Image cues

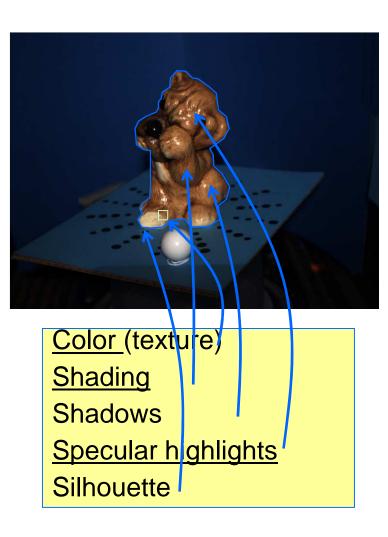


Image cues

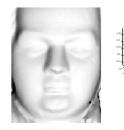
Shading [reconstructs normals]

shape from shading (SFS) photometric stereo

Specular highlights

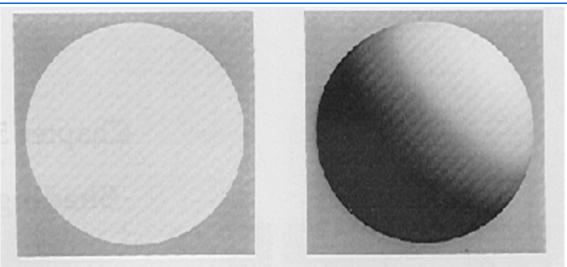
Texture [reconstructs 3D] stereo (relates two views)

Silhouette [reconstructs 3D] shape from silhouette [Focus]



[ignore, filtered] [parametric BRDF]

Geometry from shading



Shading reveals 3D shape geometry

Shape from Shading

One image

Known light direction Known BRDF (unit albedo) Ill-posed : additional constraints (intagrability ...) Photometric Stereo Several images, different lights Unknown Lambertian BRDF

- 1. Known lights
- 2. Unknown lights

[Horn]

Reconstruct normals Integrate surface [Silver 80, Woodman 81]

Shading

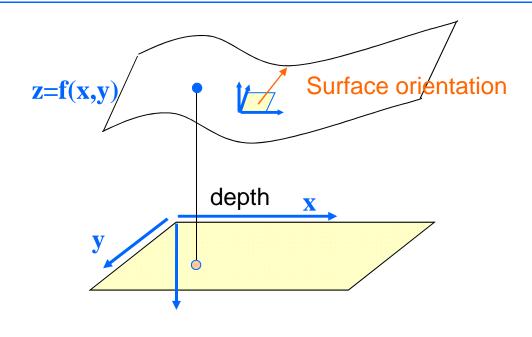
Lambertian reflectance

$$E(\mathbf{x}) = \rho L_i(\mathbf{x}, \theta_i, \phi_i) \cos \theta_i = \rho(\mathbf{n} \bullet \mathbf{l}_i)$$

albedo normal light dir

Fixing light, albedo, we can express reflectance only as function of normal.

Surface parametrization



Surface

Tangent plane

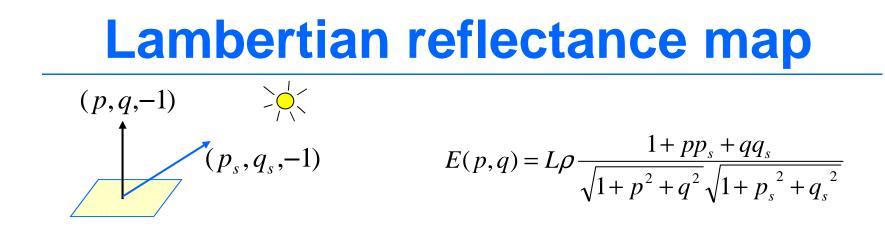
Normal vector

$$s(x, y) = (x, y, f(x, y))$$
$$\frac{\partial s}{\partial x} = \left(1, 0, \frac{\partial f}{\partial x}\right)^T \quad \frac{\partial s}{\partial y} = \left(0, 1, \frac{\partial f}{\partial y}\right)^T$$
$$\mathbf{n} = \frac{\partial s}{\partial x} \times \frac{\partial s}{\partial y} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right)^T$$

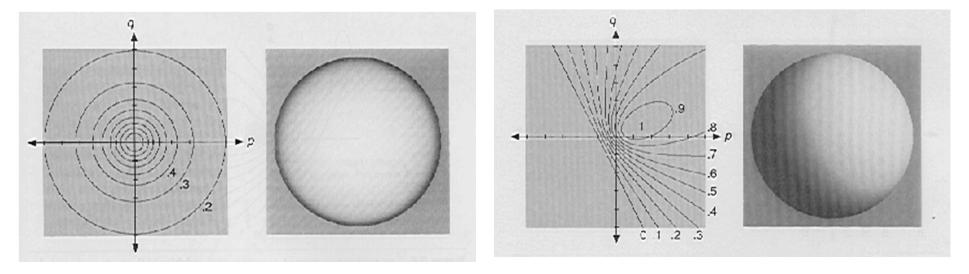


Gradient space

$$p = \frac{\partial f}{\partial x} \quad q = \frac{\partial f}{\partial y}$$
$$\mathbf{n} = (p, q, -1)$$
$$\hat{\mathbf{n}} = \frac{1}{\sqrt{p^2 + q^2 + 1}} (p, q, -1)$$



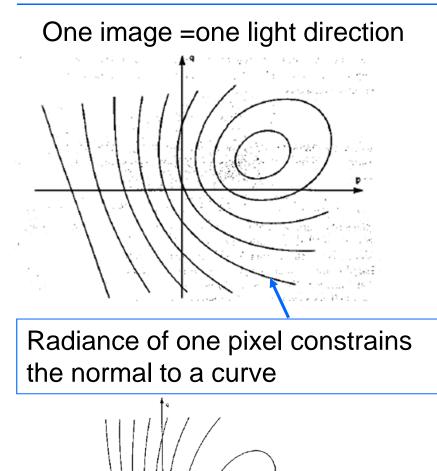
Local surface orientation that produces equivalent intensities are quadratic conic sections contours in gradient space



$$p_s = -2, q_s = -1$$

 $p_s=0,q_s=0$

Photometric stereo



Two images = two light directions

A third image disambiguates between the two. <u>Normal</u> = intersection of 3 curves

