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Somehow quantify the
frame-to-frame differences
In Image sequences.

Image intensity difference.
Vector motion=optic flow
When computable?
Numerical conditioning!
Resolution pyramids

3-6 dim image motion




Low level video processing “Visual
5 %29

gaotion detecton / optic flow
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Relating two adjacent frames: (small differences):
Im(x +déx, y+dy, t+46t) = Im(x, y, t)



~ . . 2 -
eye control

head control
hand cantrol

e Attention: Detect and
direct using eye and
head motions tool control

«Control: Locomotion,
manipulation, tools

*Vision: Segment, depth, ™=

trajectory m;/ '




Note: Almost all pixels change!




« Still camera, single moving object
« Still camera, several moving objects

* Moving carr
* Moving car



e Background subtraction
— A static camera is observing a

sScene

— Goal: separate the static
background from the movin

foreground

How to come up
with background
frame estimate
without access to

‘empty” scene?



_The optic flow field
< - ‘1 | -~ ( o 5 éf}_ ";'\L ,»
\ector field over the image:

[uv] = f(X,y), u,v = Vel vector, X,y = Im pos
*FOE, FOC Focus of Expansion, Contraction
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[uv] = f(X,y), u,v = Vel vector, X,y = Im pos

Relating two adjacent frames: (small differences):
Im(x+ uw, y+v, t+06t) = Im(x, y, t)




Correspondance for a box
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;
The change in spatial location
between the two cameras (the “motion”) |_ocations of

points on the object
(the “structure™)



. I\/Iotlon/Optlc flow vectors

Im(z, y, t) Im(xz + 0x, y+dy, t—+dt) .

— Solve pixel correspondence problem
—given a pixel in Im1, look for same pixels in Im2

« Possible assumptions
1. color constancy: apatch in I(t) looks the same in I(t)
— For grayscale images, this is brightness constancy
2. small motion: points do not move very far
— This is called the optical flow problem




Time t t+1

(Correspondence between image points —a common challenge:
Optic flow, Tracking, Features)



mage correspondence: Three assumptions
' T A o : O
Brightness conswtency | |
«Spatial coherence
* Temporal persistence



Image measurement (e.g. brightness) in a small physical surface
region remain the same although their image location may
change.



Spatial coherence

Image Plane

« Neighboring points in the scene typically belong to the same
surface and hence typically have similar motions.

 Since they also project to nearby pixels in the image, we
expect spatial coherence in image flow.



~__Temporal persistence

The image motion of a surface patch changes gradually over time
— no more than 2-5pixels/frame



Image reglstratlon Three appllcatlons

» ‘ . . - a" ‘
Goal register a template image T(x) and an mput |mage I(x)
where x=(x,y)'. (warp | so that it matches T)

0&'

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video
Image, t=0. I(x) is the image at time t+1.

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

warp ™\ _--,

fixed




Simple approach (for translation)

inimize brightness difference ~ = = &%
E(u,v) =Y (1(x+u,y+V)=T(x,y))
X,y




Simple image registration algorithm

- SSD error norm

AL
-~ ; - ,? _.‘ i

For each offset (u, v)
compute E(u,v);
Choose (u, v) which minimizes E(u,v);

E(u,v) =Y (1(X+U,y+v)-T(x,y))

Problems:
*Not efficient
*No sub-pixel accuracy



Simple image registration algorithm

SSD error norm

E(u,v)=> (1(x+u,y+V)=T(x,y))

For each offset (u, v)
compute E(u,v);
Choose (u, v) which minimizes E(u,v);




AsSsume:

1. Image intensities from object points remain constant over time

2. Image displacement/motion small
Brightness

I +d0x, y+oy, t+0t) = Im(x, vy, t _
m(a: Y ¢ ) ( Y ) con5|stency

(Later:
Subdivide image)

Small rectange of image



Tay or expansion of |nten3|ty varlatlon

Taylor expansion:

Im(z 4+ dx,y + oy, t + 0t) = Im(x,y,t) + %—;néx —I—%H&g —I—%m& + h.o.t.

/

Keep linear terms

(F0z,0y)s.t. Im(z +ox, y+0dy, t+0t) = Im(z, y, t)«—— Brightness
» Use consistency assumption and rewrite: consistency

0 = Dngy 4 dingy 4 Oy

« Notice: Linear constraint, but no unigue solution



hat are the partial derivatives?

., R




hat are the partial derivatives?

