Multi-view shape
reconstruction



Shape reconstruction

Given L
= A set of images (views) of an object / scene
= Camera calibration information
= [Light calibration information]

Find the surface that best agrees with the
Input iImages.

Approach:
» chose a surface representation S X
= define a photo-consistency function ~ ¢(X)

[in practice photo-consistency+regularization]
= solve the following minimization min _fqa(X)dX
S

Xus



Photo -consistency function(al)
¢(X)

Based on image cues (shading, stereo, silhouettes, ...)

Extension SFS/PS to multi-view: Needs cameral/light calibration !
Move camera >/C,>\: Move object
SFS PS
T nll




Surface representation

Image-centered Object-centered
» Depth/disparity w.r. to image | | = \Voxels z
plane Z time
Q@ = Level sets (implicit)
3D point
Image plane
* Mesh
Partial object reconstr.
Limited resolution = Depth with respect to a base '
Viewpoint dependent mesh 3D plane
» |_ocal patches




Comparison of different methods

©J vision.middlebury.edu/mview - Mozilla Firefox

File Edit View History Bookmarks Tools Help

Q_"‘: - $ - @ {E‘ ‘L_i http://vision.middlebury.edu/mview/ " P '. \-I‘
P Getting Started ) Latest Headiines
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stereo | mview|* MRF « flow
Multi-View Stereo Evaluation « Datasets » Submit

Steve Seitz = Brian Curless = James Diebel = Daniel Scharstein = Richard Szeliski

2 datasets

No light

This website accompanies our paper

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,
CVPR 2006, vol. 1, pages 519-526

The goal of this project is to provide high quality datasets with which to benchmark and evaluate the performance of
multi-view stereo reconstruction algorithms. Each dataset is registered with a ground-truth 3D model acquired via a laser
scanning process, to be used as a baseline for measuring accuracy and completeness (the ground truth is not
distributed).

(moving
camera)

« [Evaluation results (last updated 1/31/2008)
¢ Datasets
+* How to submit your own results

To stay informed about new additions to the evaluation results or other relevant news, you can subscribe to the mailing list
mview-announce@cs.washington.edu.

Support for this work was provided in part by NSF grant 11S-0413189. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not
neocessarily reflect the views of the National Science Foundation. Support for this work was also provided in part by Microsoft Corporation.
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Volumetric representation

¢ £

Object: collection of voxels

Normals : ?
Method: carve away voxels that are not photo-consistent with images
(purely discrete)

Reqularization: no way of ensuring smoothness
Visibility: ensured by the order of traversal (in general a problem!)




Disparity/Depth map

f(x,y)’_,; »
.- X’
g (%) O
3D point

Reference

image Reference
image plane

Object (surface) :  S(X,¥) =(X, Y, f(X,y))

Normals : _ds os_(of of )
ox o0y \ox oy’
Method: find f that best agrees with the input images (minimize the cost

functional integrated over the surface)
min[[#xy. f,0f ydxdy
%y

Reqularization: smoothness on [f Ao = I (X, Y)?

Visibility: ? (mesh defined on image plane + Zbuffering)




Depth w.r. base mesh

Object (surface) : X =X®+ f d, d — displacement direction (displacement map)

d
Normals : local (per triangle) n =(ﬂ,ﬂ,—1J transform to global CS

ox oy

1 B
Method: mflnxfs @XE, f,0f )dxdy

Regularization: smoothnesson [If (local/ global)

Visibility: ? (fine mesh to connect points on each plane + Zbuffering)

How to deal with boundaries ?




Mesh

Obiect (surface) : mesh vertices X = AV + AV + Ay,

\Y

yay

n

Normals : Interpolated n=An,+An,+An,
V2 r]2 V3 n3
n = Z(Vk _Vj)x(vi _Vj)
_ CjkiOA(v))
Method: move vertices along interpolated normals based on photo-

consistency of neighboring triangles.

Reqularization: smooth normals

Visibility: Zbuffering

Topologiocal changes ?




