Projects

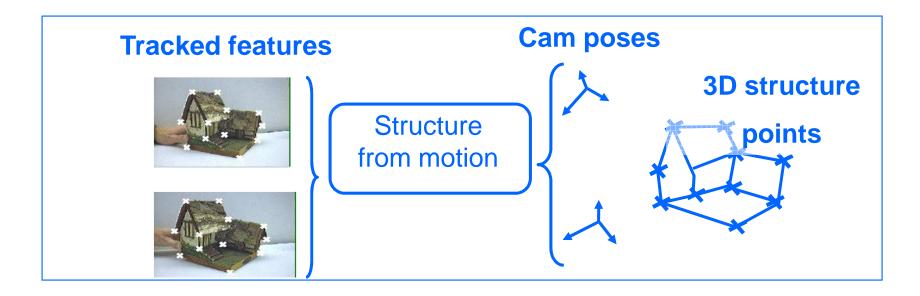
- Any Q/A or any help TA and I can provide?
- Feel free to engage in dialogue with TA/me on how to proceed
- Think about how to connect the project to course material.
- Interaction encouraged.
 - Attribute contributions to the people/sources

Light and Reflectance

Dana Cobzas Neil Birkbeck Martin Jagersand

most of course until now ...

- SFM to reconstruct 3D points from 2D feature points (camera geometry, projective spaces ...)
 - Feature correspondence : correlation, tracking assumes image constancy constant illumination, no specularities, complex material
 - 10,100 or even 1000 3D points is not a complete scene or object model
- No notion of object surface
- No notion of surface properties (reflectance)

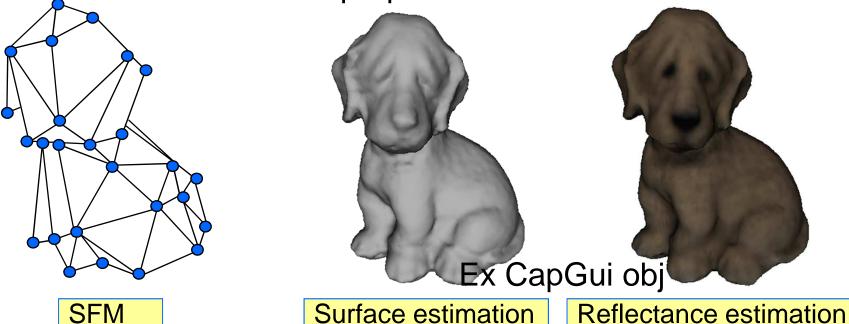


Now ...

- View surface as a whole different surface representations
- Consider interaction of surface with light explicitly model light, reflectance, material properties

Reconstruct whole objects = surface (detailed geometry)

Reconstruct material properties = reflectance



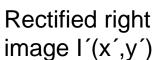
Stereo reconstruction

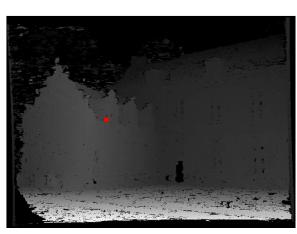
How to go from sparse SFM

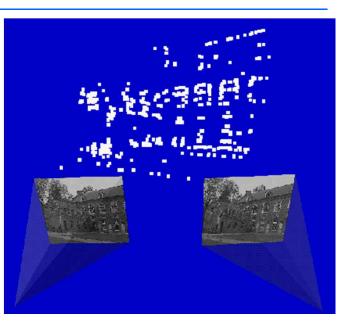
...to detailed, model? Here in the form of disparity/depth map

Rectified left image I(x,y)

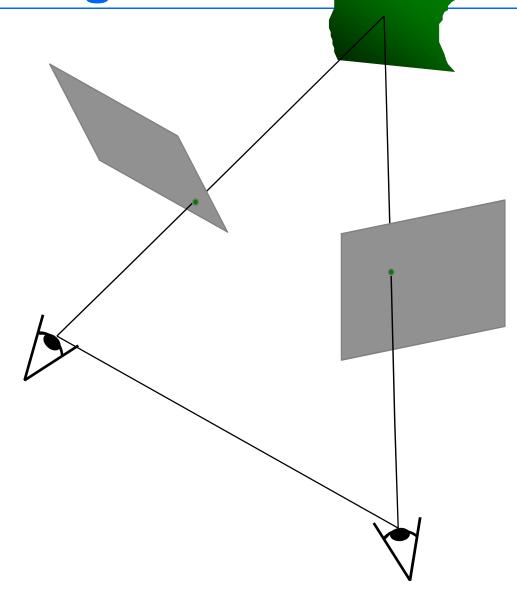
Dense Disparity map D(x,y)