Specular reflectance

Photometric stereo

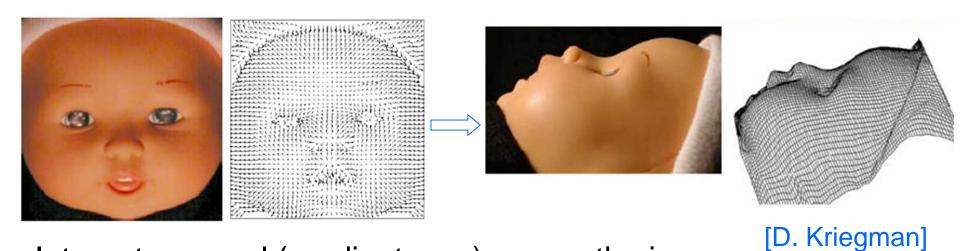
One image, one light direction $I(\mathbf{x}) = B(\mathbf{x}) = \rho(\mathbf{x})\mathbf{n}(\mathbf{x}) \bullet \mathbf{l}_i$

n images, n light directions

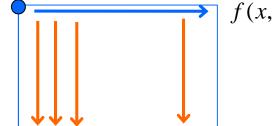
$$\begin{bmatrix} \mathbf{l}_{1}^{T} \\ \mathbf{l}_{2}^{T} \\ \vdots \\ \mathbf{l}_{n}^{T} \end{bmatrix} \rho(\mathbf{x})\mathbf{n}(\mathbf{x}) = \begin{bmatrix} I_{1}^{T}(\mathbf{x}) \\ I_{2}^{T}(\mathbf{x}) \\ \vdots \\ \vdots \\ I_{n}^{T}(\mathbf{x}) \end{bmatrix}; \quad A\rho(\mathbf{x})\mathbf{n}(\mathbf{x}) = I(\mathbf{x})$$

Given: n>=3 images with different known
light dir. (infinite light)
Assume: Lambertain object
orthograhic camera
ignore shadows, interreflections \mathbf{x}) = $I(\mathbf{x})$ $\frac{\text{Recover}}{\text{Albedo}} = \text{magnitude}$
 $\frac{|\mathbf{b}(\mathbf{x})|}{|\mathbf{b}(\mathbf{x})|}$ \mathbf{x}) = $I(\mathbf{x})$ $\frac{\text{Normal}}{\text{normal}} = \text{normalized}$

Depth from normals (1)



Integrate normal (gradients p,q) across the image Simple approach – integrate along a curve from (x_0, y_0)



0) 1. From
$$\mathbf{n} = (n_x, n_y, n_z)$$
 $p = n_x / n_z$ $q = n_y / n_z$
2. Integrate $p = \partial f / \partial x$ along (x,0) to get $f(x,0)$
3. Integrate $q = \partial f / \partial y$ along each column

$$f(x, y) = f(x_0, y_0) + \int_{(x_0, y_0)}^{(x, y)} (pdx + qdy)$$

Depth from normals (2)

$$f(x, y) = f(x_0, y_0) + \int_{(x_0, y_0)}^{(x, y)} (pdx + qdy)$$

Integrate along a curve from (x_0, y_0) Might not go back to the start because of noise – depth is not unique

Impose integrability

A normal map that produces a unique depth map is called integrable

Enforced by
$$\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}; \quad \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$$

[Escher] no integrability

Impose integrability

[Horn – Robot Vision 1986] Solve f(x,y) from p,q by minimizing the cost functional

$$\iint (f_x - p)^2 + (f_y - q)^2 dxdy$$

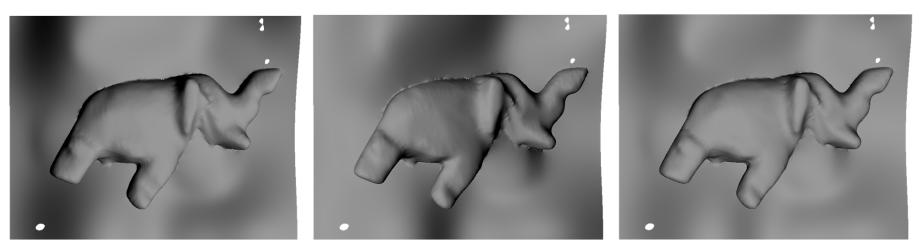
image

- Iterative update using calculus of variation
- Integrability naturally satisfied
- F(x,y) can be discrete or represented in terms of basis functions
 <u>Example</u> : Fourier basis (DFT)-close form solution

[Frankfot, Chellappa A method for enforcing integrability in SFS Alg. PAMI 1998]

Example integrability

[Neil Birkbeck]



images with different light

normals

Integrated depth

original surface

reconstructed

Image cues Shading, Stereo, Specularities

Readings: See links on web page

Books: Szeliski 2.2, Ch 12

Forsythe Ch 4,5 (Lab related) .pdf on web site)

<u>Color (texture)</u> <u>Shading</u> Shadows <u>Specular h ghlights</u> Silhouette

Upcoming

- Lab 4 due Mar31
- Exam 2: In-class Apr 2, same format as E1
 - Calculator and 4 sheets of your notes.
- Project presentations: Inclass Apr 9, 11
 - Present the motivation, related literature and libraries
 - Present your progress to-date
 - Prepare 5-10min presentation/person.
- Project report: Hand in at end of classes. (With an earlier hand-in I may have time to comment and you can polish it for a final hand-in)
- Project demos
 - Submit visual demos (videos and easily runnable code)
 - If you like can schedule an in-person demo.

All images

- Unknown lights and normals : It is possible to reconstruct the surface and light positions ?
- What is the set of images of an object under all possible light conditions ?

