

between the two cameras (the “motion”)

Motion/Optic flow vectors
How to compute?

Im(x+ îx; y + îy; t+ ît)

– Solve pixel correspondence problem

– given a pixel in Im1, look for same pixels in Im2

• Possible assumptions
1. color constancy: a patch in I(t) looks the same in I(t)

– For grayscale images, this is brightness constancy

2. small motion: points do not move very far

– This is called the optical flow problem

Im(x; y; t)

What pixels/patches correspond?

Time t t+1

(Correspondence between image points – a common challenge:

Optic flow, Tracking, Features)

Image correspondence: Three assumptions

•Brightness consistency

•Spatial coherence

•Temporal persistence

Brightness consistency

Image measurement (e.g. brightness) in a small physical surface

region remain the same although their image location may

change.

Spatial coherence

• Neighboring points in the scene typically belong to the same

surface and hence typically have similar motions.

• Since they also project to nearby pixels in the image, we

expect spatial coherence in image flow.

Temporal persistence

The image motion of a surface patch changes gradually over time

– no more than 2-5pixels/frame

Image registration: Three applications

Goal: register a template image T(x) and an input image I(x),

where x=(x,y)T. (warp I so that it matches T)

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video

image, t=0. I(x) is the image at time t+1.

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

T

fixed

I

warp

Simple approach (for translation)

•Minimize brightness difference

  
yx

yxTvyuxIvuE
,

2
),(),(),(

Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

Problems:

•Not efficient

•No sub-pixel accuracy

  
yx

yxTvyuxIvuE
,

2
),(),(),(

Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

  
yx

yxTvyuxIvuE
,

2
),(),(),(

Optic/image flow

Assume:
1. Image intensities from object points remain constant over time

2. Image displacement/motion small

Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)

(Later:

Subdivide image)

Small rectange of image

Brightness

consistency

Taylor expansion of intensity variation

Keep linear terms

• Use consistency assumption and rewrite:

• Notice: Linear constraint, but no unique solution

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

Im(x + îx; y + îy; t+ ît) = Im(x; y; t) +
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît+ h:o:t:

Im(x + îx; y + îy; t+ ît) = Im(x; y; t) +
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît+ h:o:t:

Taylor expansion:

(9îx; îy)s:t: Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t) Brightness

consistency

What are the partial derivatives?

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

What are the partial derivatives?

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

What are the partial derivatives?

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

dIm_t = I(t+1)-I(t)

Heath Ch 9

What are the partial derivatives?

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

dIm_t = I(t+1)-I(t)

Heath Ch 9

dIm_x = I(x+1,y)-I(x,y)

Matlab: dIm_x = I(:,2:n)-I(:,1:n-1)

Solving for
optic flow

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
k = n*f

Image spatial gradient normal n: rIm, later: M

The image motion / optic flow f = (îx îy) T, later u

Image temporal gradient k: @Im/@t, later dIm

• Min length solution: Can only detect vectors normal to gradient direction

• The motion of a line cannot be recovered using only local information

à
@t

@Im
=

@x

@Im
;
@y

@Im
ð ñ

á îx

îy

ò ó

= rIm á îx

îy

ò ó

f

n

f

ît

Flatten 2D images into vectors

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

à
@t

@Im
=

@x

@Im
;
@y

@Im
ð ñ îx

îy

ò ó

= rIm
îx

îy

ò ó

ît

Equation for one pixel:

Equations for many pixels:

Solve for optic flow using several
simultaneous equations

• Typically solve for motion in 2x2, 4x4, 8x8 or larger
image patches.

• Over determined equation system:

dIm = M*u

• Can be solved in least squares sense using Matlab

u = M\dIm

• Can also be expressed using QR factorization:

(QTM)u = QTdIm [Q, R] = qr(M), QTM=R

(Don’t compute u = (MTM)-1*MTdIm Ill conditioned – see 340)

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

Intuitive connection
images - equations

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

îx îy=

I(t+1)-I(t);

+

Summary: Solve for optic flow using
several simultaneous equations

• Taylor expansion for each patch:

• Over determined equation system:

dIm = M*u

• Can be solved in least squares sense using Matlab

u = M\dIm

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

Im(x + îx; y + îy; t+ ît) = Im(x; y; t) +
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît+ h:o:t:

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

(9îx; îy)s:t: Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t) Brightness

consistency

Matlab

dIm = I(t+1)-I(t);

[dUm,dVm] = gradient(I(t)) % Or mean of I(t), I(t+1))

%Get an 8x8 patch:

dI = dIm(k:k+8, l:l+8);

(same for dU, dV)

% Flatten into vector

dIv = dI(:);

M = [dUv dVv];

u = M\dIv

1 2

3 4

1

2

3

4

k

l

Geometric view of
overdetermined equations

b = Ax

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

a_1

a_2

b

Aperture problem

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
n*f = k

• Min length solution: Can only detect vectors normal
to gradient direction

• The motion of a line cannot be recovered using only
local information

à
@t

@Im
=

@x

@Im
;
@y

@Im
ð ñ

á îx

îy

ò ó

= rIm á îx

îy

ò ó

f

n

f

ît

Aperture problem 2

The flow continuity constraint

• Flows of nearby pixels or

patches are (nearly) equal

• Two equations, two

unknowns:
n1 * f = k1

n2 * f = k2

• Unique solution f exists,

provided n1 and n2 not

parallel

f

n

f

Sensitivity to error

• n1 and n2 might be almost

parallel

• Tiny errors in estimates of k’s

or n’s can lead to huge errors

in the estimate of f

f

n

f

Conditions for solvability

– SSD Optimal (u, v) satisfies Optic Flow equation

Better: [u,s,v] = svd(A), s=diag(l1, l2) Heath Ch3.5

When is this solvable?
• ATA should be invertible

• ATA entries should not be too small (noise)

• ATA should be well-conditioned

• Study eigenvalues:

– l1/ l2 should not be too large (l1 = larger eigenvalue)

Simple image registration algorithm
SSD error norm

For each offset (u, v)

compute E(u,v);

Choose (u, v) which minimizes E(u,v);

  
yx

yxTvyuxIvuE
,

2
),(),(),(

Optic Flow Real Image Challenges:

•Can we solve for accurate optic flow vectors

everywhere using this image sequence?

Edge

– gradients very large or very small

– large l1, small l2

Low texture region

– gradients have small magnitude

– small l1, small l2

High textured region

– gradients are different, large magnitudes

– large l1, large l2

Observation

•This is a two image problem BUT
– Can measure sensitivity by just looking at one of the images!

– This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...

1

/

1

6

/

2

0

2

5

4

7

Review “Visual motion detection /
optic flow”

•Relating two adjacent frames: (small differences):
Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t)

Vector

Field

[]îx îy

Correspondence between image points
Motion, Optic flow, Tracking, Features

Time t t+1

Image correspondence: Three assumptions

•Brightness consistency

•Spatial coherence

•Temporal persistence

Solve for optic flow using several
simultaneous equations

• Taylor expansion for each patch:

• Over determined equation system:

dIm = M*u

• Can be solved in least squares sense using Matlab

u = M\dIm

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

Im(x + îx; y + îy; t+ ît) = Im(x; y; t) +
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît+ h:o:t:

0 =
@x

@Im
îx +

@y

@Im
îy +

@t

@Im
ît

(9îx; îy)s:t: Im(x+ îx; y+ îy; t+ ît) = Im(x; y; t) Brightness

consistency

Intuitive connection
images - equations

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
îx

îy

ò ó

îx îy=

I(t+1)-I(t);

+

Matlab

dIm = I(t+1)-I(t);

[dUm,dVm] = gradient(I(t)) %dUm = I(x+1,y,t) - I(x,y,t)

%Get an 8x8 patch:

dI = dIm(k:k+8, l:l+8);

(same for dU, dV)

% Flatten into vector

dIv = dI(:);

M = [dUv dVv];

u = M\dIv

1 2

3 4

1

2

3

4

k

l

Problems in Optic flow computation

•What are the potential causes of errors in this

procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

•When our assumptions are violated
– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

–window size is too large

–what is the ideal window size?

Iterative Refinement

• Used in SSD/Lucas-Kanade tracking

algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp / shift pixels I(t+1) = H towards I(t) using the estimated flow

field

- use image warping techniques – ie OpenGL texture rendering

3. Repeat until convergence

(Iteration just like in 340 Newton methods, Heath Ch 5.)