Stereo image rectification

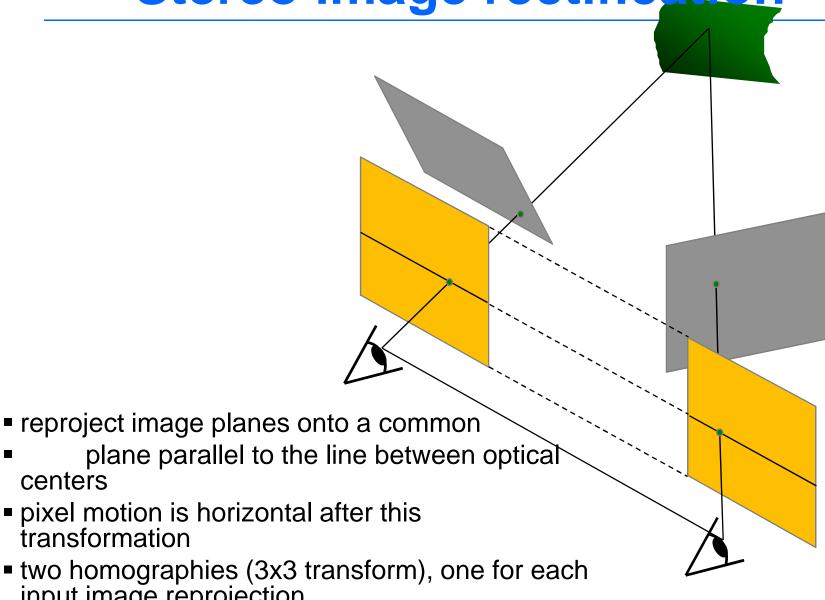


Stereo image rectification

centers

transformation

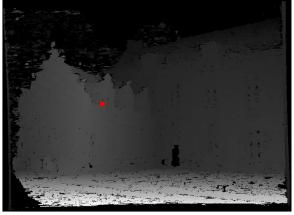
input image reprojection



Dense Stereo reconstruction

Rectified left image I(x,y)

Dense Disparity map D(x,y)



Rectified right image I'(x',y')

$$(x',y')=(x+D(x,y),y)$$

D is a "depth image)

(not full 3D model)

Brief outline

- Image formation camera, light,reflectance
- Radiometry and reflectance equation
- BRDF
- Light models and inverse light
- Shading, Interreflections

Lec₁

- Image cues shading
 - Photometric stereo
 - Shape from shading
- Image cues stereo
- Image cues general reflectance

Lec 2

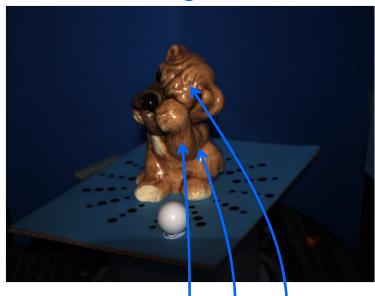
- Multi-view methods
 - Volumetric space carving
 - Graph cuts
 - Variational stereo
 - Level sets
 - Mesh

Lecture 1

Radiometry Light and Reflectance

Image formation

Image



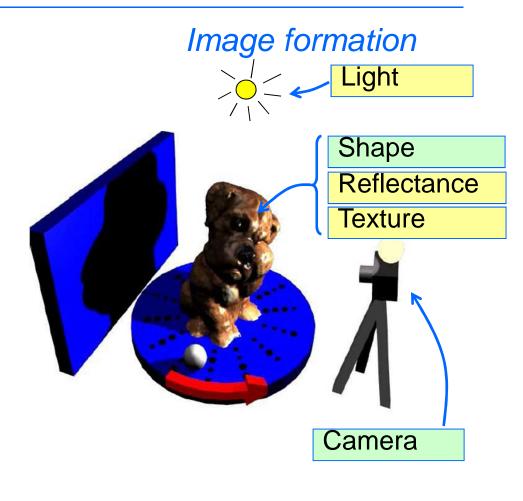
<u>Shading</u>

Shadows

Specular highlights

[Intereflections]

[Transparency]



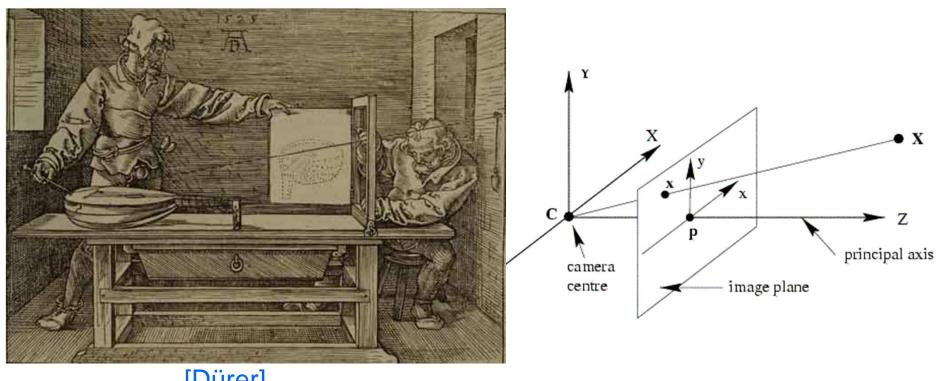
Images 2D + [3D shape]

Summary

Various things we can model

- 1. Cameras
- 2. Radiometry and reflectance equation
- 3. BRDF surface reflectance Lambertian BRDF
- 4. Light representation –
- 5. Image cues: shading, shadows, interreflections
- 6. Recovering Light (Inverse Light)