-y ) -

0 = 225z + 25y + SRt

\ 81\ ot

Image Gradient X




hat are the partial derivatives?

w.J) %

0 = 225z + 25y + SRt

0 Ot
\ dim_t = 1(t+1)-1(t)
Heath Ch 9

Image Gradient X




hat are the partial derivatives?

0 = 225z + 25y + SRt

0 Ot
\ dim_t = 1(t+1)-1(t)
Heath Ch 9

Image Gradient X Image Gradient Y

dim_x = I(x+1,y)-1(X,y)
Matlab: dim_x =1(:,2:n)-1(:,1:n-1)



Solving for
_optic flow

Rewrite as dot product

aIm om o\ . ( 0T\ _ V.. . (O
0t = (axvay) (5y> = Ylm (5y>

Each pixel gives one equation in two unknowns:

kK =n*f
Image spatial gradient normal n: VZm, later: M
The image motion / optic flow f = (dxydy) T, later u
Image temporal gradient k: 0lm/ok, later dIm

Min length solution: Can only detect vectors normal to gradient direction
The motion of a line cannot be recovered using only local information



Iatten 2D |mages Into vectors

Equation for one pixel:
8Im Olm Olm ox ox
Ot = —V
(8:137 6’y) <5y> Im (5y>

Equations for many pixels:

- .({ﬂm L 8fm 8fm 0x
2 R T 5y




Solve for optic flow using several

~

ullaneol S euatlonsk

-Typlcally solve for motlon In 2x2, 4x4, 8x8 orlarger 4
Image patches.

 Over determined equation system:

2 B R oy

dim = M*u

» Can be solved in least squares sense using Matlab
u=M\dlm

» Can also be expressed using QR factorization:

(Q™)u =QTdIm [Q, R] =qr(M), Q"TM=R

(Don’t compute u = (MTM)-**MTdIm Il conditioned — see 340)




Intumve connection

A Image
 dailages - equations
Image 'C;rad;nt ): Image Gradient Y N
\ I ()
|(t+1) |(t) ....,,.,_ e emplate
oY
T(x)

8I:m 8I:m ox
dr Oy oy



Summary Solve for optic flow using
aneous euatlgns_

. Taylor expansion for each patch:
Im(z 4+ dx,y + oy, t + 0t) = Im(x,y,t) + 85—215:19 —|—%n§y + %nét + h.o.t.

(Foz, 0y)s.t. Im(x +ox, y+oy, t+0t) = Im(z, y, t)—— Brightness

consistenc
0 = Smda + 520y + 5t 4

 Over determined equation system:

2 B R oy

dim = M*u
 Can be solved in least squares sense using Matlab
u=M\dim




dim = I(t+1)-1(t);
[dUm,dVm] = gradient(1(t)) % Or mean of I(t), I(t+1))

%Get an 8x8 patch:

dl = dIm(k:k+8, 1:1+8);
(same for dU, dV)

% Flatten into vector
div =dlI(:);

M = [dUv dVvV],

u= M\dlv

=

.Fk
/




Geometric view of

< \'/\

rdetermmed equatlons —

(:c{ﬂm) L (8I:m 8I:m) (52’})
2 I T oy
b = AX
b




Aperture problem

- P -
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Rewrite as dot product

__Olm Olm OIm\ .
0t = (8:137 8y)

Each pixel gives one equ ticy) In two unkn wyn ;

n*f =k

Min length solution: Can only detect vectors normal
to gradient direction

The motion of a line cannot be recovered using only
local information




Aperture problem 2




Ihe flow continuity constraint
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» Flows of nearby pixels or
patches are (nearly) equal
« Two equations, two

unknowns:
N, *f=k
n, * =k,

 Unique solution f exists,
provided n, and n, not
parallel




Sensitivity to error

y L Ao o
N : PO s

N, and n, might be almost
parallel

 Tiny errors in estimates of k’s
or N’s can lead to huge errors
In the estimate of f




_ Conditions for solvability
o . a— s e

ol
s’/q,‘

— SSD Optimal (u, v) satisfies Optic Flow equation

Sl SELIy | [w] _ [ Sk
SLly, SELI, || v ]|~ | S

AT A Al

Better: [u,s,v] = svd(A), s=diag(A,, A,) Heath Ch3.5

When is this solvable?
» ATA should be invertible
« ATA entries should not be too small (noise)
» ATA should be well-conditioned
« Study eigenvalues:
— M/ A, should not be too large (A, = larger eigenvalue)



Simple image registration algorithm

SSD error norm

E(u,v)=> (1(x+u,y+V)=T(x,y))

For each offset (u, v)
compute E(u,v);
Choose (u, v) which minimizes E(u,v);




-lc Flow Real Image Challenges
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«Can we solve for accurate optlc flow vectors
everywhere using this image sequence?