[Debevec et al]

Space of all images

Problem:

- Lambertian object
- Single view, orthographic camera
- Different illumination conditions (distant illumination)

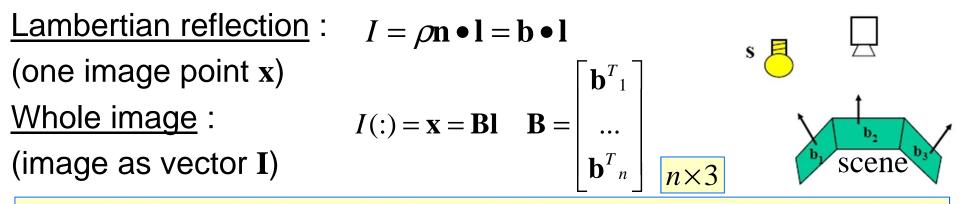
1. 3D subspace: + convex obj [Moses 93][Nayar,Murase 96][Shashua 97] (no shadows) 3D subspace

Convex cone

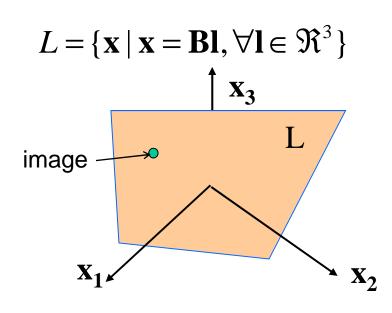
2. Illumination cone: [Belhumeur and Kriegman CVPR 1996]

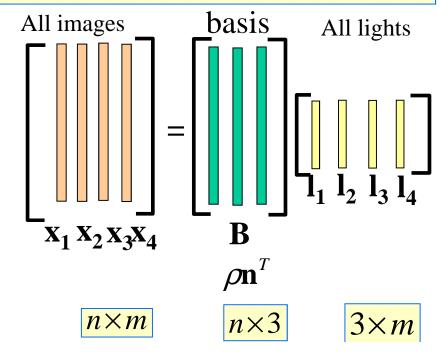
3. Spherical harmonic representation: [Ramamoorthi and Hanharan Siggraph 01] [Barsi and Jacobs PAMI 2003] Linear combination of harmonic imag. (practical 9D basis)

3D Illumination subspace



The set of images of a Lambertain scene surface with <u>no shadowing</u> is a subset of a 3D subspace. [Moses 93][Nayar,Murase 96][Shashua 97]



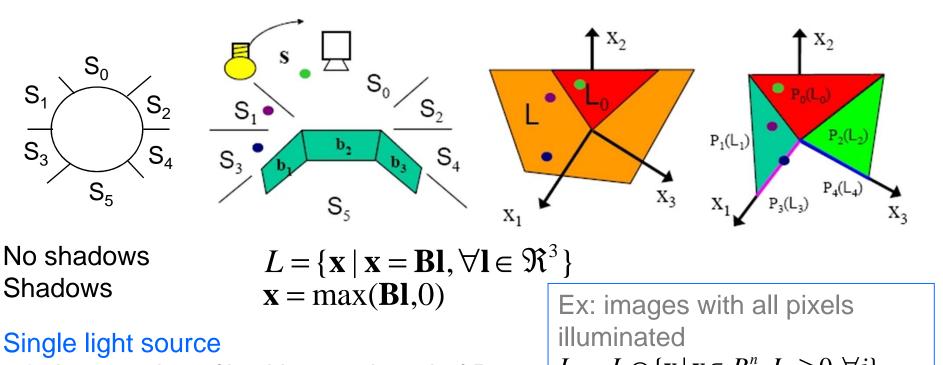


Reconstructing the basis

 $L = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{B}\mathbf{l}, \forall \mathbf{l} \in \mathfrak{R}^3 \}$

- Any three images without shadows span L.
- L represented by an orthogonal basis B.
- How to extract B from images ?

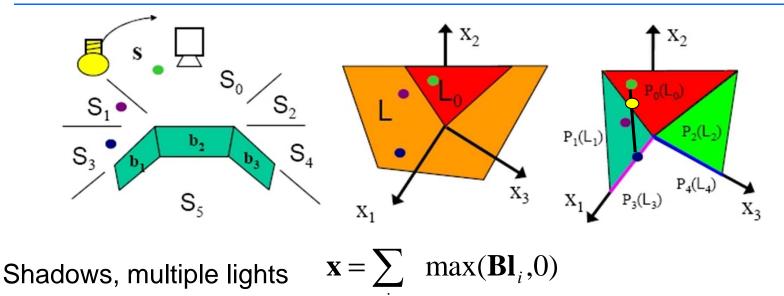
Shadows



- L_i intersection of L with an orthant i of Rⁿ $L_0 = L \cap \{\mathbf{x} \mid \mathbf{x} \in R^n, I_j \ge 0, \forall j\}$ corresponding cell of light source directions S_i for which the same pixels are in shadow and the same pixels are illuminated.
- P(L_i) projection of L_i that sets all negative components of L_i to 0 (convex cone)

The set of images of an object produces by a single light source is : $U = \{\mathbf{x} \mid \mathbf{x} = \max(\mathbf{Bl}, 0), \forall \mathbf{l} \in \mathbb{R}^3\} = \bigcup_i P_i(L_i)$

Shadows and multiple lights



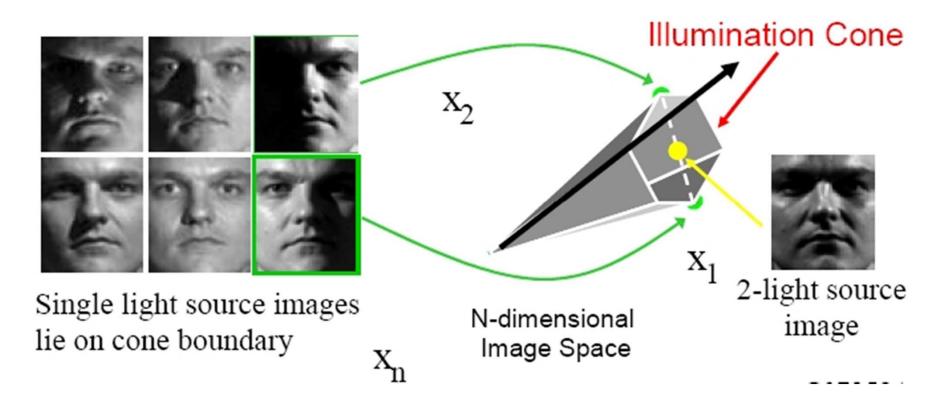
The image illuminated with two light sources I_1 , I_2 , lies on the line between the images of x_1 and x_2 .

The set of images of an object produces by an arbitrary number of lights is the convex hull of U =illumination cone C.

Illumination cone

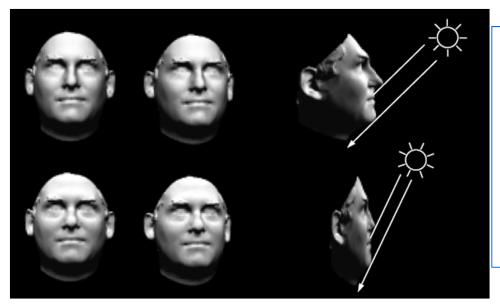
The set of images of a any Lambertain object under all light conditions is a <u>convex cone</u> in the image space.