Mixed Representations:Local patches

Mixed approaches :

» patches on voxels for a finer surface representation
= mesh on pre-computed voxel correlation (potential fields)
[Esteban and Schmitt CVIU 2005]
» (depth on base mesh)
Patches :

= arbitrary : [Zheng, Paris et al. 1JCV2006]
» gquadratic : surfels [Carceroni and Kutulakos IJCV 2002]



Optimization

Disparity map _,| Graph-cuts
Belief propagation Discrete
Depth w.r.plane Dynamic programming... | methods
Level sets Non-linear optimization | Continuous
Variational calculus methods
Mesh
Voxels Voxel carving (exhaustive search

For same color)




Summary

Discrete
= Voxel carving

. & ’
= Graph cut techniques 6;@@

Continuous 4
= Variational and level set technlques

0000t

)

[
b,

|

= Mesh-based reconstruction




Shape from Silhouette

Binary images

Back project each silhouette — 3D cone.

Carve all voxels outside the cone.

Result:
Reconstruction contains the true scene, but not the same (no
concavities)

Not photo-consistent (only to binary images).
In the limit reconstructs a visual hull

[Martin PAMI 91][Szeliski 93] + Our capgui in lab




Smarter volumetric representations

Voxel-based Image ray based Axis-aligned

-
~/

+ Moderatly accurate

- Inaccurate + Accurate
: + Fast
+ Triangulate w. Franco, Boyer
marching cubes + Marching intersections

Tarini’'01 + our Capgui



Volumetric reconstruction

“
4

M1
%

e
1%

(|

=

Method : Carve voxels that are not consistent with images
(according to a chosen photo-consistency score).

D

OR
Assign colors to voxels consistent with the input images.
(color + opacity) Not unique
rue,scene CN3 solution
N2 voxels ' _ all scenes Order of
C colors Photo-consist. traversal v.
SLENes important




Voxel coloring

s

S

== _@m

Each voxel
Project in images and correlate
Color if consistent

Visibility !

Depth ordering : Single visibility ordering for each view
(Restriction in camera placement)

Plane sweep [Co

o5

Ins CVPR 96]

- . /
Traversal

order

[Seitz,Dyer CVPR97]

*

No scene point contained
within the convex hull of
the cameras




Voxel coloring : results

Input image Results

[Seitz,Dyer CVPR97]



Space carving

In general a view independent order might not exist

Space carving [Kutulakos, Seitz ICCV 99, IJCV 2002]
= |nitialize a volume containing the scene

= Choose a voxel on the surface of the scene
* Project in all visible images

= Carve If not consistent

* Repeat until convergence

Consistency:
The resulting shape is photo-consistent
(all inconsistent voxels are removed)

Convergence:

Carving converges to a non-empty shape Photo-hull

(a point on the true surface is never removed)



Space carving : photo hull

Initial volume and Photo-hull
true scene

Photo-hull = union of all photo-consistent shapes

Basic algorithm : requires a difficult update procedure
(visibility computation after carving a voxel)
Multi-pass plane sweep :

= Sweep plane in each 6 directions
» Consider active only cameras on one side of the plane




Space carving : results

[Kutulakos, Seitz ICCV 99, IJCV 2002]



Graph cuts for multi-view reconstruction

= Discrete surface reconstruction
= Graph cut

= Graph cuts as hypersurfaces
= Example: [Paris, Sillion, Quan IJCV 05]

= Types of energies minimized with graph cut
[Kolmogorov Zabih ECCV 2002]
= Graph cuts for multi-labeling



Reconstruction as labeling

mln[ [ BaaVEXH [ [ Bl X, Y)dvdx]

o S N(X) J

Photo- -consistency Smodthness
Discrete formulation: Ex: disparity map  voxels
= surface representation PUP pixels voxels

disparities occupancy
= [abels fp {012...} {01}
Find a set of labels f =(f,,....f,.....f5) that minimize
E(f) Zqodata(f )+A qusmooth(fpi q)
{ p.g}CN

Notes:
* NP hard

» Can be solved using MRF energy minimization methods

graph cuts (submodular E), dynamic programming, belief propagation,
simulated annealing ...




