
Multi-view shape 
reconstruction



Shape reconstruction
Given 
� A set of images (views) of an object / scene 
� Camera calibration information
� [Light calibration information]

Find the surface that best agrees with the 
input images.

…

Approach:
� chose a surface representation
� define a photo-consistency function 

[in practice photo-consistency+regularization]

� solve the following minimization

X,S
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∫
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Photo -consistency function(al)

Based on image cues (shading, stereo, silhouettes, …)

)(Xφ

Extension SFS/PS to multi-view:

SFS
Move camera Move object

PS

Needs camera/light calibration !



Surface representation

Image-centered

� Depth/disparity w.r. to image 
plane

Image plane

3D point

� Voxels

� Level sets (implicit)

�Mesh

� Depth with respect to a base 
mesh
� Local patches

3D plane

Object-centered

time

Partial object reconstr.

Limited resolution 

Viewpoint dependent



Comparison of different methods

2 datasets

No light 

(moving 
camera)



Volumetric representation

Object : collection of voxels
Normals : ?
Method: carve away voxels that are not photo-consistent with images

(purely discrete)
Regularization: no way of ensuring smoothness
Visibility: ensured by the order of traversal (in general a problem!)



Disparity/Depth map

Reference 
image plane

3D pointReference
image

Object (surface) :

Normals :

Method: find f that best agrees with the input images (minimize the cost 
functional integrated over the surface)

Regularization: smoothness on 

Visibility: ?  (mesh defined on image plane + Zbuffering)
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Depth w.r. base mesh

Object (surface) : , d – displacement direction (displacement map)

Normals : local (per triangle)                                  transform to global CS

Method:

Regularization: smoothness on (local / global) 

Visibility: ?  (fine mesh to connect points on each plane + Zbuffering)

How to deal with boundaries ? 
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Mesh

Object (surface) : mesh vertices                         

Normals : interpolated

Method: move vertices along interpolated normals based on photo-
consistency of neighboring triangles.    

Regularization: smooth normals

Visibility: Zbuffering
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Mixed Representations:Local patches

Mixed approaches :
� patches on voxels for a finer surface representation
� mesh on pre-computed voxel correlation (potential fields)

[Esteban and Schmitt CVIU 2005]
� (depth on base mesh)

Patches :
� arbitrary   : [Zheng, Paris et al. IJCV2006]
� quadratic : surfels [Carceroni and Kutulakos IJCV 2002]



Optimization

Disparity map

Depth w.r.plane

Level sets

Mesh

Voxels

Discrete 
methods

Graph-cuts
Belief propagation
Dynamic programming…

Voxel carving (exhaustive search 
For same color)   

Continuous 
methods

Non-linear optimization
Variational calculus         



Discrete
� Voxel carving

� Graph cut techniques
Continuous
� Variational and level set techniques

� Mesh-based reconstruction

Summary



Shape from Silhouette

Binary images

Back project each silhouette → 3D cone.
Carve all voxels outside the cone.
Result:

Reconstruction contains the true scene, but not the same (no 
concavities) 
Not photo-consistent (only to binary images).
In the limit reconstructs a visual hull

[Martin PAMI 91][Szeliski 93] + Our capgui in lab



Smarter volumetric representations

- Inaccurate

+ Triangulate w. 
marching cubes

+ Accurate

Franco, Boyer

+ Moderatly accurate

+ Fast

+ Marching intersections

Tarini’01 + our Capgui

Voxel-based       Image ray based     Axis-aligned



Volumetric reconstruction

Method : Carve voxels that are not consistent with images 
(according to a chosen photo-consistency score).

OR
Assign colors to voxels consistent with the input images.
(color + opacity)

N3 voxels
C   colors

3NC
all scenes

Photo-consist. 
scenes

True scene

Not unique 
solution

Order of 
traversal v. 
important



Voxel coloring
Each voxel

Project in images and correlate
Color if consistent

Visibility !