[Belhumeur,Kriegman: What is the set of images of an object under all possible light conditions ?, IJCV 98]



Do ambiguities exist ?

Can two different objects produce the same illumination cone ? YES "Bas-relief" ambiguity

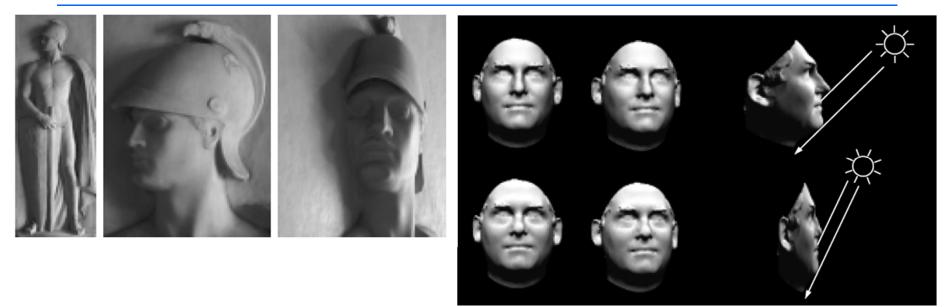


Convex object

- B span L
- Any $A \in GL(3)$, $B^* = BA$ span L
- I=B*S*=(BA)(A⁻¹S)=BS
 Same image B lighted with S and B* lighted with S*

When doing PCA the resulting basis is generally not normal*albedo

GBR transformation



[Belhumeur et al: The bas-relief ambiguity IJCV 99]

Surface integrability :

Real B, transformed $B^*=BA$ is integrable only for General Bas Relief transformation.

$$A = G^{T} = \begin{bmatrix} \lambda & 0 & -\mu \\ 0 & \lambda & -\nu \\ 0 & 0 & 1 \end{bmatrix} \qquad \bar{f}(x, y) = \lambda f(x, y) + \mu x + \nu y$$

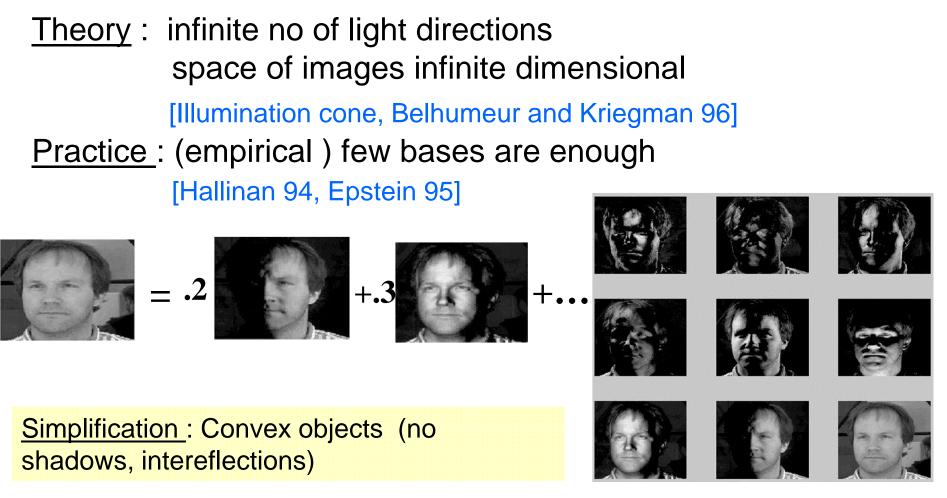
Uncalibrated photometric stereo

- Without knowing the light source positions, we can recover shape only up to a GBR ambiguity.
 - 1. From n input images compute B* (SVD)
 - 2. Find A such that B^{*}A close to integrable
 - 3. Integrate normals to find depth.

Comments

- GBR preserves shadows [Kriegman, Belhumeur 2001]
- If albedo is known (or constant) the ambiguity G reduces to a binary subgroup [Belhumeur et al 99]
- Interreflections : resolve ambiguity [Kriegman CVPR05]

Spherical harmonic representation



[Ramamoorthi and Hanharan: Analytic PCA construction for Theoretical analysis of Lighting variability in images of a Lambertian object: SIGGRAPH01]

[Barsi and Jacobs: Lambertain reflectance and linear subspaces: PAMI 2003]