Graph cuts

mn Oriented graph ©=(V+E)
J = nodes V,sources ,sinkt

i = edges E, edge capacity w(p,q)
@ —) é‘—’O‘—*O (non-negative)

(SRR

Cut C={S,T} partition of nodes into two disjoint sets such that s//5, t /T
Cost of the cut 2. W(P.9)

pUS,qUIT

III\/Iinimum Ccut cut that has minimum cost among all cuts (binary labeling)

Maximum flow maximum amount of liquid that can be sent from the
source to the sink interpreting edges as pipes with capacity w.

Polynomial time algorithms
Augmenting paths [Ford & Fulkerson, 1962]

Push-relabel [Goldberg-Tarjan, 1986]




Energy minimization via graph cuts

Motivation:
= Geometric interpretation

cut = hypersurface in N-D space embedding the corresponding graph
used to compute optimal hypersurface

» Powerful energy minimization tool for a large class of binary
and non-binary energies
global minimum; strong local minimum

Surface reconstruction:

* Chose a surface representation

» Define a graph (nodes, weights) such that the cost of a cut
corresponds to the surface energy function.

How to find global labeling using graph cut ?
What kind of energy can be minimized with a graph cut ?




Graph Cuts as Hypersurfaces

cut
L 2

A""' \
R NS

= Graph fully embedded in the working geometric space
» Feasible cut = separated hypersurface in the embedding
continuous manifold



°p
> X > X
s-t Graph Cuts

multi-scan-line optimization

single scan line optimization

26 eg Search, Dynamic Programming



Example of geometric graph

[Paris, Sillion, Quan: A surface reconstruction met hod using global
graph cut optimization IJCV 05]

Disparity map: pixel p=(xy) label =disparity p- f,
E(f)= ZD (f)+A X |f,— D,(f,)=1(p)~-1,(p+f,)

{ p.g}ON
source A'=Af, -1

Dy(d) Qald) E =D(d,)+Ad,-d.|+D,(d.)+D.(d.) +
dl A A A min ~ 1( 4) ‘ 4 3‘ 2( 3) 3( 3)

D,(d,) D(d,) DJ(d,) | D(d,) /]‘d4 B ds‘ +D,(d,)
d, o—o—0—©
2 = — . | D@y f1:d4
d; 6000 .- f,=d3

..... , ’ 1 ‘If)4(d4) f3:d3
d, M f,=d4

sink

Graph Surface



Results

Convex smoothing — global solution

[Paris, Sillion, Quan IJCV 05, ACCV 04]



Types of regularization energies
E(f)=>.D(f,)+A Y. V(f,,f)

{ p,a}tN

Convex V(f,,f,)= ‘ f, - fq‘ linear V(I
+ global convergence )
- oversmooth V( fp’ fq) - (fp B fq) Af=fp-fq
Preserves discontinuities v f_ f ):min(T"f _f ‘) V(AR
NP hard > _ P ,
? convergence V(f,, f)= m'”(T,(fp ~ fq) ) Af=fp-fq
Potts V(fp’ fq) :/]pqp[ fp # fq] potts V(AT
piecewise planar 1 true S 7] —
binary graph D) = ~

p(0) {O, false | A=Tp-tg




Graph cuts : state of the art

[ Boykov CVPR 05 Tutorial]

= Optimization of first-order properties of segmentation boundary
(Riemannian length/area, flux of a vector field)

Can’t optimize curvature of the boundary (for now)

= Class of energies that can be minimized exactly
* binary energies with regular (sub-modular) interactions
= multi-label (non-binary) energies with “convex” interactions
= excludes robust discontinuity-preserving interactions

= Guaranteed quality approximation algorithms for multi-label
energies with discontinuity-preserving interactions...
= Potts model of interactions
= Metric interactions
» Regular (sub-modular) interactions



GOTO slide 41




Exact multi-labeling

Linear and convex smoothing (interaction) energy
Geometric graphs.