Depth ordering : Single visibility ordering for each view
(Restriction in camera placement)

Traversal 
order

[Seitz,Dyer CVPR97]Plane sweep [Collins CVPR 96]

No scene point contained 
within the convex hull of 
the cameras



Voxel coloring : results

Input image Results

[Seitz,Dyer CVPR97]



Space carving
In general a view independent order might not exist 

Space carving [Kutulakos, Seitz ICCV 99, IJCV 2002]
� initialize a volume containing the scene
� Choose a voxel on the surface of the scene
� Project in all visible images
� Carve if not consistent
� Repeat until convergence

Consistency:
The resulting shape is photo-consistent
(all inconsistent voxels are removed)
Convergence:
Carving converges to a non-empty shape
(a point on the true surface is never removed)

Photo-hull



Space carving : photo hull

Initial volume and
true scene

Photo-hull

Photo-hull = union of all photo-consistent shapes

Basic algorithm : requires a difficult update procedure 
(visibility computation after carving a voxel)

Multi-pass plane sweep : 
� Sweep plane in each 6 directions
�Consider active only cameras on one side of the plane



Space carving : results

[Kutulakos, Seitz ICCV 99, IJCV 2002]



Graph cuts for multi-view reconstruction
� Discrete surface reconstruction
� Graph cut
� Graph cuts as hypersurfaces 
� Example: [Paris, Sillion, Quan IJCV 05]

� Types of energies minimized with graph cut
[Kolmogorov Zabih ECCV 2002]

� Graph cuts for multi-labeling



Reconstruction as labeling
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Discrete formulation:
� surface representation 

� labels

Find a set of labels                                that minimize                    
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Ex: disparity map voxels
pixels                  voxels
disparities           occupancy

...}2,1,0{ }1,0{

Notes:
� NP hard 
� Can be solved using MRF energy minimization methods

graph cuts (submodular E), dynamic programming, belief propagation,
simulated annealing …

Photo-consistency Smoothness



Graph cuts
Oriented graph
� nodes
� edges

EVG ,=
V , source s , sink t 
E , edge capacity w(p,q) 

(non-negative)

Cut C={S,T} partition of nodes into two disjoint sets such that s∈S, t ∈T

Cost of the cut

Minimum cut cut that has minimum cost among all cuts (binary labeling)
Maximum flow maximum amount of liquid that can be sent from the 
source to the sink interpreting edges as pipes with capacity w.

Polynomial time algorithms
Augmenting paths [Ford & Fulkerson, 1962]
Push-relabel [Goldberg-Tarjan, 1986]
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Energy minimization via graph cuts
Motivation:
� Geometric interpretation 

cut = hypersurface in N-D space embedding the corresponding graph
used to compute optimal hypersurface
� Powerful energy minimization tool for a large class of binary 

and non-binary energies
global minimum; strong local minimum

Surface reconstruction:
� Chose a surface representation
� Define a graph (nodes, weights) such that the cost of a cut 
corresponds to the surface energy function. 

How to find global labeling using graph cut ? 
What kind of energy can be minimized with a graph cut ?



Graph Cuts as Hypersurfaces

s

t
cut

p

“cut”

x

y

la
b
e
ls

� Graph fully embedded in the working geometric space
� Feasible cut = separated hypersurface in the embedding 

continuous manifold



Comparison to “stereo”

26

Multi-scanline optimization

L(p)

p

“cut”

x

y
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b
e
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b
e
ls

x

L(p)

p

single scan line optimization

eg Search, Dynamic Programming

s-t Graph Cuts

multi-scan-line optimization



Example of geometric graph
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Disparity map: pixel                label = disparity),( yxp =

[Paris, Sillion, Quan: A surface reconstruction met hod using global 
graph cut optimization IJCV 05]
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Results
Convex smoothing – global solution 

[Paris, Sillion, Quan IJCV 05, ACCV 04]



Types of regularization energies
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+ global convergence
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Graph cuts : state of the art

� Optimization of first-order properties of segmentation boundary
(Riemannian length/area, flux of a vector field)
Can’t optimize curvature of the boundary (for now)

� Class of energies that can be minimized exactly
� binary energies with regular (sub-modular) interactions
� multi-label (non-binary) energies with “convex” interactions
� excludes robust discontinuity-preserving interactions

� Guaranteed quality approximation algorithms for multi-label
energies with discontinuity-preserving interactions…
� Potts model of interactions 
� Metric interactions
� Regular (sub-modular) interactions

[ Boykov CVPR 05 Tutorial]



GOTO slide 41 



Exact multi-labeling
Linear and convex smoothing (interaction) energy 
Geometric graphs.

s

t
�Multi-scan-line stereo

[Roy & Cox 1998, 1999]

[Ishikawa & Geiger 1999] (occlusion handling)

�“Linear” interaction energy
[Ishikawa & Geiger 1998]

[Boykov, Veksler, Zabih 1998]

�Convex interaction energy
[Ishikawa 2000, 2003]



Binary graphs
[Kolmogorov, Zabih : What energy functions can be m inimized via 
graph cuts? ECCV 2002]
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Complete characterization of energies that can be minimized with 
graph cut : 
E(f) can be minimized by 
s-t graph cuts

pqw
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s

t a cut)(tDp
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),(),(),(),( stVtsVttVssV +≤+⇔
Large class of energies (Potts, metric …)
BUT multi-view reconstruction is a multi-labeling problem ! 