1. Projective camera model



[Dürer]

x = PX $P: 3 \times 4$ Projective Camera matrix

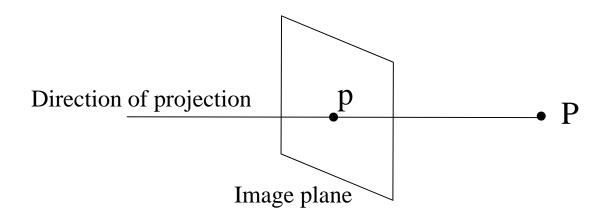
 $\mathbf{x} = K[R \quad \mathbf{t}]\mathbf{X} \quad K: 3 \times 3$ Eculicean Camera matrix

Rotation, translation (ext. params) R, \mathbf{t}

Orthographic camera model

Infinite Projection matrix - last row is (0,0,0,1)

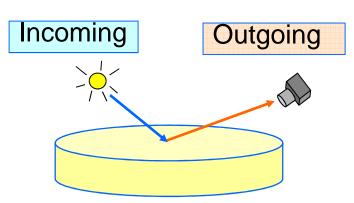
Good Approximations – object is far from the camera (relative to its size)



$$P_{orth} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Radiometry

- Foreshortening and Solid angle
- Measuring light: radiance
- Light at surface : interaction between light and surface
 - irradiance = light arriving at surface
 - BRDF
 - outgoing radiance

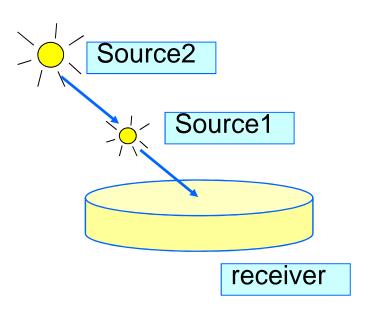


 Special cases and simplifications: Lambertain, specular, parametric and non-parametric models

Geometry and Foreshortening

Two sources that look the same to a receiver must have same effect on the receiver;

Two receivers that look the same to a source must receive the same energy.



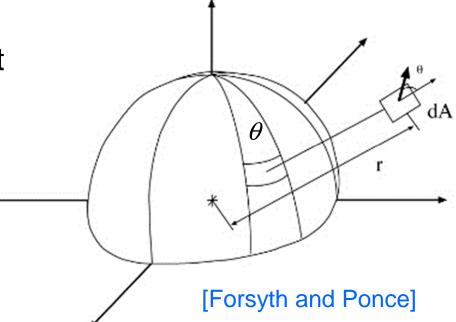
Solid angle

The solid angle subtended by a region at a point is the area projected on a unit sphere centered at the point

Measured in steradians (sr)

Foreshortening: patches that look the same, same solid angle.

$$d\omega = \frac{dA\cos\theta_n}{r^2}$$



Integration inf in spherical coord:

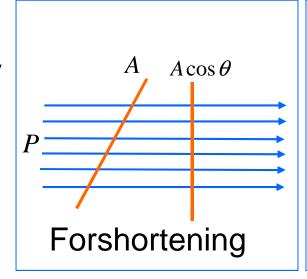
$$d\omega = \sin\theta \ d\theta \ d\phi$$

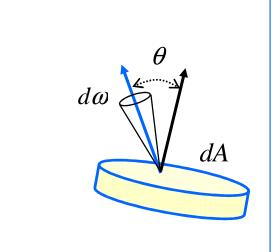
Radiance – emitted light

Radiance = power traveling at some point in a direction per unit area perp to direction of travel, per solid angle

- unit = watts/(m^2 sr)
- constant along a ray

$$L(\mathbf{x}, \theta, \phi) = \frac{P}{(dA\cos\theta)d\omega}$$

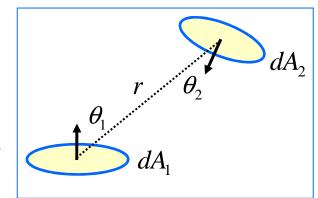




Radiance transfer:

Power received at dA₂ at dist r from emitting area dA₁

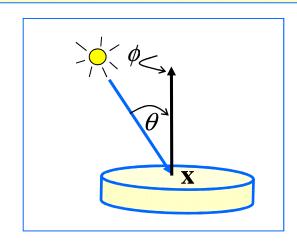
$$P_{1\to 2} = LdA_1 \cos \theta_1 \left(\frac{dA_2 \cos \theta_2}{r^2} \right) \qquad P_{1\to 2} = P_{2\to 1}$$



Light at surface : irradiance

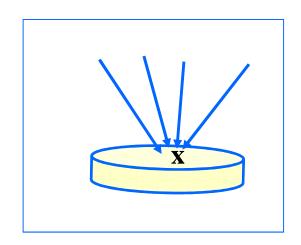
<u>Irradiance</u> = unit for light arriving at the surface

$$dE(\mathbf{x}) = L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$$

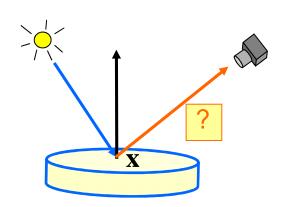


<u>Total power</u> = integrate irradiance over all incoming angles

$$E(\mathbf{x}) = \int_{0}^{2\pi\pi/2} \int_{0}^{2\pi\pi/2} L(\mathbf{x}, \theta, \phi) \cos \theta \sin \theta d\theta d\phi$$