— gradients very large or very small
—large A,, small A,



Low texture region

— gradients have small magnitude
—small A, small A,



S vi(vn?! e
— gradients are different, large magnltudes A
— large A,, large A,



*This Is a two Iimage problem BUT
— Can measure sensitivity by just looking at one of the images!

— This tells us which pixels are easy to track, which are hard
—very useful later on when we do feature tracking...



Review ‘“Visual motion detection /

optic flow”

Relating two adjacent frames: (small differences):
Im 5:13, y+oy, t+ot) = Im(x, y, t)

S

Vector
Field

bz o]

Joom ol dooim in Pan Right 1o Left



| .Crrespondence between image points

Time t t+1



_Jmage correspondence: Three assumptions

| P20 }
PN NN e

e Spatial coherence

* Temporal persistence




Solve for optlc flow using several

. Taylor expansion for each patch
Im(z 4+ dx,y + oy, t + 0t) = Im(x,y,t) + 85—215:19 —|—%n§y + %nét + h.o.t.

(Foz, 0y)s.t. Im(x +ox, y+oy, t+0t) = Im(z, y, t)—— Brightness

consistenc
0 = Smda + 520y + 5t 4

 Over determined equation system:

2 B R oy

dim = M*u
 Can be solved in least squares sense using Matlab
u=M\dim




Intumve connection

A Image
 dailages - equations
Image 'C;rad;nt ): Image Gradient Y N
\ I ()
|(t+1) |(t) ....,,.,_ e emplate
oY
T(x)

8I:m 8I:m ox
dr Oy oy



dim = 1(t+1)-1(t);
[dUm,dVVm] = gradient(1(t)) sedum = 1c+1y.9 - 1(xy.0)

%Get an 8x8 patch:

dl = dIm(k:k+8, 1:1+8);
(same for dU, dV)

% Flatten into vector
div =dlI(%);

M = [dUv dVvV],

u= M\dlv

=

.Fk
/




Prot Iems_ln Optlc flow computatlon

«\What are the potential causes of errors in this

procedure?

— Suppose ATA is easily invertible
— Suppose there is not much noise in the image

*\WWhen our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small
— A point does not move like its neighbors
—window size is too large
—what is the ideal window size?



_Iterative Refinement

- =)

« Used in SSD/Lucas-Kanade tracking
algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp / shift pixels I(t+1) = H towards I(t) using the estimated flow
field
- use image warping techniques — ie OpenGL texture rendering
3. Repeat until convergence
(Iteration just like in 340 Newton methods, Heath Ch 5.)



acking Lucas-Kanade algorithm

-9 -/ ) —‘
y '“ ‘ a 0\ .\. -¢» i. .‘.’.

Solving for the translational motion of a patch H
Over determined equation system:

. : . U,
_ OIm o Olm  Jlm
call Bl el M

-Imt = M u
» Solve least squares using matlab
u=M\Im t
« Update: “Newton step”  ......
p=p+u

e Fork=1,2,... Im_t=Im(t+1,x+p) — Im(t, X)




~ How to source

-~
-

«\WWhen p is not integer interpolate pixels
Im(.,x+[1.2,1.5]) = .8*.5*Im(., x+1,y+1) +.2* 5*Im(_ x+2,y+1)+...




..ltln the small motlon assumption
| — g

els thls motlon smaII enough?

— Probably not—it’s much larger than one pixel (2" order terms
dominate)

— How might we solve this problem?
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Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2¥ images (assuming N=2%)

level k (= 1 paxﬂq

level k-1 1II\L//\
\

i
level k-2
level 0 (= original image)
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“Gaussian” Pyramid

«“Laplacian” Pyramid
— Created from Gaussian

pyramid by subtraction
L, = G, —expand(G,,,)




«Bandpass Images



N

Pyramids
A =3 . . -~ - ;ﬁ}_ ~'

« Advantages of pyramids

— Faster than Fourier transform

— Avoids “ringing” artifacts
*Many applications

—small images faster to process

— good for multiresolution processing

— compression
— progressive transmission

* Known as “mip-maps” in graphics community
Precursor to wavelets
— Wavelets also have these advantages