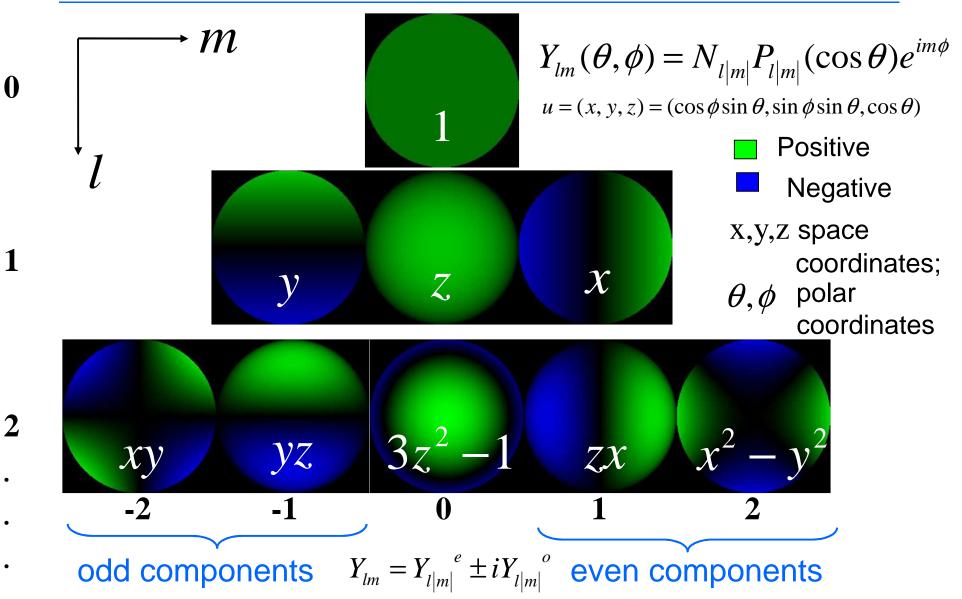
Basis approximation

Spherical harmonics basis

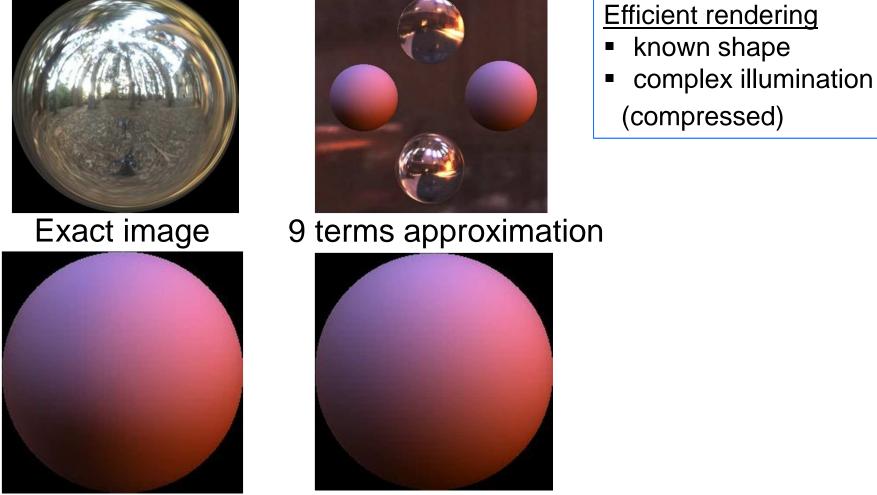
- Sphere analog to the Fourier basis on the line or square
- Angular portion of the solution to Laplace equation in spherical coordinates $\nabla^2 \psi = 0$
- Orthonormal basis for the set of all functions on the surface of the sphere

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l|m|}(\cos\theta)e^{im\phi}$$
Normalization
factor
Legendre Fourier
functions basis

Illustration of SH



Example of approximation



[Ramamoorthi and Hanharan: An efficient representation for irradiance enviromental map Siggraph 01]

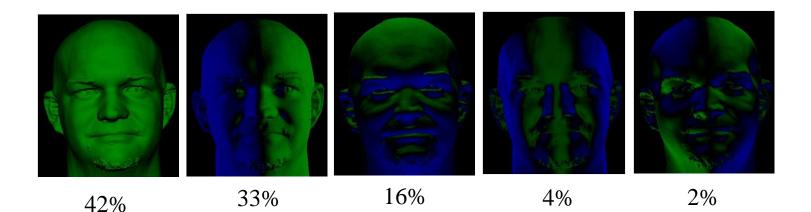
Not good for hight frequency (sharp) effects ! (specularities)

Relation between SH and PCA

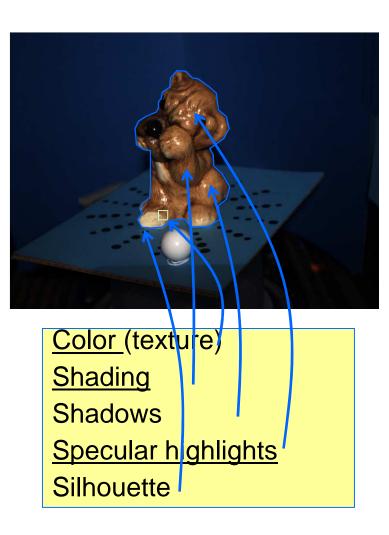
[Ramamoorthi PAMI 2002]

Prediction: 3 basis 91% variance 5 basis 97%

Empirical: 3 basis 90% variance 5 basis 94%



Summary: Image cues



Properties of SH

Function decomposition

f piecewise continuous function on the surface of the sphere

$$f(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm} Y_{lm}(u)$$

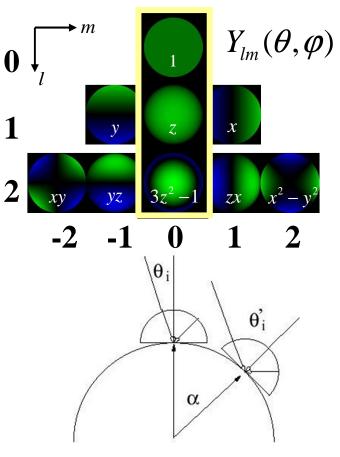
where

$$f_{lm} = \int_{S^2} f(u) Y^*_{lm}(u) du$$

Rotational convolution on the sphere **Funk-Hecke theorem:**

k circularly symmetric bounded integrable 2 function on [-1,1] $k(u) = \sum_{l=1}^{\infty} k_l Y_{l0}$

$$k * Y_{lm} = \alpha_l Y_{lm} \quad \alpha_l = \sqrt{\frac{4\pi}{2l+1}}k_l$$



1

Reflectance as convolution

Lambertian reflectance

One light $R(u') = l(u)\rho \max(0, u \bullet u')$

Lambertian kernel

Integrated light

$$k(u \bullet u') = \max(0, u \bullet u')$$
$$R(u') = \int_{S^2} k(u \bullet u') l(u) du$$

SH representation

light

$$l(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} l_{lm} Y_{lm}(u)$$

Lambertian kernel

$$k = \sum_{l=0}^{\infty} k_l Y_{l0}$$

Lambertian reflectance (convolution theorem)

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\sqrt{\frac{4\pi}{2l+1}} k_l l_{lm} \right) Y_{lm} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$

Convolution kernel

Lambertian kernel

 $k(u \bullet u') = \max(0, u \bullet u')$

$$k = \sum_{l=0}^{\infty} k_l Y_{l0}$$

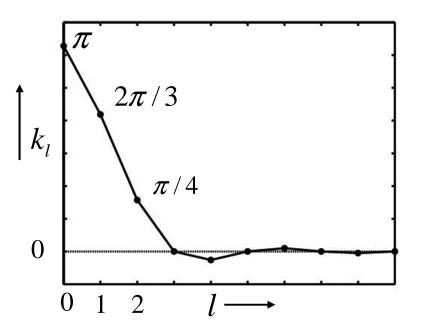
$$k_{l} = \begin{cases} \frac{\sqrt{\pi}}{2} & n = 0\\ \frac{\sqrt{\pi}}{3} & n = 1\\ (-1)^{l/2+1} \frac{\sqrt{(2l+1)\pi}}{2^{l}(l-1)(l+2)} \binom{l}{l/2} & n \ge 2, \text{even}\\ 0 & n \ge 2, \text{odd} \end{cases}$$