Light leaving the surface and BRDF



many effects:

- transmitted glass
- reflected mirror
- scattered marble, skin
- travel along a surface, leave some other
- absorbed sweaty skin

Assume:

- surfaces don't fluorescent
- cool surfaces
- light leaving a surface due to light arriving

BRDF = Bi-directional reflectance distribution function

Measures, for a given wavelength, the fraction of incoming irradiance from a direction ω_i in the outgoing direction ω_o [Nicodemus 70]

$$\rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) = \frac{L_o(\mathbf{x}, \theta_o, \phi_o)}{L_i(\mathbf{x}, \theta_i, \phi_i) \cos \theta_i d\omega}$$

<u>Reflectance equation</u>: measured radiance (<u>radiosity</u> = power/unit area leaving surface

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

Radiosity - summary

Radiance	Light energy along a ray	$L(\theta, \phi) = \frac{P}{(dA\cos\theta)d\omega}$
Irradiance	Unit incoming light	$dE(\mathbf{x}) = L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$
Total Energy incoming	Energy at surface	$E_i(\mathbf{x}) = \int_{\omega} L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$
Radiosity	Unit outgoing radiance	$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$
Total energy leaving	Energy leaving the surface	$E_o = \int_{\Omega_o} \left[\int_{\Omega_i} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \right] \cos(\theta_o) d\omega_o$

Example: Sunlight 1kW/m^2 . Artificial light <1/10th

3. BRDF properties

BRDF = Bi-directional reflectance distribution function

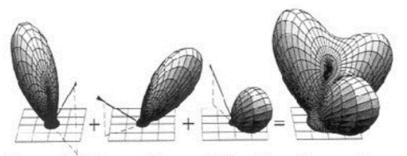
Measures, for a given wavelength, the fraction of incoming irradiance from a direction ω_i in the outgoing direction ω_o [Nicodemus 70]

Properties:

- Non-negative
- Helmholtz reciprocity
- Linear

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) \ge 0$$

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_o, \phi_o, \theta_i, \phi_i)$$



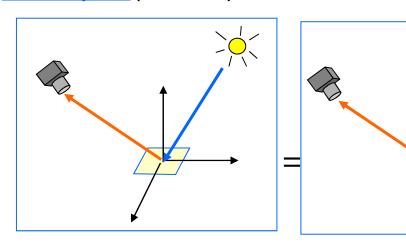
From Sillion, Arvo, Westin, Greenberg

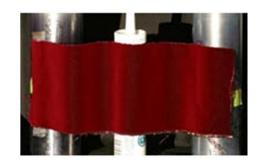
 Total energy leaving a surface less than total energy arriving at surface

$$\int_{\Omega_i} L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \ge \int_{\Omega_o} \left[\int_{\Omega_i} \rho(\mathbf{x}, \theta_i, \phi_i, \theta_o, \phi_o) L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i \right] \cos(\theta_o) d\omega_o$$

BRDF properties

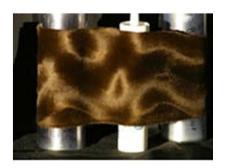
isotropic (3DOF)





$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_i, \theta_o, \phi_i - \phi_o)$$

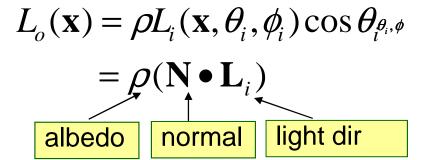
anisotropic (4 DOF)

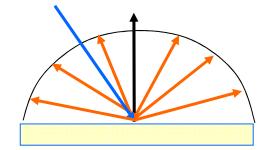


[Hertzmann&Seitz CVPR03]

Lambertian BRDF

- Emitted radiance constant/equal in all directions
- Models perfect diffuse surfaces : clay, mate paper, ...
- BRDF = constant = albedo
- One light source = dot product normal and light direction





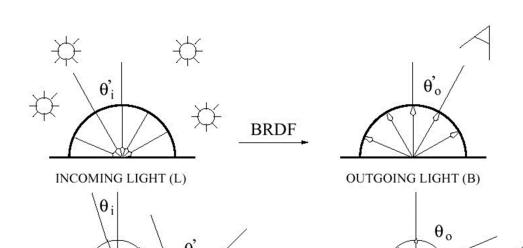
Diffuse reflectance acts like a low pass filter on the incident illumination.