5 O 7T T 2 g T oo DT



| Laplacian
O level
n 0

(6]

left pyaramid right p3;ramid blended pyramid







u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



A

Gaussian pyramid of image H Gaussian pyramid of image |



Video compression codec

Q=f(B)

B: Buffer Occupancy

A

Input 4 MCFD

7_ DCT

V. -

VLC

A 4
£
J
A 4

I Intra/Non-intra

Prediction

Mux [—

VY

v
Q-l

y

IDCT

Decoded Picture

o,  MC/Frame |

Buffer

f

Buffer

Motion Vectors

/

«Uses optic flow

computation




.Compressed mowe decodmg

 B=reconstr.
Interpolated
motion

Stream:
|PBBB...
Frames P,B also residual im P




HWW accelerated computation of flow

*Norbert’s trick: Use an mpeg-card to speed
up motion computation



Other applications:

. ) .

Video tracking — Next lecture topic and L1.2
« Motion control, robots and animals (we will cover later)
«Image segmentation

«Recursive depth recovery:



« Assignment1.:

*Purpose:

— Intro to image capture and
processing

— Hands on optic flow
experience

«See www page for
detalils.

 Suggestions welcome!




Transform
a “source” image
to match a “target” image




age registration
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WHAT is imaade reaistration .

Transform a “source” image
match a “target” image




_Image reglstratlon Three appllcatlons

Goal register a template Image T(x) and an mput |mage I(x)
where x=(x,y)'. (warp | so that it matches T)

1. Image alignment: I(x) and T(x) are two images

2. Tracking: T(x) is a small patch around a point p in the first video
Image, t=0. I(x) is the image at time t+1.

3. Optical flow: T(x) and I(x) are patches of images at t and t+1.

4. Quadrilaterals, triangles, pixels...

warp ™\ _--,

fixed




WHAT Is imaage reaqistration

Transform a “source” image
match a “target” image




Transform a “source” image
match a “target” image




Medical applications

&

= Data (source, tar get] 5%

= different medical images
modalities (MRI, XRay,
CT..)

= pre-acquired medical image
with real-time images (video)

= patient data with an atlas

3D models of
preoperative data

TECHNISCHE Chair for Computer Aided Medical Procedures & Augmented Reality
E:]“'::EEE?_[LA; Lehrstuhl fir Informatikanwendungen in der Medizin & Augmented Reality



Transform a “source” image to
match a “target” image

Find best transformation T
through the minimization of an
energy

min, Sim(l, - T(l3))



Find best transformation T

through the Imization of an
| | energy
A B
Maching — similarity score : Sim
- depends on data min, Sim(l, - T(l3))

- simple — same type of data - SSD : sum (1,(x) - T(15(x)))?
- different iIIumination NCC normalized cross correl At

Transformation : T
- (linear) rigid, affine [ex. Same patient]
-(nonliear) image points are allowed to move differently




Source (/g) Target (/4)

Looking for a deformation field (vector field) v that will move each

voxel in image A to the corresponding voxel in image B

min, sum, (1,(x) — Ig(x+Vv))?

Gradient descent: solve for v iteratively adding small updates delta dv
Each step is similar to an optic flow problem

ming, sum, (1,(X) — I5(x+v+38v))?

ov=-(1,(x) — Ig(x+Vv))/grad I;(X+V)



Source (Ig) Target (/4)

Looking for a deformation field (vector field) v that will move each
voxel in image A to the corresponding voxel in image B
min, sum_ (1,(X) — l5(x+Vv))?
Gradient descent: solve for v iteratively adding small updates delta dv
Each step is similar to an optic flow problem
In practice — motion between images is not small > needs

regularization and image pyramid to solve robustly
min, sum (1,(x) — l5(x+v(X)))? + R(V)



Organizing Optic Flow
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P o e R
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Grad: Cursory reading <y % ;
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All: optional from the ““\,.
PCA on vectors (slide 48) id
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Organizing different kinds of motion

= \’\ P

Two examples:

1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low
dimensional subspace for complex motion



Remember:
he optic flow field

""""

\ector field over the image:
[uv] = f(X,y), u,v = Vel vector, X,y = Im pos
*FOE, FOC Focus of Expansion, Contraction

"y | ¢ L T
0w ¥ N f A e

oy - i e

Iy T;H‘ s \;Hh — :_.

