
Image cues

Color (texture)
Shading
Shadows
Specular highlights
Silhouette



Image cues

Shading [reconstructs normals]

shape from shading (SFS)

photometric stereo

Specular highlights

Texture [reconstructs 3D]

stereo (relates two views)

Silhouette [reconstructs 3D]

shape from silhouette  

[Focus]

[ignore, filtered]

[parametric BRDF]



Geometry from shading

Shading reveals 3D shape geometry 
Shape from Shading
One image
Known light direction
Known BRDF (unit albedo)
Ill-posed : additional constraints
(intagrability …)

Photometric Stereo
Several images, different lights
Unknown Lambertian BRDF
1. Known lights
2. Unknown lights

Reconstruct normals
Integrate surface

[Silver 80, Woodman 81][Horn]



Shading

)(cos),,()( iiiiiLE lnxx •== ρθφθρ

albedo normal light dir

Lambertian reflectance

Fixing light, albedo, we can express reflectance only as 
function of normal.  



Surface parametrization

x

z=f(x,y)

y

depth

Surface orientation

Surface

Tangent plane

Normal vector
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Lambertian reflectance map
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Local surface orientation that produces equivalent intensities are 
quadratic conic sections contours in gradient space



Specular reflectance

Photometric stereo
One image =one light direction

Radiance of one pixel constrains 
the normal to a curve

Two images = two light directions

A third image disambiguates 
between the two. 
Normal = intersection of 3 curves 

E1

E2



Photometric stereo

Recover

Albedo = magnitude 

Normal = normalized
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Given: n>=3  images with different known
light dir. (infinite light)

Assume: Lambertain object
orthograhic camera
ignore shadows, interreflections



Depth from normals (1)

Integrate normal (gradients p,q) across the image
Simple approach – integrate along a curve from ),( 00 yx
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2. Integrate                    along          to get
3. Integrate                     along each column   
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Depth from normals (2)
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Integrate along a curve from
Might not go back to the start 
because of noise – depth is not 
unique 
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Impose integrability
A normal map that produces a 
unique depth map is called integrable
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Impose integrabilty
[Horn – Robot Vision 1986]
Solve f(x,y) from p,q by minimizing the cost functional

� Iterative update using calculus of variation
� Integrability naturally satisfied
� F(x,y) can be discrete or represented in terms of basis functions 

Example : Fourier basis (DFT)-close form solution
[Frankfot, Chellappa 
A method for enforcing integrability in SFS Alg.
PAMI 1998]
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Example integrability

images with different light

[Neil Birkbeck ]

normals Integrated depth original
surface

reconstructed



Image cues
Shading, Stereo, 

Specularities
Readings: See links on web page

Books: Szeliski 2.2, Ch 12

Forsythe Ch 4,5 (Lab related) .pdf 
on web site)

Color (texture)
Shading
Shadows
Specular highlights
Silhouette



Upcoming
� Lab 4 due Mar31
� Exam 2: In-class Apr 2, same format as E1 
� Calculator and 4 sheets of your notes.

� Project presentations: Inclass Apr 9, 11
� Present the motivation, related literature and libraries
� Present your progress to-date
� Prepare 5-10min presentation/person. 

� Project report: Hand in at end of classes. (With an earlier 
hand-in I may have time to comment and you can polish it for a 
final hand-in)

� Project demos
� Submit visual demos (videos and easily runnable code)
� If you like can schedule an in-person demo.



All images
� Unknown lights and normals : It is possible to 

reconstruct the surface and light positions ?
� What is the set of images of an object under all 

possible light conditions ? 

[Debevec et al]



Space of all images 
Problem: 
� Lambertian object
� Single view, orthographic camera
� Different illumination conditions  (distant illumination) 

1. 3D subspace: 
[Moses 93][Nayar,Murase 96][Shashua 97]

2. Illumination cone: 
[Belhumeur and Kriegman CVPR 1996]

3. Spherical harmonic representation:
[Ramamoorthi and Hanharan Siggraph 01]
[Barsi and Jacobs PAMI 2003]

+ convex obj
(no shadows)

3D subspace

Convex cone

Linear 
combination of 
harmonic imag.
(practical 9D basis)



3D Illumination subspace
Lambertian reflection :
(one image point x)

Whole image :
(image as vector I )
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The set of images of a Lambertain scene surface with no shadowing is a 
subset of a 3D subspace. [Moses 93][Nayar,Murase 96][Shashua 97]
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Reconstructing the basis

PCA

},|{ 3ℜ∈∀== lBlxxL � Any three images without shadows span L.
� L – represented by an orthogonal basis B.
� How to extract B from images ?    