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

Reflection as convolution

Reflectance $L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$ equation

$$= \int_{\Omega} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(R_{\alpha, \beta}(\theta_i', \phi_i')) \cos(\theta_i) d\omega_i$$



BRDF

Reflection behaves like a convolution in the angular domain

BRDF - filter

Light - signal

[Ramamoorthi and Hanharan]

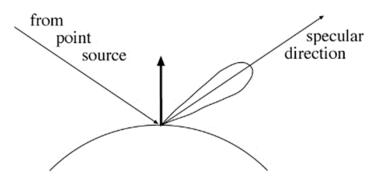
Specular reflection

Smooth specular surfaces

- Mirror like surfaces
- Light reflected along specular direction
- Some part absorbed

Rough specular surfaces

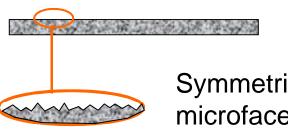
- Lobe of directions around the specular direction
- Microfacets



Lobe

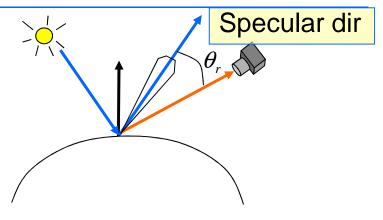
- Very small mirror
- Small blurry mirror
- Bigger see only light sources
- Very big fait specularities

Phong model



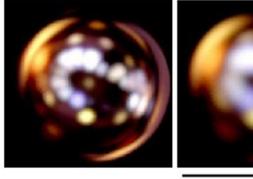
Symmetric V shaped microfacets

$$\rho_{Phong} = k_d + k_s \frac{(\cos \theta_r)^n}{\cos \theta_i}$$

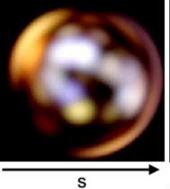


Mirror

Diffuse



CS348B Lecture 10



Pat Hanrahan, Spring 2002

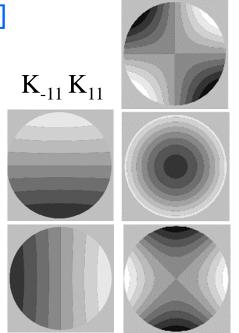
Modeling BRDF

Parametric model:

- Lambertian, Phong
- Physically based:
 - Specular [Blinn 1977] [Cook-Torrace 1982][Ward 1992]
 - Diffuse [Hanharan, Kreuger 1993]
 - Generalized Lambertian [Oren, Nayar 1995]
 - Throughly Pitted surfaces [Koenderink et al 1999]

Phenomenological:

[Koenderink, Van Doorn 1996]
 summarize empirical data
 orthonormal functions on the H_{S²} ×H_{S²}
 (H_{S²} hemisphere)
 same topol. as unit disk
 (Zernike Polynomials)



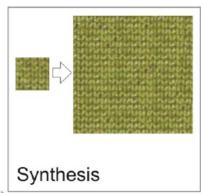
 $K_{-22}K_{20}K_{22}$

Measuring BRDF

Gonioreflectometers

- Anisotropic 4 DOF
- Non-uniform

BTF [Dana et al 1999]



[Müller 04]

More than BRDF - BSSRDF

(bidirectional surface scattering distribution)

BRDF

BSSRDF

[Jensen, Marschner, Leveoy, Hanharan 01]

Do SFS from here.

4. Light representations

Light source -

theoretical framework [Langer, Zucker-What is a light source]

Point light sources

Infinite

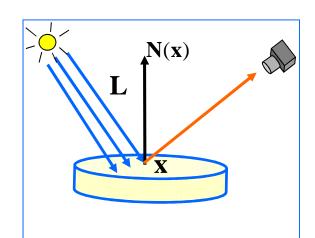
$$L_o(\mathbf{x}) = \rho(\mathbf{x})E\cos\theta_i = \rho(\mathbf{x})\mathbf{N}(\mathbf{x}) \cdot \mathbf{L}$$

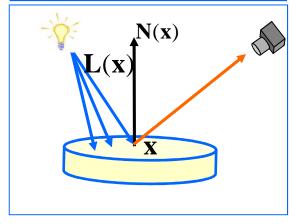
Nearby

$$L_o(\mathbf{x}) = \rho(\mathbf{x}) \frac{E \cos \theta_i(\mathbf{x})}{r^2} = \rho(\mathbf{x}) \frac{\mathbf{N}(\mathbf{x}) \cdot \mathbf{L}(\mathbf{x})}{r^2}$$

Choosing a model

- infinite sun
- finite distance to source is similar in magnitude with object size and distance between objects
 - indoor lights



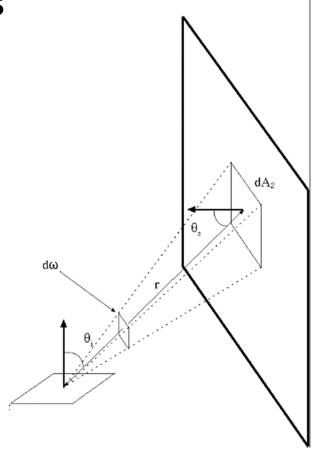


Area sources

Examples: white walls, diffuse boxes

Radiosity: adding up contributions over the section of the view hemisphere subtended by the source

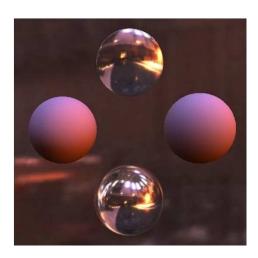
$$L_{o}(x) = \rho(x) \int_{source} E(Q) \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} dA_{Q}$$



Enviromental map

Illumination hemisphere
Large number of infinite point light sources

[Debevec]