=Multi-scan-line stereo

[Roy & Cox 1998, 1999]
[Ishikawa & Geiger 1999] (occlusion handling)

=“Linear” interaction energy
[Ishikawa & Geiger 1998]
[Boykov, Veksler, Zabih 1998]

=Convex interaction energy
[Ishikawa 2000, 2003]



Binary graphs

[Kolmogorov, Zabih : What energy functions can be m Inimized via
graph cuts? ECCV 2002]

E(T) = Z D,(f,) + Z/]pqgsfp#fq

PN
f {st}

Complete characterization of energies that can be minimized with
graph cut :

E(f) can be minimizedby < V(59 +V(t,t)<V(St)+V(t,9)
s-t graph cuts

Large class of energies (Potts, metric ...)
BUT multi-view reconstruction is a multi-labeling problem !



Approximate multi-labeling

Binary Potts energy

Extended to multi-labeling
NP hard (= 3 labels)

| Boykov et al: Fast approximate
energy via graph cuts, PAMI 2001]

o Expansion approximate solution

= Ideea: break optimization into a set
of binary s-t cut problems

= Each iteration — consider one label a

= Binary cut: some labels are relabeled
with g; the others remain unchanged




O - expansion

Examples of standard and large moves from a given
Iniotia; labeling.

The number of labelsis |L| = 3.

4

initial labeling standard move swap a-expansion




0 expansion

Properties

Guaranteed approximation quality

= within a factor of 2 from the global minima (Potts model)

Applies to a wide class of energies with robust interactions
= Potts model
= “Metric” interactions

= “Submodular” (regular) interactions

normalized correlation, simulated annealing, a-expansions (BVZ 89,01)
start for annealing, 24.7% err 19 hours, 20.3% err 90 seconds, 5.8% err



Graph cut Example

| Vogiatzis, Hermandez-Esteban, Torr, Cipolla PAMI 2007, CVPR 2005 ]

Surface representation : voxels; no need for bounding inner/outer surface

Reqularization : weighted volume — balloon force

Minimization : graph cut

Occlusions _: accounted using a voting photo-consistency score
(occluded pixels are treated as outliers)

E[S] = // p(x)dA + //[ o(x)dV
J S J J JV(S)
\ ;) y
Y Y

Photoconsistency  Foreground/background cost

S = surface o(x)=-A balloon force
V(S) = foreground

silhouette cue — make o(x) very large
outside VH



Photo -consistency metric

Account occlusions p(X,S) [continuous, level set formulations]
S determines visibility but S is the solution!

Problem : Not suitable for graph-cut -

Solution : p(x) that accounts for occlusions using NCC |

N
p(x) = exp{—pu Z VOTE;(x) }.

=1

. 0:(([) =X+ (('; - X)([ +Y
Optic ray }
Correlation scores C(d) = ) 5;(d).

FEN (i) \
C(0) if C(0)>C(d) Vd /Q/
Vote  vorg, = J) i cl) =@ d
0 otherwise \
I




Account occlusions

m—proposed method Y

=== average C

correlation score

depth Ialong opltic ray

C¥(d) = Z Z““’* YW (d — dy).

FEN (1)



Graph structure

Bounding volume

SOURCE

=~
S
Optimal surface h

Data (photo-consistency)  w, = 4f 3’ ) (Xi jxj)

Ballooning wp, = A3

6 neighboring system



Results

Vogiatzis2 0.50mm
Furukawa2 0.54mm



Competitor — Yasu Furukawa ©




Multi-view stereo

Disparity map | Graph-cuts
Belief propagation Discrete
Depth w.r.plane Dynamic programming... | methods
Level sets Non-linear optimization | continuous
Variational calculus methods
Mesh

Voxels Voxel carving (coloring)




Continuous multi-view methods

» Regular surface and surface evolution
= Level set methods
» Example of mesh-based reconstruction



Surface evolution

Continuous formulation

recover shape (surface) by minimizing cost functional integrated over the
surface.

msin j A X)dX

XUs

= Cost functional : photo-consistency + regularization (smoothness)

= Numerical methods: gradient descent, conjugate gradient, level sets ...