Z00m oul Ao in Pan Right o Len




Solving for the motion of a patch
Over determined equation system:

. . . (.
__ OIm L Olm  Olm

Imt = Mu

«Can be solved in e.g. least squares sense using
matlab u = M\Imt




3-6D Optic flow

« Generalize to many freedooms (DOFs)

81 = || — I

L OEEE
M = [I| |1 |1,) Targol LA X Dranslalion Y Traslalion  Holadon
peend | | |
Iy = I(z,y) — I(z,y — 1) LN

I, = -yl + zI

I, = \/ﬁ(-ﬂz +yly) Im = Mu



Difference images M(u) = 0lm/0ou

.I

X Y Rotation  Scale Aspect Shear




Know what type of motlon




I\/Iathematlcal Formulatlon

e Define a “warped 1image” ¢
— f(p,x) =x’ (warping function), p warp parameters
— 1(x,t) (image a location x at time t)

= g(p.1p) = (1(F(p.x).0), 1(T(p.Xx).0), ... I(f(P.Xp),0))’
Define the Jacobian of warping function

- M(p) = [m}

dp
Model

— o= 9(pu I}) g p
— Al= M(p, I) Ap M

COmpUte motion parameters
0 Ap=(MTM)1 MTAI M = M(p,l,) (Remember solve with QR or SVD)



Planar 3D motion

-y ) -

From geometry we know that the correct plane-to-plane
transform is
1. for a perspective camera the projective homography

u' hlu ]’L3’U h5
V| = Wixnh) = g | heu hav b

1. for a linear camera (orthographic, weak-, para-
perspective) the affine warp

Adg dy

|:U;U:| = W,(p;a) = |:3—5 Ae

]

P+ | as




Planar Texture Variability 1
o Affine Variability

 Affine warp function

Discretized for images

Uy az ay ai
vy | = Wa(p,a) = {35 ag | Pt | ay
 Corresponding image variabilit i
Ou . Ou Aa;
Al, = Z?Zl %IwAai = [(%7 %] [3521 85:)6}
oa Oag _ACLG

1 0 xu 0 xv O _yl
AIa:[g—i,g—‘II] 0O 1 0 *xu 0 xv

— [Bl y B6] [yla SRS y6]T — BaYa



Planar Object + linear (infinite) camera
-> Affine motion model u, = Au;, +d

X Y Rotation  Scale Aspect Shear

az ay a 0 1 0
[ag, aﬁ}—sR(@)){o 1} [h 1}




Planar motlon under perspectlve

*Perspective plane-plane transforms defined by
homographies

'I..I!-].tl e uﬁtl ultﬂ == u]"ﬂ't_:
II.I‘l-tl R lL‘.l.utl — H li'l‘lti = ow lL‘_l"ﬂ'ti
St o+ Evy 1 -1




Planar Texture Varlablllty 2

« Homography warp

u' hiu hsv hs
v’ :Wh(Xh7h):1+h7’L1L+h8’U hou  hyv  hg
* Projective variability:
‘w 0 v 0 1 0 —2 _r2] [Ap,

C1 C1
AL =225 o w0 v 0 1 —b _th

= [B1...Bg][y1, - - - ys]t = By,

-Whel‘e C1 = 1 -+ h7u + hg’U P Co — hlu —|— hg’U —|_ h5
and C3 — hQ’U/ -+ h4’U —+ h6



*In practice hard to compute 8 parameter model
stably from one image, and impossible to find
out-of plane variation

 Estimate variability basis from several images:
Computed Estimated




Another Idea Black, Fleet) Orgamzmg

«EXxpress flow field f in
subspace basis m o ER

=l
I
2
S
1
Y
I

* Different “mixing”
coefficients a
correspond to different
motions
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I\/Iathematlcal formulatlon

Let: plryo) = rﬂ_/(r.rg+rg)<£ Robust error norm ]

Mimimize objective function: —otion
E(b;d) = p(I(F+i(;d+b), t+1)—I(Z,1), o)

FER

N plii(#; b) - VI(E + @(F;d),t + 1) + (&, @), 0)
FeER

Where ﬁ'j(f + @(T;d),t + 1) = [I, I,]T



Experiment

VINQ camera

«4x4 pixel
patches
*Tree in

foreground
separates well
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lons to think_abutég —.