Asymptotic behavior of k_l for large l

 $k_l \approx l^{-2}$ $r_{lm} \approx l^{-5/2}$

Second order approximation accounts for 99% variability *k* like a low-pass filter

[Basri & Jacobs 01] [Ramamoorthi & Hanrahan 01]



From reflectance to images

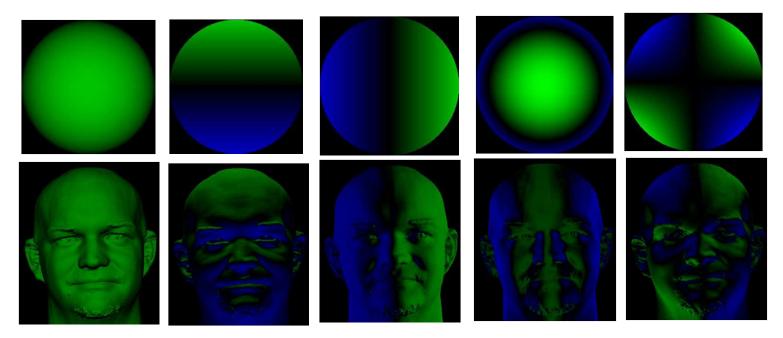
Unit sphere \Rightarrow general shape Rearrange normals on the sphere

Reflectance on a sphere

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$

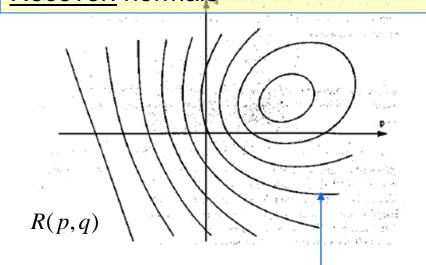
Image point with normal n_i

$$I_i = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \rho_i r_{lm} Y_{lm}(n_i)$$



Shape from Shading

<u>Given</u>: **one** image of an object illuminated with a distant light source <u>Assume</u>: Lambertian object, with known, or constant albedo (usually assumes 1) orthograhic camera known light direction ignore shadows, interreflections Recover: normals



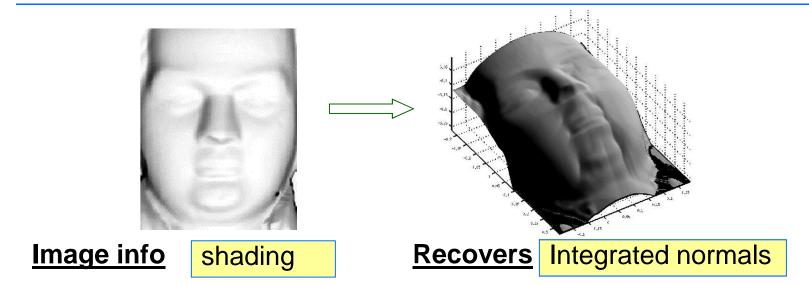
Radiance of one pixel constrains the normal to a curve

Surface s(x, y) = (x, y, f(x, y))Gradient space $p = \frac{\partial f}{\partial x}$ $q = \frac{\partial f}{\partial y}$ Normal $\mathbf{n} = (p, q, -1)$ $\hat{\mathbf{n}} = \frac{1}{\sqrt{p^2 + q^2 + 1}}(p, q, -1)$

Lambertian reflectance: depends only on n (p,q):

$$E(\mathbf{x}) = \cos(\mathbf{n}(\mathbf{x}), \mathbf{l}) = \frac{\mathbf{n}(\mathbf{x}) \bullet \mathbf{l}}{\|\mathbf{n}(\mathbf{x})\|}$$

Variational SFS

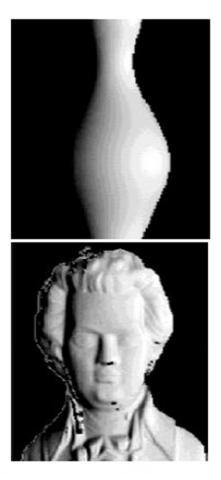


- Defined by Horn and others in the 70's.
- Variational formulation

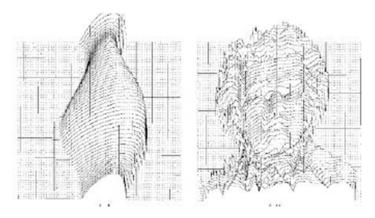
$$\iint_{object} (I(x, y) - E(p, q))^2 dx dy = \iint_{object} \left(I(x, y) - \frac{[p, q, -1]' \bullet \mathbf{l}}{\sqrt{p^2 + q^2 + 1}} \right)^2 dx dy + \alpha \iint_{object} \left(\frac{\partial p}{\partial y} - \frac{\partial q}{\partial x} \right)^2 dx dy$$

- Showed to be ill –posed [Brooks 92] (ex . Ambiguity convex/concave)
- Classical solution add regularization, integrability constraints
- Most published algorithms are non-convergent [Duron and Maitre 96]

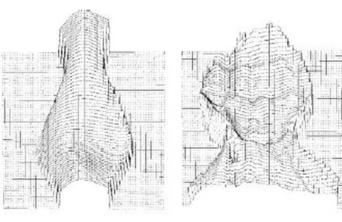
Examples of results



Synthetic images



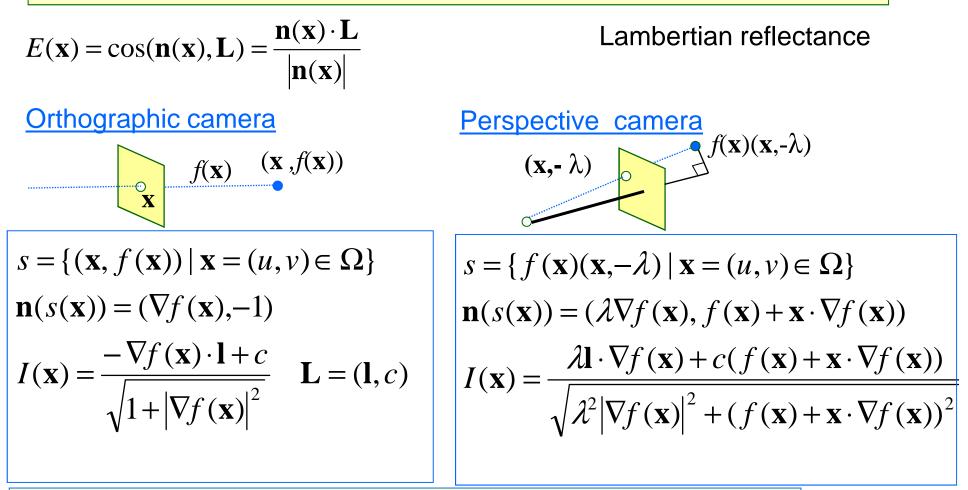
Tsai and Shah's method 1994



Pentland's method 1994

Well posed SFS

[Prados ICCV03, ECCV04] reformulated SFS as a well-posed problem



Hamilton-Jacobi equations - no smooth solutions; $H(x, \nabla u) = 0$ - require boundary conditions