» Natural extension of curve evolution (2D) [Caselles ICCV95] to 3D
[Robert,Deriche ECCV 96][Faugeras Kerivan 98]

LYY




Regular surface = smooth

Definition: Reqular surface (manifold)

SO O°is a regular surface if for each point POS  there
exist a neighborhood V andamap X:U -v0OS of an open
set U O 0O? such that (X = parametrization):

1. Xdifferentiable
2. Xhomeomorphism ( [X™*:VOS-U continuous)
3. U(u,v)0OU the differentiable dx|,,:0° - 0° is one to one



Regular surface - properties

Reqular surface S
» tangent vector

wl span(X,,X,) =T,(S)

n — ><Ux)(V
= normal "X, XX,

—_ — — -1
. aren A(R) = i\xu x X ,|dudv = LdA Q =X Y(R)

1 ’qu ’XW
= curvature H = 2[<<>r(]u’xu>> + <<QVXV>>J (X, UX,)




Surface evolution

Cost functional ®:0°x0° - O°
Energy of the surface E= J‘CD(X, n)dA E= Iq;(X)dA
S S
Evolution flow  (Euler-Lagrange equations) S = (2HCD—<CD n>)n
X 1
3(0) =S
OBS:

= problem is intrinsic (independent on parameterization) dA

» automatic regularization H

= motion in the normal direction

= whole surface is evolving in time (reference frame attached to the object)

1. Discretization

2. Choice of cost functional




Photo -consistency functional

On Image On surface
Image point U m(X)
b »  Surface point X(u)=1%(u,S) X

P (U) =1 () = (X)) | Ps(X)=1(7(X)) = f(X)

Image i: E :I¢iim(U)E E :iq’iS(X)E
&\ 2 ok :Ei E=3 E

S-surface,
f(X)-color (radiance) of X [l



Where to integrate image/surface ?

On Image

On surface

P, (U) = 1 () = F (X (W)
Epy = | @ (U)du

du:ﬁdA

Z3
XN
E.=|® (X)=dA
n=]® (X))

dXim :DQ(CD>(3)N :(DCD)<3+CD N
dt Z Z
DdJ:Mer(I—f)

Il e X =0, UOXeN=0

dXx X
m = f (] - f)-= N
dt ( )z3

Impossible to
reconstruct

Constantf Of =0

®(X) =1(n(X)) - £(X)
E. :jcb (X)dA

s — (CoN

o - QON+O-H)N

Y Y
_1.Depends on 2. Automatic
image regularizatior

derivative

3.Doesn’t account for
image discretization



Surface evolution example

Step 1:

Taking Pictures...

[Faugeras Kerivan 98]



Modeling correct visibility

E(I') = / (Vg(x) : ig) vp(x) dx .
JRS3 Xz
visible volum
W, w2 o1 A2y XVIX
(I-C)'VC =Svp+((I-C)*—(I-C")*) —=—d(xn)vr
N X ) Xz D
Usual term Horizon term

Vi (X) = H(x*n)

(1 xO(-1/272) Heaviside
H(xen)=< 0 x>7m/2,x<-ml/2 func.
/2 x{ml2-ml2d

1 xO{ml/2-ml2 func.
0 else

[Gargallo et al ICCV 07]

o(Xe n) :{




Surface discretization

Explicit representation

* Depth / disparity map
X =Y, f(xYy)) Q@
3D point
E(F) = [ [ Gaalx. ¥, F)oxdy+A[ [ @ (x,y, f,0f )dxdy P
Xy Xy Image plane
fo=- (Euler-Lagrange eq.)