Ex: images with all pixels 
illuminated

Shadows

},|{ 3ℜ∈∀== lBlxxL
)0,max(Blx =

No shadows
Shadows

S1

S5

S3

S2

S4

S0

Single light source
� Li intersection of L with an orthant i of Rn

corresponding cell of light source directions Si for which the same pixels are 
in shadow and the same pixels are illuminated.
� P(Li) projection of Li that sets all negative components of Li to 0 (convex cone)

The set of images of an object produces by a single light source is :

U
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Shadows and multiple lights

)0,max( i
i

Blx ∑=Shadows, multiple lights

The image illuminated with two light sources l1, l2, lies on the line 
between the images of x1 and x2.

The set of images of an object produces by an arbitrary number of lights is 
the convex hull of U = illumination cone C.



Illumination cone
The set of images of a any Lambertain object under all light conditions is a 
convex cone in the image space. 
[Belhumeur,Kriegman: What is the set of images of an object under all 
possible light conditions ?, IJCV 98]



Do ambiguities exist ? 
Can two different objects produce the same illumination 

cone ? YES

Convex object
� B span L
� Any A∈GL(3), B*=BA span L
� I=B*S*=(BA)(A -1S)=BS

Same image B lighted with S 
and B* lighted with S*

When doing PCA the resulting basis is generally not 
normal*albedo

“Bas-relief” ambiguity



GBR transformation

Surface integrability :
Real B, transformed B*=BA is integrable only for General Bas 
Relief  transformation.  

[Belhumeur et al: The bas-relief ambiguity IJCV 99]
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Uncalibrated photometric stereo 
� Without knowing the light source positions, we can recover 

shape only up to a GBR ambiguity. 

Comments

� GBR preserves shadows [Kriegman, Belhumeur 2001]

� If albedo is known (or constant) the ambiguity G reduces to a 
binary subgroup [Belhumeur et al 99]

� Interreflections : resolve ambiguity [Kriegman CVPR05]

1. From n input images compute B* (SVD)
2. Find A such that B* A close to integrable
3. Integrate normals to find depth.



Spherical harmonic representation
Theory :  infinite no of light directions 

space of images infinite dimensional
[Illumination cone, Belhumeur and Kriegman 96] 

Practice : (empirical ) few bases are enough
[Hallinan 94, Epstein 95] 

= +.3 +….2

[Ramamoorthi and Hanharan: Analytic PCA construction for Theoretical 
analysis of Lighting variability in images of a Lambertian object: SIGGRAPH01]

[Barsi and Jacobs: Lambertain reflectance and linear subspaces: PAMI 2003] 

Simplification : Convex objects  (no 
shadows, intereflections)



Basis approximation



Spherical harmonics basis
� Sphere analog to the Fourier basis on the line or square
� Angular portion of the solution to Laplace equation in spherical 

coordinates 
� Orthonormal basis for the set of all functions on the surface of 

the sphere
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Illustration of SH
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Example of approximation 

Exact image 9 terms approximation

Not good for hight frequency (sharp) effects ! (specularities)

[Ramamoorthi and Hanharan: An efficient representation for irradiance 
enviromental map Siggraph 01]

Efficient rendering
� known shape
� complex illumination

(compressed)



Relation between SH and PCA

[Ramamoorthi PAMI 2002]

42% 33% 16% 4% 2%

Prediction: 3 basis 91% variance
5 basis 97%

Empirical: 3 basis 90% variance
5 basis 94%



Summary: Image cues

Color (texture)
Shading
Shadows
Specular highlights
Silhouette



Properties of SH
Function decomposition
f piecewise continuous function on the surface of the sphere

where
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Reflectance as convolution
Lambertian reflectance
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Convolution kernel
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� Second order approximation 
accounts for 99% variability
� k like a low-pass filter

Asymptotic behavior of kl for large l
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From reflectance to images
Unit sphere  ⇒ general shape
Rearrange normals on the sphere
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Shape from Shading
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Radiance of one pixel constrains 
the normal to a curve

ILL-POSED

Given: one image of an object illuminated with a distant light source 
Assume: Lambertian object, with known, or constant albedo (usually assumes 1)

orthograhic camera
known light direction
ignore shadows, interreflections

Recover: normals



Variational SFS

shading Integrated normalsImage info Recovers

� Defined by Horn and others in the 70’s.