Well-posed SFS (2)

Hamilton-Jacobi equations - no smooth solutions;

- require boundary conditions

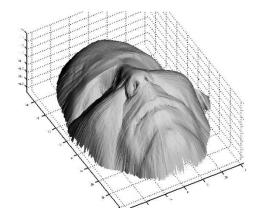
<u>Solution</u>

- 1. Impose smooth solutions not practical because of image noise
- Compute viscosity solutions [Lions et al.93] (smooth almost everywhere) still require boundary conditions
- **E. Prados** :general framework characterization viscosity solutions.

(based on Dirichlet boundary condition)

efficient numerical schemes for orthogonal and perspective camera

showed that SFS is a well-posed for a finite light source



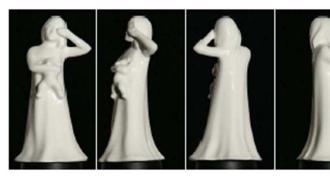
[Prados ECCV04]

Shading: Summary

Space of all images :	Distant illumination	Lambertian object Distant illumination One view (orthographic)	
1. 3D subspace	+ Convex objects	3D subspace	
2. Illumination cone:		Convex cone	
2. Spherical harmonic representation:		Linear combination of harmonic imag. (practical 9D basis)	
Reconstruction :	Single light source		
1. Shape from shading	One image Unit albedo Known light	III-posed + additional constraints	
	Multiple imag/1 view		
	Arbitrary albedo		

Extension to multiple views

<u>Problem</u>: PS/SFS one view ⇒ incomplete object
<u>Solution</u>: extension to multiple views – rotating obj., light var.
<u>Problem</u>: we don't know the pixel correspondence anymore
<u>Solution</u>: iterative estimation: normals/light – shape
initial surface from SFM or visual hull



Input images

Initial surface

Refined surface

- 1. Kriegman et al ICCV05; Zhang, Seitz ... ICCV 03 SFM
- 2. Cipolla, Vogiatzis ICCV05, CVPR06

Visual hull

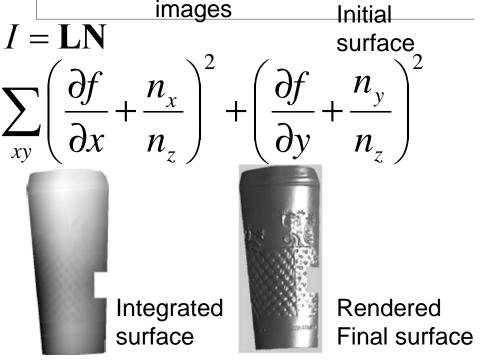
Multiview PS+ SFM points

[Kriegman et al ICCV05][Zhang, Seitz ... ICCV 03]

1. SFM from corresponding points: camera & initial surface (Tomasi Kanade)

2. Iterate:

- factorize intensity matrix : light, normals, GBR ambiguity
- Integrate normals
- Correct GBR using SFM points (constrain surface to go close to points)

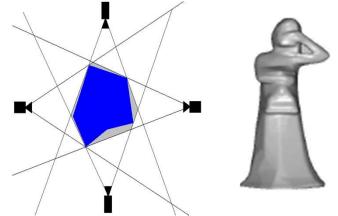


Multiview PS + frontier points

[Cipolla, Vogiatzis ICCV05, CVPR06]

1. initial surface SFS

visual hull – convex envelope of the object

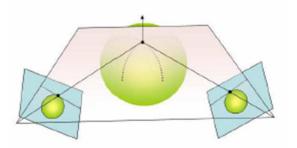


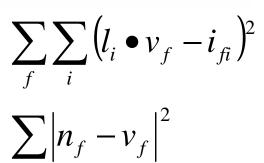
2. initial light positions from frontier points

plane passing through the point and the camera center is tangent to the object > known normals

- 3. Alternate photom normals / surface (mesh)
 - **v** photom normals

n surface normals – using the mesh mesh –occlusions, correspondence in *I*





Multiview PS + frontier points

(a) Input images.

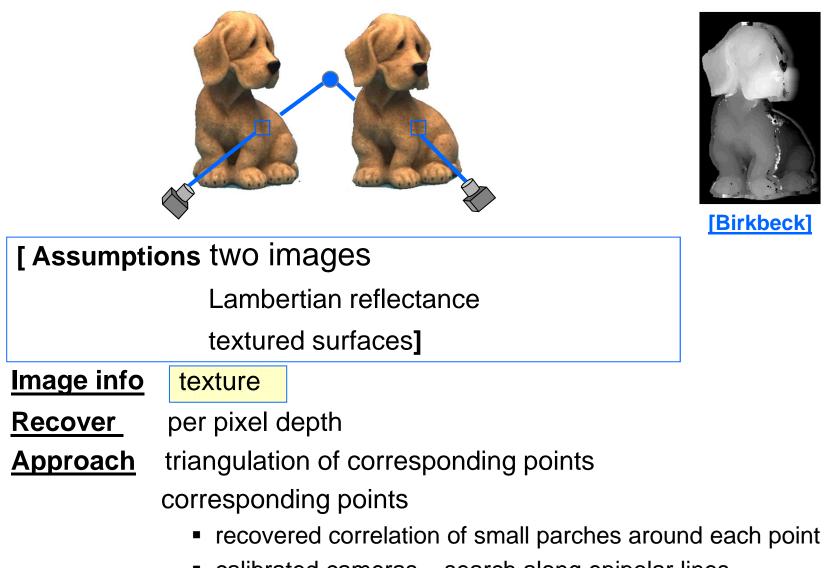
(b) Visual hull reconstruction.

(a) Input images.

(b) Visual hull reconstruction.