[Robert and Deriche: Dense depth recovery from stereo images, ECAI1992]
[Strecha et al: Dense matching of multiple wide-baseline views ICCV 2003]

» Depth with respect to plane

Move points along displacement direction
[Birkbeck et al 2006]

= Mesh

E(S) = Z ZCD(Alvl +/12V2 +/]3V3’/]1n1 +/]2n2 +/13n3)
{vi.vo, V3 {A 15,43

v, =0E/ov

[Fua and Leclerc 1993]

[Birkbeck et al ECCV 2006]




Level set representation

0000

Implicit representation *[Birkbeck]
Surface = Zero level set of a higher dimensional function W(X,1)
Y(X)<0 for XOQOO? ‘Osher and Sethian 88]
W(X)>0 for XOQ (closenf Q) [Faugeras Keriven 98] (stereo)
W(X)=0 for XO0Q=S Soatto Yezzi Jin ICCV 03] (specular refl.)
normal s o Evolution cost function

[mhd i S=0n S(0)=S

curvature |, _, -1 [Eﬁj then W, =-0(0W,n) W(S(t),t)=0
2 |ov| Efficient numerical schemes
[Sethian 96][Osher 02]




Cost functional

Photo-consistency :image cues (SFS,PS,stereo,silhouette)

Where to integrate? : surface + makes the problem intrinsec

+ automatic regularization (multiplicative)
- over-smoothing

- not account for image discretization
Image + can add a regularizer

Reqularization linear

guadratic + improves convergence

- penalizes large variation

- over-smoothing
non-quadratic, anisotropic E., = J¢QDZ‘)jxdy
[Robert, Deriche 96] [Alvarez, Deriche 00] [Strecha 02]
(ex. Nagel-Enkelmann diff. oper.)

+ preserves discontinuities




Goto p 66




Surface/depth regularization

Depth map regularization f

1. Homogenous
Diffusion (heat eq)

2. Image-based regularization —
align depth discontinuities with
the image discontinuities

3. Depth map reqularization
Not smooth across surface
discontinuities

energy Euler Lagrange eq.
of

g(mPof?  divig(oi?or)

OfTD@NOF div(D(OI1)Of)
g —decreasing function
g(s?)->0 when s big (high gradients) —
inhibit diffusion
D — tensor D =Df0Of "

Aot?)  divlg (o or) q)d

r0f0f ) div(g (Ofof 7)ot
H_/

g

D



Example regularization

gD Pof?  divig(oi?or)
OfTD@@NOf div(D(O1)Of)

Image-based
regularization

Aot?)  divig(off o) q)a'

rg{0f0f ) div(g (Ofof T)of

9

depth-based
regularization




Example regularization

d-b regul I-b requl



| earn more about variational methods

Level Set Methods
S. Osher and R. Fedkiw,

Jan Erik Solem

PhD thesis,
Springer 2003 Malmo Univ.
s Mathematical Hailin Jin
w2 weemateat | Proplems in Image PhD thesis,
Frosessing Processing Washington Univ.
=7 | Aubert et al
Springer 2002

The Handbook of
Mathematical
Models in
Computer Vision
N. Pragios editor
Springer 2005




Graph -cuts and hypersurfaces

[Roy,Cox ICCV 98, 1JCV 1999]
[Ishikawa, Geiger ECCV 1998]

= Geometric graph for stereo

= Convex smoothing — global convergence

distance
map B

Euclidian metric (ct) Riemannian metric (varying tensor)

= Connection between cuts and hypersurfaces in continuous spaces
[ Boykov, Kolmogorov: Computing geodesics and minim al surfaces via
graph cuts, ICCV 2003]
Show how to build a grid graph and sets the weights such that the cost of
cuts is arbitrarily close to the area of corresponding surface for any
anisotropic Riemannian metric.
Graph cut to find globally minimum surfaces (like level sets) under arbitrary
Riemannian metric.




Minimal surfaces and graph cut

[Boykov, Kolmogorov ICCV03,05]

distance
map : B
A
Euclidian metric (ct) Riemanniarn metric (varying tensor)
E:jdA E = [(X)dA
S S

multi view stereo formulation

Can the minimal surface energy be minimized with graph cut ?




Cost of a cut

RONS

V. W,
XX

o

d
% {
XXX

XA

m Cost of a cut can be interpreted as a geometric “length” (in 2D) or “area”

(in 3D) of the corresponding contour/surface.

mCut metric is determined by the graph topology and by edge weights.