Approximate multi-labeling

Binary Potts energy
Extended to multi-labeling
NP hard (≥ 3 labels)

pqw

n-links

s

t cut

current

label

a

[ Boykov et al: Fast approximate 
energy via graph cuts, PAMI 2001]
αExpansion approximate solution
� Ideea: break optimization into a set 
of binary s-t cut problems
� Each iteration – consider one label a
� Binary cut: some labels are relabeled 
with a; the others remain unchanged 



αααα - expansion

initial labeling standard move   swap          a-expansion

Examples of standard and large moves from a given 
iniotia; labeling.

The number of  labels is |L| = 3.



αααα expansion
Properties

Guaranteed approximation quality
� within a factor of 2 from the global minima (Potts model)

Applies to a wide class of energies with robust interactions
� Potts model 

� “Metric” interactions 

� “Submodular” (regular) interactions

simulated annealing, 
19 hours,   20.3% err

a-expansions (BVZ 89,01)
90 seconds,   5.8% err

normalized correlation,
start for annealing, 24.7% err



Graph cut Example
[ Vogiatzis, Hermandez-Esteban, Torr, Cipolla PAMI 2007, CVPR 2005 ]

Surface representation : voxels; no need for bounding inner/outer surface
Regularization : weighted volume – balloon force 
Minimization :  graph cut
Occlusions :   accounted using a voting photo-consistency score 

(occluded pixels are treated as outliers)

S = surface
V(S) = foreground

Photoconsistency Foreground/background cost

σ(x)=-λ balloon force

silhouette cue – make σ(x) very large    
outside VH



Photo -consistency metric
Account occlusions ρ(x,S) [continuous, level set formulations]

S determines visibility but S is the solution!
Problem : Not suitable for graph-cut
Solution : ρ(x) that accounts for occlusions using NCC

xOptic ray

Correlation scores

Vote

ci

d



Account occlusions



Graph structure

Data (photo-consistency)

Ballooning

6 neighboring system



Results

Vogiatzis2     0.50mm
Furukawa2    0.54mm



Competitor – Yasu  Furukawa ☺

Video



Multi-view stereo 

Disparity map

Depth w.r.plane

Level sets

Mesh

Voxels

Discrete 
methods

Graph-cuts
Belief propagation
Dynamic programming…

Voxel carving (coloring)   

Continuous 
methods

Non-linear optimization
Variational calculus         



Continuous multi-view methods
� Regular surface and surface evolution
� Level set methods
� Example of mesh-based reconstruction



Surface evolution 

∫
∈SXS

dXX )(min φ

Continuous formulation

recover shape (surface) by minimizing cost functional integrated over the 
surface.

� Cost functional : photo-consistency + regularization (smoothness)

� Numerical methods: gradient descent, conjugate gradient, level sets …

� Natural extension of curve evolution (2D) [Caselles ICCV95] to 3D 

[Robert,Deriche ECCV 96][Faugeras Kerivan 98]



Regular surface = smooth
Definition: Regular surface (manifold) 

is a regular surface if for each point               there 
exist a neighborhood V and a map                       of an open 
set                such that (X = parametrization):

1. X differentiable

2. X homeomorphism (                                  continuous)

3. the differentiable                             is one to one

3ℜ⊂S S∈P
SVU ∪→:X

2ℜ⊂U

USV →∪∃ − :1X

Uvu ∈∀ ),( 32
),( :| ℜ→ℜvudX



Regular surface - properties
Regular surface S

� tangent vector 

� normal

� area

� curvature )(
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Surface evolution
Cost functional

Energy of the surface ∫Φ=

ℜ→ℜ×ℜΦ +

S

dAE ),(

: 33

nX

Evolution flow (Euler-Lagrange equations) ( )
0)0(

,2

)(

SS

HS

dAE

Xt

S

=
Φ−Φ=

Φ= ∫

nn

X

OBS:

� problem is intrinsic (independent on parameterization)