Tracking Lucas-Kanade algorithm

Solving for the translational motion of a patch H

Over determined equation system:

-Im_t = M u

• Solve least squares using matlab

u = M\Im_t

• Update: “Newton step” ……

p = p + u

• For k=1,2,… Im_t = Im(t+1,x+p) – Im(t, x)

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
ux
uy

 !

k=0

k=2

k=1p

How to source Im(.,x+p) ?

•When p is not integer interpolate pixels
Im(.,x+[1.2,1.5]) = .8*.5*Im(.,x+1,y+1) +.2*.5*Im(.,x+2,y+1)+…

k=0

k=2

k=1p

Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms

dominate)

– How might we solve this problem?

Reduce the resolution!

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

5

9 Image Pyramids

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

6

0 Pyramid Creation

•“Laplacian” Pyramid
– Created from Gaussian

pyramid by subtraction

Ll = Gl – expand(Gl+1)

filter mask

“Gaussian” Pyramid

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

6

1 Octaves in the Spatial Domain

•Bandpass Images

Lowpass Images

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

6

2 Pyramids

•Advantages of pyramids
– Faster than Fourier transform

– Avoids “ringing” artifacts

•Many applications
– small images faster to process

– good for multiresolution processing

– compression

– progressive transmission

•Known as “mip-maps” in graphics community

•Precursor to wavelets
– Wavelets also have these advantages

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

6

3

Laplacian

level

4

Laplacian

level

2

Laplacian

level

0

left pyramid right pyramid blended pyramid

2

/

1

/

2

0

0

5

M

o

t

i

o

n

e

s

t

i

m

a

t

i

o

n

6

4 Pyramid Blending

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Q

MC/Frame

Buffer

VLC

Q-1

IDCT

DCT

Prediction

Input
Mux

Decoded Picture

MCFD

-
+

Motion Vectors

Intra/Non-intra

Video compression codec

•Uses optic flow computation

Buffer

Q=f(B)
B: Buffer Occupancy

Output

Compressed movie decoding

•I = intensity frame(s) (DCT compressed)

•P = motion vectors

•B=reconstr.

interpolated

motion

Stream:

•IPBBB…

•Frames P,B also residual im

HW accelerated computation of flow
vectors

•Norbert’s trick: Use an mpeg-card to speed

up motion computation

Other applications:

•Video tracking – Next lecture topic and L1.2

•Motion control, robots and animals (we will cover later)

•Image segmentation

•Recursive depth recovery:

Lab:

•Assignment1:

•Purpose:
– Intro to image capture and

processing

– Hands on optic flow

experience

•See www page for

details.

•Suggestions welcome!

Image registration

WHAT is image registration

Transform

a “source” image

to match a “target” image

Image registration

WHAT is image registration

Transform a “source” image to

match a “target” image

Image registration: Three applications

Goal: register a template image T(x) and an input image I(x),

where x=(x,y)T. (warp I so that it matches T)

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video

image, t=0. I(x) is the image at time t+1.

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

4. Quadrilaterals, triangles, pixels…

T

fixed

I

warp

Medical image registration

WHAT is image registration

Transform a “source” image to

match a “target” image

Medical image registration

Medical image registration

WHAT is image registration

Transform a “source” image to

match a “target” image

Medical image registration

 Data (source, target)

 different medical images

modalities (MRI, XRay,

CT…)

 pre-acquired medical images

with real-time images (video)

 patient data with an atlas

 For:

 atlas generation

 augmented reality (surgery)

 better diagnosis

 data analysis

Medical applications

Formulation

Very similar to tracking and optic flow.

I
A

I
B

Transform a “source” image to

match a “target” image

Find best transformation T

through the minimization of an

energy

min
T

Sim(I
A

- T(I
B
))

Formulation
Very similar to tracking and optic flow.