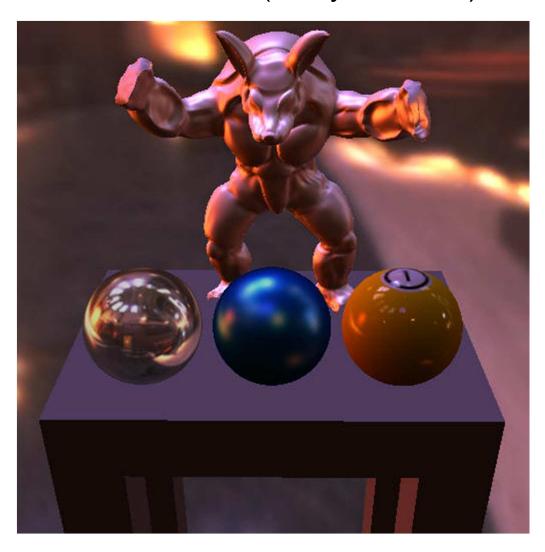
5. Image cues shading, shadows, specularities ...

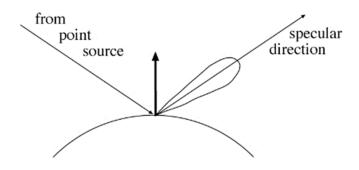
Shading

Lambertian reflectance $L_o(\mathbf{x}) = \rho L \cos \theta = \rho L (\mathbf{N} \bullet \mathbf{L}_i)$ Shading = observed smooth color variation due to <u>Lambertian</u> reflectance

Specular highlights

High frequency changes in observed radiance due to general BRDF (shiny material)



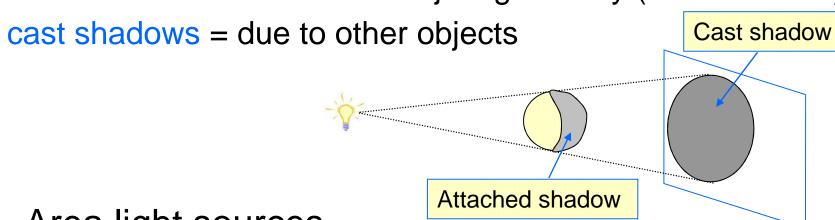


Shadows (local)

1. Point light sources

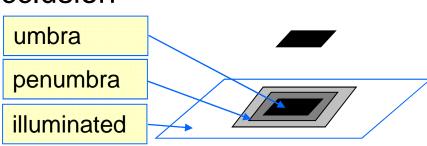
Points that cannot see the source – modeled by a visibility binary value

attached shadows = due to object geometry (self-shadows)



2. Area light sources

Soft shadows – partial occlusion



Interreflections

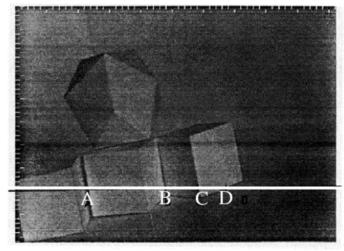
Local shading – radiosity only due to light sources [computer vision, real-time graphics]

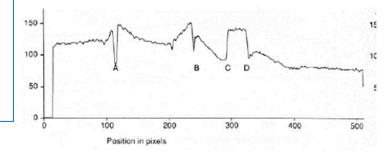
Global illumination – radiosity due to radiance reflected from light sources as well as surfaces

[computer graphics]

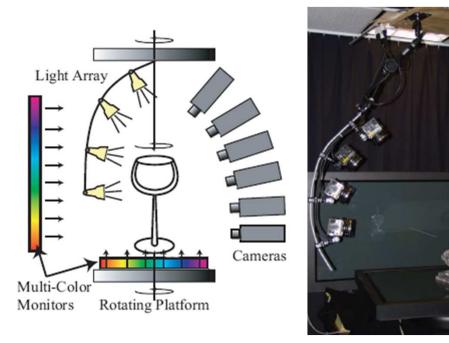
White room under bright light. Below cross-section of image intensity

[Forsyth, Zisserman CVPR89]





Transparency



Special setups for image aquisition

Enviroment mating
[Matusik et al Eurographics 2002]
[Szeliski et al Siggraph 2000]

6. Inverse light

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega'} \rho(\mathbf{x}, \theta_i', \phi_i', \theta_o', \phi_o') L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$

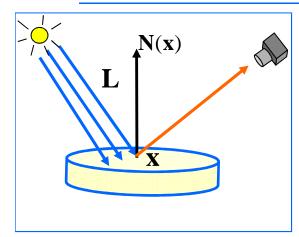
Deconvolution of light from observed radiance

Assumptions:

- known camera position
- known object geometry
- [known or constant BRDF]
- [uniform or given texture]

Estimating multiple point light sources Estimating complex light: light basis

Estimating point light sources



Lambertian reflectance – light from shading

Infinite single light source

$$L_o(\mathbf{x}) = \rho(\mathbf{x})L\cos\theta = \rho L(\mathbf{N}(\mathbf{x}) \bullet \mathbf{L})$$

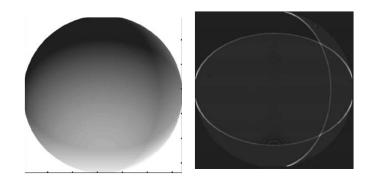
- known or constant albedo ρ
- known N(x)
- recover L (light color) and L (direction)
 from >= 4 points.