� automatic regularization H

� motion in the normal direction

� whole surface is evolving in time  (reference frame attached to the object) 

dA

1. Discretization

2. Choice of cost functional



Photo -consistency functional 
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Where to integrate image/surface ?
On Image On surface

N
Z

X
fIf

dt

dX

NXXI

fIffII

N
Z

X

Z

X
N

Z

X

dt

dX

dA
Z

XN
XE

dA
Z

XN
du

duuE

uXfuIu

im

im

S

im

imim

im

3

333

3

3

)(

0,0

)()(

)(

)(

))(()()(

−∇=

=•∇=•∇
−∇+−∇=Φ∇








 ∇Φ+Φ∇=






Φ•∇=

Φ=

=

Φ=

−=Φ

∫

∫
Ω

( )NHN
dt

dX

dAXE

XfXIX

S

S

S

S

•Φ+Φ∇=

Φ=

−=Φ

∫ )(

)())(()( π

0=∇fConstant f

Impossible to 
reconstruct
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image 
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image discretization



Surface evolution example

[Faugeras Kerivan 98]



Modeling correct visibility

C
C’

[Gargallo et al ICCV 07]

Horizon termUsual term
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Surface discretization

�Depth / disparity map

Image plane

3D point

Explicit representation

L=

∇+=

=
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t

x y

reg

x y

data

f

dxdyffyxdxdyfyxfE

yxfyxX
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[Robert and Deriche: Dense depth recovery from stereo images, ECAI1992]
[Strecha et al: Dense matching of multiple wide-baseline views ICCV 2003]

�Depth with respect to plane
3D plane

[Birkbeck et al 2006]

(Euler-Lagrange eq.)

�Mesh

Move points along displacement direction
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[Fua and Leclerc 1993]
[Birkbeck et al ECCV 2006]



Level set representation

Surface = Zero level set of a higher dimensional function 

[Osher and Sethian 88] 

[Faugeras Keriven 98] (stereo)

[Soatto Yezzi Jin ICCV 03] (specular refl.)S=Ω∂∈=Ψ
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Efficient numerical schemes

[Sethian 96][Osher 02]

[Birkbeck]Implicit representation



Cost functional

Regularization :          linear

quadratic           + improves convergence

- penalizes large variation

- over-smoothing

non-quadratic, anisotropic 
[Robert, Deriche 96] [Alvarez, Deriche 00] [Strecha 02] 

(ex. Nagel-Enkelmann diff. oper.)

+ preserves discontinuities

Photo-consistency : image cues (SFS,PS,stereo,silhouette)

( )dxdyzEreg ∫ ∇Φ=

Where to integrate? : surface   + makes the problem intrinsec 

+ automatic regularization (multiplicative)

- over-smoothing

- not account for image discretization

image     + can add a regularizer 



Goto p 66



Surface/depth regularization

ff ∆∇ 2
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T ∇∇∇∇∇

∇∇∇∇

)(div)(

)(div)(
222

( ) ( )( )
( ) ( )( )fffff

gfff
TT ∇∇∇∇∇

=∇∇∇

'divtr

''div
22

φφ

φφφ

Depth map regularization f 

1. Homogenous
Diffusion (heat eq)

2. Image-based regularization –
align depth discontinuities with 
the image discontinuities

3. Depth map regularization
Not smooth across surface 
discontinuities

energy Euler Lagrange eq.

g –decreasing function 
g(s2)->0 when s big (high gradients) –
inhibit diffusion

D – tensor 

D

TffD ∇∇=



Example regularization
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Example regularization

i-b regul .d-b regul



Learn more about variational methods
Jan Erik Solem 
PhD thesis, 
Malmo Univ. 

Level Set Methods 
S. Osher and R. Fedkiw, 
Springer 2003

Mathematical 
Problems in Image 
Processing 
Aubert et al
Springer 2002

Hailin Jin 
PhD thesis, 
Washington Univ. 

The Handbook of 
Mathematical 
Models in 
Computer Vision 
N. Pragios editor
Springer 2005



Graph -cuts and hypersurfaces
� Geometric graph for stereo

� Convex smoothing – global convergence

[Ishikawa, Geiger ECCV 1998]
[Roy,Cox ICCV 98, IJCV 1999]

� Connection between cuts and hypersurfaces in continuous spaces
[ Boykov, Kolmogorov: Computing geodesics and minim al surfaces via 
graph cuts, ICCV 2003]
Show how to build a grid graph and sets the weights such that the cost of 
cuts is arbitrarily close to the area of corresponding surface for any 
anisotropic Riemannian metric. 
Graph cut to find globally minimum surfaces (like level sets) under arbitrary  
Riemannian metric.