I
A

I
B

Transform a “source” image to

match a “target” image

Find best transformation T

through the minimization of an

energy

min
T

Sim(I
A

- T(I
B
))

Maching – similarity score : Sim

- depends on data

- simple – same type of data - SSD : sum (I
A
(x) - T(I

B
(x)))2

- different illumination : NCC normalized cross correlation

- different imaging modalities : MI mutual information

Transformation : T

- (linear) rigid, affine [ex. Same patient]

-(nonliear) image points are allowed to move differently

Non-rigid registration

Looking for a deformation field (vector field) v that will move each

voxel in image A to the corresponding voxel in image B

min
v

sum
x

(I
A
(x) – I

B
(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv

Each step is similar to an optic flow problem

min
δv

sum
x

(I
A
(x) – I

B
(x+v+δv))2

δv=-(I
A
(x) – I

B
(x+v))/grad I

B
(x+v)

Non-rigid registration

In practice – motion between images is not small > needs

regularization and image pyramid to solve robustly
min

v
sum (I

A
(x) – I

B
(x+v(x)))2 + R(v)

Looking for a deformation field (vector field) v that will move each

voxel in image A to the corresponding voxel in image B

min
v

sum
x

(I
A
(x) – I

B
(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv

Each step is similar to an optic flow problem

Organizing Optic Flow

Ugrad: Optional

Grad: Cursory reading

All: optional from the

PCA on vectors (slide 48)

Martin Jagersand

Organizing different kinds of motion

Two examples:

1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low

dimensional subspace for complex motion

Remember:
The optic flow field

•Vector field over the image:

[u,v] = f(x,y), u,v = Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction

Remember last lecture:

•Solving for the motion of a patch

Over determined equation system:

Imt = Mu

•Can be solved in e.g. least squares sense using

matlab u = M\Imt

...

à
@t

@Im

...

0

@

1

A =

...
...

@x

@Im

@y

@Im

...
...

0

@

1

A
ux
uy

 !

t
t+1

3-6D Optic flow

•Generalize to many freedooms (DOFs)

Im = Mu

Example:
All 6 freedoms

X Y Rotation Scale Aspect Shear

M(u) = @Im =@u

M(u) = @Im=@uDifference images

Template

Know what type of motion
(Greg Hager, Peter Belhumeur)

u’i = A ui + dE.g. Planar Object => Affine motion model:

It = g(pt, I0)

Mathematical Formulation

• Define a “warped image” g
– f(p,x) = x’ (warping function), p warp parameters

– I(x,t) (image a location x at time t)

– g(p,It) = (I(f(p,x1),t), I(f(p,x2),t), … I(f(p,xN),t))’

• Define the Jacobian of warping function
– M(p,t) =

• Model

– I0 = g(pt, It) (image I, variation model g, parameters p)

– DI = M(pt, It) Dp (local linearization M)

• Compute motion parameters
 Dp = (MT M)-1 MT DI where M = M(pt,It) (Remember solve with QR or SVD)

@p

@I
h i

Planar 3D motion

From geometry we know that the correct plane-to-plane

transform is

1. for a perspective camera the projective homography

1. for a linear camera (orthographic, weak-, para-

perspective) the affine warp

uw
vw

" #

= Wa(p; a) =

a3 a4

a5 a6

" #

p+

a1

a2

" #

u0

v0

" #

= Wh(xh;h) = 1+h7u+h8v

1
h1u h3v h5
h2u h4v h6

" #

Planar Texture Variability 1
Affine Variability

•Affine warp function

•Corresponding image variability

•Discretized for images

= [B1. . .B6][y1; . . .; y6]
T = Baya

ÉIa =
P

i=1

6

@a i

@ IwÉai = @u

@I ;
@v

@I
â ã

@a1

@u á á á
@a6

@u

@a1

@v á á á
@a6

@v

" #
Éa1...

Éa6

2

4

3

5

ÉIa = @u

@I ;
@v

@I
â ã 1 0 ã u 0 ã v 0

0 1 0 ã u 0 ã v

" #
y1...

y6

2

4

3

5

uw
vw

" #

= Wa(p; a) =

a3 a4

a5 a6

" #

p+

a1

a2

" #

On The Structure of M

u’i = A ui + d

Planar Object + linear (infinite) camera

-> Affine motion model

X Y Rotation Scale Aspect Shear

M(p) = @g=@p

a3 a4

a5 a6

" #

= sR(Ê)

a 0

0 1

" #
1 0

h 1

" #

Planar motion under perspective
projection

•Perspective plane-plane transforms defined by

homographies

Planar Texture Variability 2
Projective Variability

• Homography warp

• Projective variability:

• Where ,

and

u0

v0

" #

= Wh(xh;h) = 1+h7u+h8v

1
h1u h3v h5
h2u h4v h6

" #

ÉIh = c1

1

@u

@I ;
@v

@I
â ã u 0 v 0 1 0 à

c1

uc2 à
c1

vc2

0 u 0 v 0 1 à
c1

uc3 à
c1

vc3

2

4

3

5
Éh1...