Multiple light sources

Calibration sphere
Critical points/curves

- Sensitive to noise

[Yang Yuille 91] [Bouganis 03]



Estimating complex light

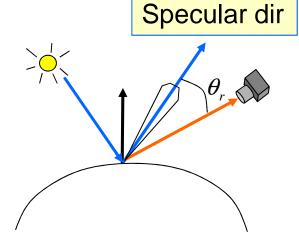
Diffuse reflectance acts like a low pass filter on the incident illumination.

Can only recover low frequency components. Use other image cues!

Light from specular reflections

- Recover a discrete illumination hemisphere
- Specular highlights appear approximately at mirror directions between light and camera rays

Trace back and compute intersection with hemisphere



Recovered hemisphere

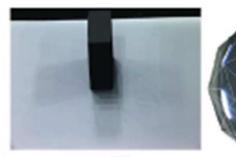
Capture light direcly using a mirror sphere

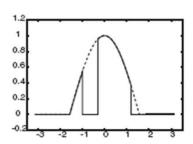
[Nishimo, Ikeuchi ICCV 2001]

Estimating complex light

Light from cast shadows

[Li Lin Shun 03] [Sato 03]





- Shadows are caused by light being occluded by the scene.
- The measured radiance has high frequency components introduced by the shadows.

$$L_o(\mathbf{x}, \theta_o, \phi_o) = \int_{\Omega} V(\mathbf{x}, \theta_i, \phi) \rho L(\theta_i, \phi_i) \cos(\theta_i) d\omega_i$$
Shadow indicator

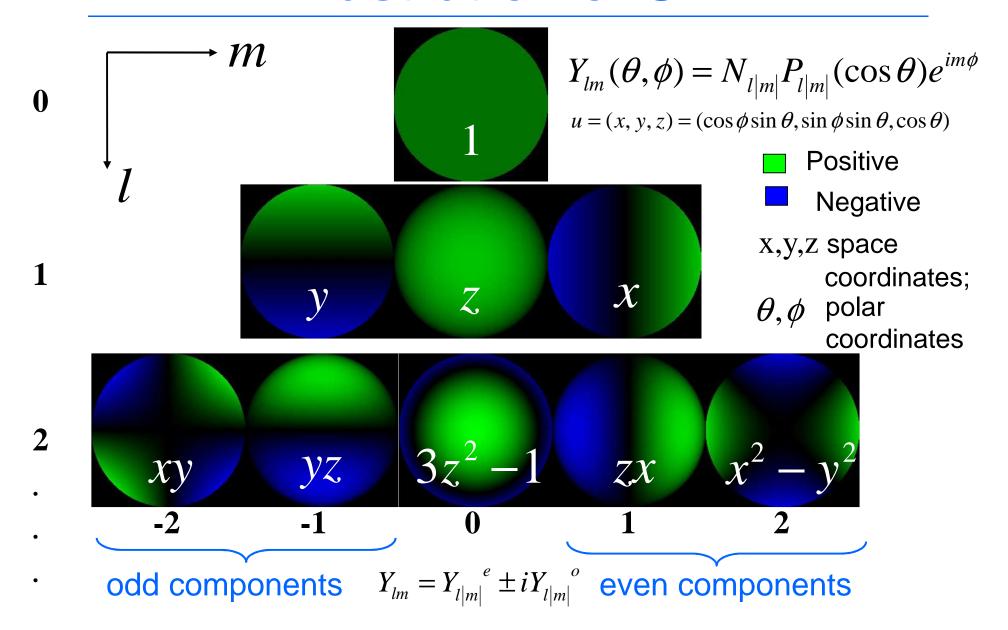
Light basis representation

Spherical harmonics basis

- Analog on the sphere to the Fourier basis on the line or circle
- Angular portion of the solution to Laplace equation in spherical coordinates
- Orthonormal basis for the set of all functions on the surface of the sphere $\nabla^2 \psi = 0$

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l|m|}(\cos\theta) e^{im\phi}$$
 Normalization Legendre Fourier factor functions basis

Illustration of SH



Properties of SH

Function decomposition

f piecewise continuous function on the surface of the sphere

$$f(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm} Y_{lm}(u)$$

where

$$f_{lm} = \int_{S^2} f(u) Y^*_{lm}(u) du$$

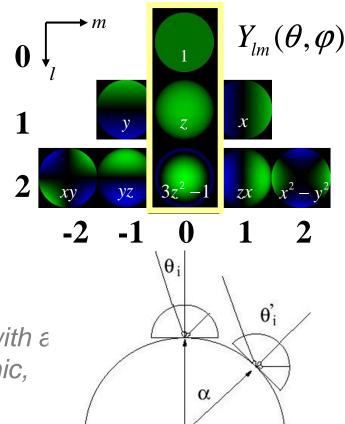
Rotational convolution on the sphere

Funk-Hecke theorem:

k circularly symmetric bounded integrable function on [-1,1] $k(u) = \sum_{l=0}^{\infty} k_{l} Y_{l0}$

$$k * Y_{lm} = \alpha_l Y_{lm}$$
 $\alpha_l = \sqrt{\frac{4\pi}{2l+1}} k_l$

convolution of a (circularly symmetric) function k with a spherical harmonic Y_{lm} results in the same harmonic, scaled by a scalar α_l .