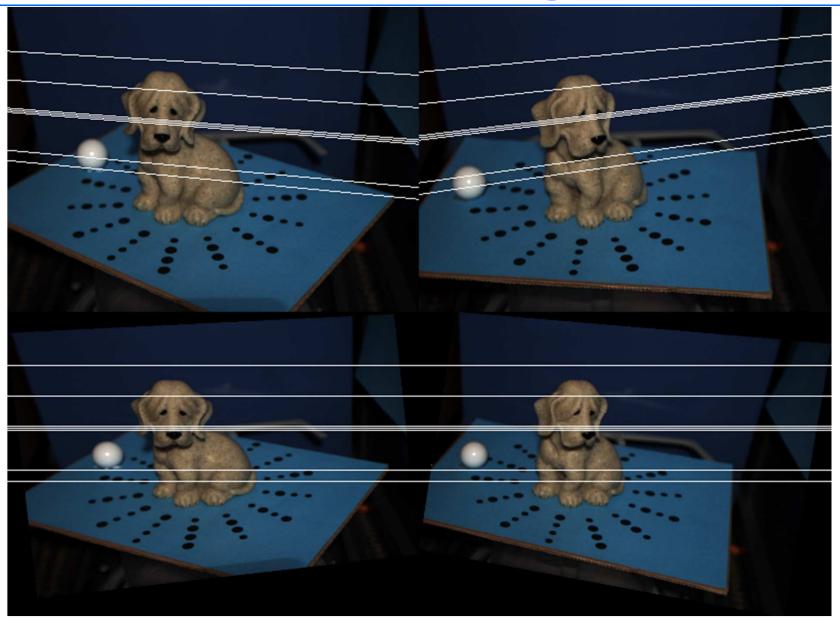
(c) Our results.

Stereo

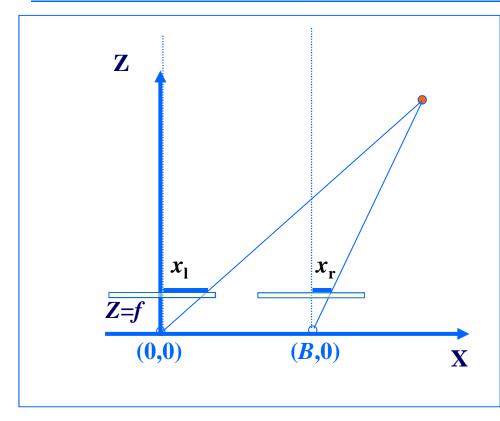


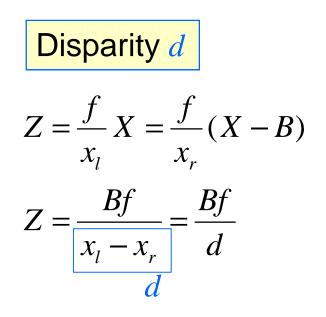
calibrated cameras – search along epipolar lines

Rectified images



Disparity

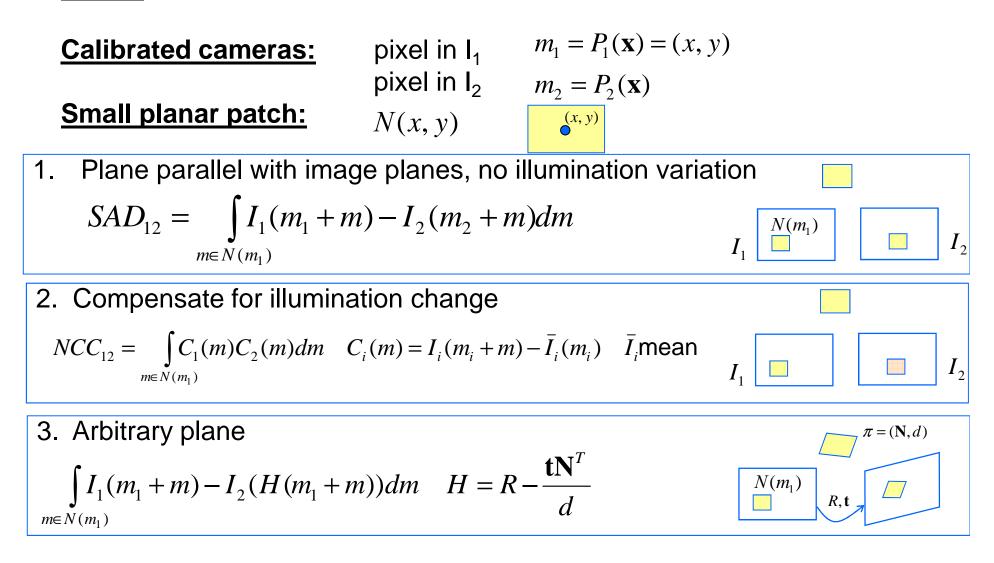




Correlation scores

Point:

 $\mathbf{x} = (x, y, f(x, y))$ With respect to first image



Specular surfaces

Reflectance equation

 $R_o = \rho(\theta_i, \phi_i, \theta_o, \phi_o) l(\theta_i, \phi_i) \cos(\theta_i)$

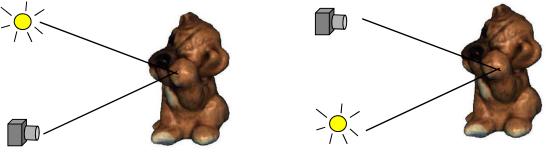
require: BRDF, light position

Image info shading+specular highlights

Approaches

- 1. Filter specular highlights (*brightness, appear at sharp angles*)
- 2. Parametric reflectance
- 3. Non-parametric reflectance map (discretization of BRDF)
- 4. Account for general reflectance

Helmholz reciprocity [Magda et al ICCV 01, IJCV03]

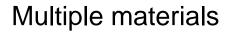


Shape and Materials by Example

[Hertzmann, Seitz CVPR 2003 PAMI 2005]

Reconstructs objects with general BRDF with no illumination info. <u>Idea</u>: A reference object from the same material but with known geometry (sphere) is inserted into the scene.

Reference images



Results

Summary of image cues

	Reflectance	Light	+	-
stereo	textured Lambertian	Constant [SAD] Varying [NCC]	Rec. texture Rec. depth discont. Complete obj	Needs texture Occlusions
shading	uniform Lamb	Constant [SFS]		Uniform material Not robust Needs light pose
	unif/textured Lamb	Varying [PS]	Unif/varying albedo	Do not reconstr depth disc., one view