Riemanian metric

Euclid length of C _
Cauli:chlv-e(?rrg)fir)]g fo(r)mula HC H£ —_ % j nL /0 qﬂ
I\

\the number of times
line L intersects C



Cut Metric on grids
can approximate Euclidean Metric

D

524?'5%'4'4

AV e Ivavas
'X"""A’I""

Graph nodes are imbedded
In R2 in a grid-like fashion

X
W
¥
’l
‘

2
"4
%

N
o

4-neighborhoods
(Manhattanmetric

v

Edges of any regular
neighborhood system
generate families of lines

{—/.1 N '1""“%3

la"“"‘\‘
‘Q!"I"I"I

7

/ /‘\ 8-neighborhoods
ICIL = Z n (Do, [Ag = [IC L

Euclidean l graph cut cost A q (A
length for edge weights} W = %

the number of edges of 2
family k intersecting C




Example [Boykov]




Summary: representations

Imaqge centered

= Depth/disparity
map

Object centered

Implicit (level sets)

Mesh

Voxels

(@ — )
3D point
Image plane

time

+ | »Natural extension

»Handles topological

»Graphics based

»Handles large

of SFS, PS, stereo | changes =Implied normals structures
=Strong min with *"Implied normals =Visibility =Arbitrary topology
graph cuts =Visibility

- | =Limited resolution | ="Too smooth »Topological =|gnores regularization
=Partial obj. =Slow changes (sensitive to noise)
reconstr »Closed surfaces =L imited resolution
=Viewpoint =Occlusion handling

dependent




Discrete vs. continuous

Level Sets

Graph Cuts

variational optimization method for fairly
general continuous energies

combinatorial optimization for a restricted
class of energies [e.g. KZ'02]

finds a local minimum
near given initial solution

finds a global minimum for a given set of
boundary conditions

numerical stability has to be carefully
addressed |[Osher&Sethian’g8]

continuous formulation -> “finite differences”

numerical stability is not an issue

discrete formulation ->min-cut algorithms

anisotropic metrics are harder to deal with (e.g.
slower)

anisotropic Riemannian metrics are as easy
as isotropic ones

Gradient descent method VS. Global minimization tool

[Boykov CVPRTut 2005]

(restricted class of energies)




A complete system

Neil Birkbeck

Motivation

method that works for objects with general reflectance
» textured and uniform regions ——> shading + texture
light variation (multiview PS)
» specular materials ——> general BRDF — parametric

System

Camera calibration:
pattern

Light calibration:
specular white sphere

Light variation:
rotating table, fixed cam.




Cost functional

Cost functional

Per-point cost function

X, xX,
o]

®(X,n) =Y h(X,P)|I,(R(X))~R(X,n,L,)
Zt "H\ t r‘

E= j ®(X,n)dA= j j D(X, n)||X x X, [dudv

Visibility+sampling reflectance

camera proj. | | image | | light

1. Lambertial reflectance

Ramb = (<)1.>I +a)

light light amblent
dir. color color

BRDF
albedo

2. Non-Lambertian retflectance

BRDF = Phong
In practice : filter specular highlights

fit full reflectance only at the end




Surface discretization

X

Alvl + AZVZ + A3V3

Surface = triangles,
move vertices
T
v? n,

Cost function E(S)= ), D OV, +AV, + v, AN +An, +An,)
{v1.va,va} {445,143
Normals interpolated n=An,+A,n, +An,
n = Z(Vk _Vj)x(vi _Vj)

j KJOA(v;)
Albedo implied by the shape (closed form solution)

(knowing light dir+color)
Visibility/shadows Z buffering




Surface discretization

Reqgularizer mean curvature

% = (20H - (O®,n))n

Gradient finite differences._

Initial shape = visual hull

Mesh handles topological changes

Multi-resolution (image pyramid)




Results : refinement




Results : shape + reflectance




Improvements

» Better light model — no need for calibration

= Model background ? no need to extract silhouette
(foreground) — Mumford-Shah functional

= Discontinuities — anisotropic regularization;
discontinuous mesh

* Incorporate noise ?



Capture system

= Shape from silhouette
= Dynamic texture

Camera-based 3D capture system - University of Alberta