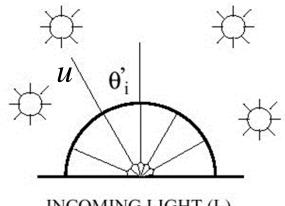
Reflectance as convolution

Lambertian reflectance

One light $R(u') = l(u)\rho \max(0, u \bullet u')$

 $k(u \bullet u') = \max(0, u \bullet u')$ Lambertian kernel

 $R(u') = \int_{a^2} k(u \bullet u') l(u) du$ Integrated light



INCOMING LIGHT (L)

SH representation

light

Lambertian kernel

$$l(u) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} l_{lm} Y_{lm}(u) \qquad k = \sum_{l=0}^{\infty} k_{l} Y_{l0}$$

Lambertian reflectance (convolution theorem)

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\sqrt{\frac{4\pi}{2l+1}} k_l l_{lm} \right) Y_{lm} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$



Convolution kernel

Lambertian kernel

$$k(u \bullet u') = \max(0, u \bullet u')$$

$$k = \sum_{l=0}^{\infty} k_l Y_{l0}$$

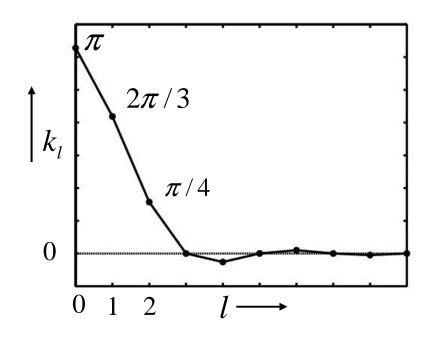
$$k_{l} = \begin{cases} \frac{\sqrt{\pi}}{2} & n = 0\\ \frac{\sqrt{\pi}}{3} & n = 1\\ (-1)^{l/2+1} \frac{\sqrt{(2l+1)\pi}}{2^{l}(l-1)(l+2)} \binom{l}{l/2} & n \ge 2, \text{ even}\\ 0 & n \ge 2, \text{ odd} \end{cases}$$

Asymptotic behavior of k_l for large l

$$k_l \approx l^{-2}$$
 $r_{lm} \approx l^{-5/2}$

- Second order approximation accounts for 99% variability
- k like a low-pass filter

[Basri & Jacobs 01] [Ramamoorthi & Hanrahan 01]



From reflectance to images

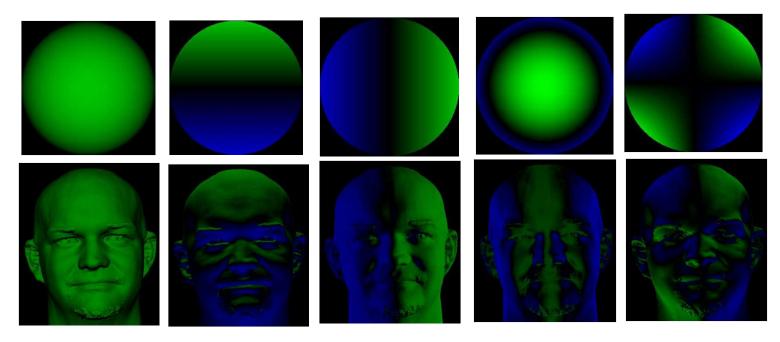
Unit sphere ⇒ general shape Rearrange normals on the sphere

Reflectance on a sphere

$$R = k * l = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} r_{lm} Y_{lm}$$

Image point with normal n_i

$$I_{i} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \rho_{i} r_{lm} Y_{lm}(n_{i})$$



Example of approximation

Exact image

9 terms approximation

[Ramamoorthi and Hanharan: An efficient representation for irradiance environmental map Siggraph 01]

Efficient rendering

- known shape
- complex illumination (compressed)

Extensions to other basis

SH light basis limitations:

- Not good representation for high frequency (sharp) effects!
 (specularities)
- Can efficiently represent illumination distribution localized in the frequency domain
- BUT a large number of basis functions are required for representing illumination localized in the angular domain.

Basis that has both frequency and spatial support

⇒ Wavelets [Upright CRV 07]

[Okabe Sato CVPR 2004]

Spherical distributions [Hara, Ikeuchi ICCV 05]

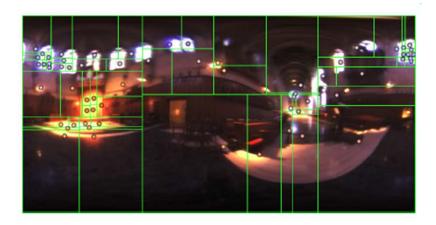
→ Light probe sampling [Debevec Siggraph 2005]

[Madsen et al. Eurographics 2003]

Basis with local support

Median cut

[Debevec Siggraph 2005]



Not localized in frequency!

Wavelet Basis