Riemannian metric (varying tensor)Euclidian metric (ct)

A

B
distance 

map

A

B
distance 

map



Minimal surfaces and graph cut

∫=
S

dAE

Riemannian metric (varying tensor)Euclidian metric (ct)

A

B
distance 

map

A

B
distance 

map

∫Φ=
S

dAE )(X

Can the minimal surface energy be minimized with graph cut ?

[Boykov, Kolmogorov ICCV03,05]

multi view stereo formulation



Cost of a cut

C

�Cut metric is determined by the graph topology and by edge weights.

∑
∈

=
Ce

eC ||||||

� Cost of a cut can be interpreted as a geometric “length”  (in 2D) or “area” 
(in 3D) of the corresponding contour/surface.



Riemanian metric

∫ ⋅⋅= φρε ddnC L2
1||||Euclidean length of C

Cauchy-Crofton formula

the number of times
line L intersects C

C



Cut Metric on grids
can approximate Euclidean Metric

C

∑ ∆⋅∆⋅≈
k

kkknC φρε 2
1||||

Euclidean 
length

2
kk

kw
φρ ∆⋅∆=

gcC ||||=
graph cut cost 

for edge weights:
the number of edges of 
family k intersecting C

Edges of any regular 
neighborhood system 

generate families of lines
{    ,    ,    ,    }

Graph nodes are imbedded
in R2 in a grid-like fashion

8-neighborhoods

4-neighborhoods
(Manhattanmetric)



Example [Boykov]



Summary: representations 
Image centered

� Depth/disparity        
map

Object centered
Implicit (level sets) Mesh Voxels

Image plane

3D point

+ �Natural extension 
of SFS, PS, stereo
�Strong min with 
graph cuts

�Handles topological 
changes
�Implied normals
�Visibility

�Graphics based
�Implied normals
�Visibility 

�Handles large 
structures
�Arbitrary topology

- �Limited resolution 
�Partial obj. 
reconstr
�Viewpoint 
dependent

�Too smooth
�Slow
�Closed surfaces

�Topological 
changes

�Ignores regularization
(sensitive to noise)
�Limited resolution
�Occlusion handling  

time



Discrete vs. continuous
Level Sets Graph Cuts

variational optimization method for fairly 
general continuous energies 

combinatorial optimization for a restricted 
class of energies [e.g. KZ’02]

finds a local minimum
near given initial solution

finds a global minimum for a given set of 
boundary conditions

numerical stability has to be carefully 
addressed    [Osher&Sethian’88]

continuous formulation -> “finite differences”

numerical stability is not an issue

discrete formulation ->min-cut algorithms

anisotropic metrics are harder to deal with (e.g. 
slower) 

anisotropic Riemannian metrics are as easy 
as isotropic ones

Gradient descent method VS.   Global minimization tool
(restricted class of energies)

[Boykov CVPRTut 2005]



A complete system
Neil Birkbeck

Motivation

method that works for objects with general reflectance

� textured and uniform regions                shading + texture

light variation (multiview PS)

� specular materials general BRDF – parametric

System

Camera calibration:
pattern

Light calibration:
specular white sphere

Light variation:
rotating table, fixed cam.
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camera proj. image light

Per-point cost function

Visibility+sampling reflectance

1. Lambertial reflectance ( ) Xln ,, diiilamb kalR +=
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color
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ambient 
color

BRDF
albedo

2. Non-Lambertian reflectance BRDF = Phong

In practice : filter specular highlights

fit full reflectance only at the end



Surface discretization

Surface = triangles, 
move vertices
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Albedo implied by the shape (closed form solution)

(knowing light dir+color)
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Surface discretization

Regularizer mean curvature

Gradient finite differences

( )nn,2 Φ∇−Φ=
∂
∂
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S

Multi-resolution (image pyramid)

Mesh handles topological changes

Initial shape = visual hull 



Results : refinement



Results : shape + reflectance



Improvements
� Better light model – no need for calibration 

� Model background ? no need to extract silhouette 
(foreground) – Mumford-Shah functional

� Discontinuities – anisotropic regularization; 
discontinuous mesh

� Incorporate noise ?



Capture system
� Shape from silhouette
� Dynamic texture