Readings: Book chapter, Fleet et al. paper.
Compare the methods in the paper and lecture

1. Any major differences?

2. How dense flow can be estimated (how many
flow vectore/area unit)?

3. How dense in time do we need to sample?



» Three types of visual motion extraction
1. Optic (image) flow: Find X,y — image velocities

2. 3-6D motion: Find object pose change in image coordinates
based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

« Visual motion still not satisfactorily solved
problem



(Parenthesis)

ar worldmotlon -> |mg,e

. /)%

-~

Let us assume there is one rigid object moving with
velocity T andw=d R/ dt

For a given point P on the object, we have
p=fP/z

The apparent velocity of the point is
V=-T—-wxP

Therefore, we have v =dp/dt=f (zV -V, P)/z?



Component wise:

e ) <

2
Tx-T1f W, Xy — W, X
v, = f2———w f+w,y+— !
Z f
T.X-T, f W, Xy — W, y’
v, = f——2——wf+wx+— .
Z ) f
Motion due to translation: Motion due to rotation:

depends on depth independent of depth



Sensing and Percelving Motion
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Interphase sin g

 Spatio-temporal pattern
— Time t, Spatial X,y
s(x,y,t) = Acos(Kxcos© 4+ Kysin© — @) cos(wt)
Rewrite as dot product:

L(cos([a, b H — wt) + cos([a, D] [“yj ] + wt)
\

v
Result: Standing wave is superposition of two moving waves




*Only one term: Motion left or right
e Mixture of both: Standing wave
Direction can flip between left and right




Reichardt detector

INPUT

PATIA
|E|LTER'§ F———] hifx) fa(x)

TEMPORALL _ _| 1, ¢n |h2{ﬂ‘ ‘hziﬂ\ Py(t)

SEFARABLE
RESPONSES

IMAGE L I 'i:.!]

HALF-PHASE
OPPONENT
ENERGY

FULL i
'EPPONENT ——————— (AR'-BA")

NERGY




« Gradient: in
Computer Vision

e Correlation: In bio
vision

» Spatiotemporal
filters: Unifying
model

object based

token matching

V= Ax/At

intensity based

oy e

correlation model

anergy model gracient scheme




Spatial response:

. _Gabor functlon

e Definition:

2

HEIGHEOR POCSITION
w



Temporal response:

Adelson, Bergen ’85

@v)® mr)?)

Di(t) = aexp(—ar) ( 3 T

Note: Terms from
taylor of sin(t)

Spatio-temporal D=DsD:x




Receptor response to

- Counterhase gratlng f

S :
“» \'/\
: v "‘ N 6‘

" f'ts?‘*

Separable convolution

L(t) = Ls L (1),

Ly = fdxdyﬂs{x, ¥)Acos (Kxcos(®) + Kysin(@) — &

Li(t) = fmdr Di(t)cos(w(t— 1)) .
0



_ Simplified:

For our grating: (Theta=0)

—0?(k—K)?
L,=%exp ( (2 ) ) cos(¢p — D)
«\Write as sum of components:

=exp(...)*(acos... + bsin...)



Space-time receptive field
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Result:

~ ..

i

* More directionally specific response
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Energy model:

- . f /- - 3 ‘ .w ‘q. ‘.".‘_L
- -~ e
- » ' . o ) SR = ;

*Sum odd and even phase
components

e Quadrature rectifier




~

»
]
..
]
«.
L
:






Higher effects:

Frame 1

Frame 1

Frame 2 Frame 1

Frame 2

X .

Frame 2




Equivalence:

NS ——— —— E e Y] I —— L)
' : ' P
SBATIAL | sPaTiaL] _ |4 (4 ()
i 2
Eﬁ?;’rElﬂlé - — — — f{x) fgf.!.'l FILTERS
;FI_E"EPE%AL i S ha(h) | | hyft)
FEMEQRALL — 1 e | | hyth) hott) | | mytt)
SEPARABLE
RESPONSES[™ — A K, B} Bl
SEPARABLE /
RESPOMSES
+ + + -
ORNC DERO
ORIENTED 1 1
LINEAR  |--A-B'| A'+B A+8'| A-B
RESPONSES
HALF-PHASE
QOPPONEMT
ENERGY
ORIENTED |, ,_
FULL ENERGY
QOFPONENT e
ENERGY E::Eg l‘.-'-%’




 Evolutionary motion detection is important

Early processing modeled by Reichardt detector
or spatio-temporal filters.

«Higher processing poorly understood