Éh8

2

4

3

5

c1 = 1 + h7u+ h8v

c3 = h2u+ h4v+ h6

c2 = h1u+ h3v+ h5

= [B1. . .B8][y1; . . .; y8]
T = Bhyh

Planar-perspective motion 3

•In practice hard to compute 8 parameter model

stably from one image, and impossible to find

out-of plane variation

•Estimate variability basis from several images:

Computed Estimated

Another idea Black, Fleet) Organizing
flow fields

•Express flow field f in
subspace basis m

•Different “mixing”
coefficients a
correspond to different
motions

Example:
Image discontinuities

Mathematical formulation

Let:

Mimimize objective function:

=

Where

Motion

basis

Robust error norm

Experiment
Moving camera

•4x4 pixel

patches

•Tree in

foreground

separates well

Experiment:
Characterizing lip motion

•Very non-rigid!

Questions to think about

Readings: Book chapter, Fleet et al. paper.

Compare the methods in the paper and lecture

1. Any major differences?

2. How dense flow can be estimated (how many

flow vectore/area unit)?

3. How dense in time do we need to sample?

Summary

• Three types of visual motion extraction
1. Optic (image) flow: Find x,y – image velocities

2. 3-6D motion: Find object pose change in image coordinates

based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

• Visual motion still not satisfactorily solved

problem

(Parenthesis)
Euclidean world motion -> image

Let us assume there is one rigid object moving with

velocity T and w = d R / dt

For a given point P on the object, we have

p = f P/z

The apparent velocity of the point is

V = -T – w x P

Therefore, we have v = dp/dt = f (z V – Vz P)/z2

Component wise:

f

ywxyw
xwfw

z

fTxT
fv

f

xwxyw
ywfw

z

fTxT
fv

xy

zx

yz

y

yx

zy
xz

x

2

2













Motion due to translation:

depends on depth
Motion due to rotation:

independent of depth

Sensing and Perceiving Motion

Martin

Jagersand

Counterphase sin grating

•Spatio-temporal pattern
– Time t, Spatial x,y

s(x; y; t) = A cos(Kx cosÊ +Ky sinÊà Ð)cos(!t)

Counterphase sin grating

• Spatio-temporal pattern
– Time t, Spatial x,y

Rewrite as dot product:

= +

s(x; y; t) = A cos(Kx cosÊ +Ky sinÊà Ð)cos(!t)

2
1(cos([a; b]

x

y

ô õ

à !t) + cos([a; b]
x

y

ô õ

+ !t)

Result: Standing wave is superposition of two moving waves

Analysis:

•Only one term: Motion left or right

•Mixture of both: Standing wave

•Direction can flip between left and right

Reichardt detector

• QT movie

Several
motion models

• Gradient: in

Computer Vision

• Correlation: In bio

vision

• Spatiotemporal

filters: Unifying

model

Spatial response:
Gabor function

•Definition:

Temporal response:

Adelson, Bergen ’85

Note: Terms from

taylor of sin(t)

Spatio-temporal D=DsDt

Receptor response to
Counterphase grating

•Separable convolution

Simplified:

•For our grating: (Theta=0)

•Write as sum of components:

= exp(…)*(acos… + bsin…)

Ls = 2

A exp
2

àû2(kàK)2
ð ñ

cos(þ à Ð)

Space-time receptive field

Combined cells

• Spat: Temp:

• Both:

• Comb:

Result:

•More directionally specific response

Energy model:

•Sum odd and even phase

components

•Quadrature rectifier

Adaption:
Motion aftereffect

Where is motion processed?

Higher effects:

Equivalence:
Reich and Spat

Conclusion

•Evolutionary motion detection is important

•Early processing modeled by Reichardt detector

or spatio-temporal filters.

•Higher processing poorly understood