� Variational formulation 

( ) ∫∫ ∫∫∫∫ 








∂
∂−

∂
∂+















++
•−−=−

object objectobject

dxdy
x

q

y

p
dxdy

qp

qp
yxIdxdyqpEyxI

22

22

2

1

]'1,,[
),(),(),( αl

� Showed to be ill –posed [Brooks 92] (ex . Ambiguity convex/concave)

�Classical solution – add regularization, integrability constraints

�Most published algorithms are non-convergent [Duron and Maitre 96]

regularization



Examples of results

Synthetic images Pentland’s method 1994

Tsai and Shah’s method 1994



[Prados ICCV03, ECCV04] reformulated SFS as a well-posed problem
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Orthographic camera
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Hamilton-Jacobi equations - no smooth solutions; 

- require boundary conditions 0),( =∇uxH

Well posed SFS



Hamilton-Jacobi equations  - no smooth solutions; 

- require boundary conditions

Solution 

1. Impose smooth solutions – not practical because of image noise 

2. Compute viscosity solutions [Lions et al.93] (smooth almost everywhere)

still require boundary conditions
E. Prados :general framework – characterization viscosity solutions. 

(based on Dirichlet boundary condition)

efficient numerical schemes for orthogonal and perspective camera

showed that SFS is a well-posed for a finite light source

[Prados ECCV04]

Well-posed SFS (2)



Shading: Summary 

1. 3D subspace

2. Illumination cone: 

2. Spherical harmonic representation: 

+ Convex objects 3D subspace

Convex cone

Linear combination 
of harmonic imag.
(practical 9D basis)

Space of all images :

Reconstruction :

1. Shape from shading

2. Photometric stereo 

3. Uncalibrated photometric stereo 

One image
Unit albedo
Known light

Multiple imag/1 view
Arbitrary albedo
Known light

+ Unknown light

Ill-posed
+ additional 
constraints

GBR ambiguity
Family of solutions

Lambertian object
Distant illumination 
One view (orthographic)

Single light source



Extension to multiple views
Problem: PS/SFS one view       incomplete object

Solution : extension to multiple views – rotating obj., light var.

Problem: we don’t know the pixel correspondence anymore

Solution: iterative estimation: normals/light – shape

initial surface from SFM or visual hull

Input images Initial surface Refined surface

1. Kriegman et al ICCV05; Zhang, Seitz … ICCV 03

2. Cipolla, Vogiatzis ICCV05, CVPR06

SFM

Visual hull



1. SFM from corresponding points: 
camera & initial surface (Tomasi 
Kanade)

2. Iterate: 

• factorize intensity matrix : light, 
normals, GBR ambiguity

• Integrate normals

• Correct GBR using SFM points 
(constrain surface to go close to 
points) 

images Initial 
surface

Integrated 
surface

Rendered 
Final surface
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Multiview PS + frontier points
[Cipolla, Vogiatzis ICCV05, CVPR06]

1. initial surface SFS
visual hull – convex envelope of the object

2. initial light positions from frontier points
plane passing through the point and the camera 
center  is tangent to the object > known normals

3. Alternate photom normals / surface (mesh)
v photom normals  
n surface normals – using the mesh
mesh –occlusions, correspondence in I
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Multiview PS + frontier points



Stereo 

[ Assumptions two images
Lambertian reflectance

textured surfaces]
Image info

Recover per pixel depth

Approach triangulation of corresponding points 
corresponding points 
� recovered correlation of small parches around each point
� calibrated cameras – search along epipolar lines

texture

[Birkbeck]



Rectified images



Disparity
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Correlation scores
Point: 

Calibrated cameras: pixel in I1
pixel in I2

Small planar patch:
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)cos(),(),,,( iiiooiio lR θφθφθφθρ=
Reflectance equation

require: BRDF, light position

Image info 

Approaches

1. Filter specular highlights (brightness, appear at sharp angles)

2. Parametric reflectance 

3. Non-parametric reflectance map (discretization of BRDF)

4. Account for general reflectance 

Helmholz reciprocity [Magda et al ICCV 01, IJCV03]

shading+specular highlights

Specular surfaces



Shape and Materials by Example
[Hertzmann, Seitz CVPR 2003 PAMI 2005]

Reconstructs objects with general BRDF with no illumination info.
Idea : A reference object from the same material but with known geometry 
(sphere) is inserted into the scene.

Reference images

Multiple materials Results



Reflectance Light + -

stereo textured 
Lambertian

Constant [SAD] Rec. texture
Rec. depth 
discont.
Complete obj

Needs texture 
Occlusions

Varying [NCC]

shading uniform
Lamb

Constant [SFS] Uniform material
Not robust
Needs light pose

unif/textured
Lamb

Varying [PS] Unif/varying 
albedo

Do not reconstr 
depth disc.,     
one view

Summary of image cues


