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Projective camera

."v - — - %
e Camera rotation and translation

X=[R t]Xo, X =|[R" -RTt[X
* The projection matrix

x=KR'[I -t]X

"
P
In general: Properties: P=[M p,]
*P is a 3x4 matrix with 11 DOF ~Center: PC=0
. . . C= -Mp, C:d Md =0
*Finite: left 3x3 matrix non-singular 1 0/

*Principal ray (projection direction)

Infinite: left 3x3 matrix singular
v = detM )m°®



- Infinite cameras where the last rowRis (0,0,0,1) °
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known ? known

11 DOF => at least 6 points

e Linear solution min Ap =0
— Normalization required Hp” =1
— Minimizes algebraic error

* Nonlinear solution
— Minimize geometric error (pixel re-projection) PR
* Radial distortion & =1+ Kyr +K,r? +... Dt
— Small near the center, increase towards periphery § T




Gortler andal.: Microsoft ~ H-Y Shum, l-W He; Microsoft
Lumigraph Concentric mosaics




Multi-view geometry - resection

ol - N - oo e - |

 Projection equation
X;i=P.X

e Resection:
—X,X — R

Given image points and 3D points calculate camera projection
matrix.



lti-view geometry - interse

ction

ra— RN B - Sl 3

* Projection equatic
Xi=P.X

* Intersection:
-X,B —X

Given image points and camera projections in at least 2 views
calculate the 3D points (structure)
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Multi-view geometry - SF

_ s
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 Projection
equation
Xi=P.X
o Structure from
motion (SFM)

- X— P, X

Given image points in at least 2 views calculate the 3D points
(structure) and camera projection matrices (motion)

sEstimate projective structure

*Rectify the reconstruction to metric (autocalibration)



Depth from stereo

Disparityd
7 :i X :i(x —d)
X X

Trinocular Vision System

(Point Grey Research)
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Lé&y’ér depth image§hade etal. LS e
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Image based objectSJiveira & Bishop
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The affine projection equations are A : ¥
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Orthographic factorization

N

=) %

The ortographic projection equations ar 6~y
m, =P M i=%.mj=1.n
where "y ]
v ﬁx Xj
, :Bj]ﬁ' {ﬁiy}m, =Y,
1] [ Zj
All equations can be collected for alind;
m =PM -
where _mll m12 mln_ I:)1
m, M, - M| — [P, |—
m= 2 2 2P P \M=[M.M,..M]
_mml mm2 mmn_ ﬁm

Note that P and M are resp. 2nmx3 and 3xN matrices and
therefore the rank of M is at most 3



Orthographic factorization

' L ——— ~ . Of
Factorizem through singular value decomposition

- P
""/1,‘ s

m=UxV'
An affine reconstruction is obtained as follows
P=UM=3xV'
Closest rank-3 approximation yields MLE!
My, M, e Ty, g
min m:21 M, m:2n - :2 [Ml,MZ,...,Mn]
_m.ml mm2 m.mn_ ﬁ




| Orthographlc factorlzatlon

gy, ST | '.& RO
Factorizem through singular value decomposition
m=UzV'
An aﬁine reconstruction is obtained as follows
P=UM=3xV'
A metrlc reconstruction is obtained as follows
PQ 1M = QM

Where Als computed from

W@géﬁ{é xT 3irfear equations per view on

symmetric matrix C (6DOF)

BRRGR =1

Q can be obtained from C

YK
IPi QEG’ E tmc@gh Cholesky factorisation

and inversion



_eak perspectlve factorlzatlon

[D. Weinshall]

*\Weak perspective cameram :Eﬂ

« Affine ambiguity ;- MQQ X = (MQ)(Q*X)

*Metric constraints § oo = §70Q"s = &
s'QQ'y =0
Extract motion parameters

— Eliminate scale
— Compute direction of camera axisk =1 x|
— parameterize rotation with Euler angles



Full perspective factorizatio

= o “.
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The camera equations
Aim, =P M ji=1.,mj=1.,n

for a fixed image can be written in matrix form
as

mA =PM
where

m; =[Mumaremnl, M =M M, M ]
A, =diag(hig, kg hi)



, Perspectlve factorlzatlon

g '?'/1

- -~ : ~ _ﬂ .._f: 3
All equatlons can be collected for BHs Ay
m = PM
where _ _ L
m, A\, P,
m,A\ P
m = 202 , P = 2
mA, | P,

In these formulagn are known, buf\;,,P andM are
unknown

Observe thaPM is a product of al3x4 matrix and a
4xN matrix, i.e. it is a rank 4 matrix



_ rspectlve factorlzatlon algorlth

Assume that A, are known, then PM s known.

Use the singular value decomposition
PM=UZ VT

In the noise-free case
S=diag(o,,0,,05,0,,0, ... ,0)
and a reconstruction can be obtamed by setting:

P=the first four columns of UZ.
M =the first four rows of V.
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When A, are unknown the following algc
used:

ithm can be

1. Set A;=1 (affine approximation).

2. Factorize PM and obtain an estimate of P and M.
If 05 IS sufficiently small then STOP.

3. Use m, P and M to estimate A, from the camera
equations (linearly) m; A,=P,M

4. Goto 2.

In general the algorithm minimizes the proximity
measure P(A,P,M)=0.

Note that structure and motion recovered
up to an arbitrary projective transformation



\-view geomeir

Afflne factorlzatlon

[Tomasi &Kanade 92]
« Affine camera

P,=[M|t] M 2x3 matrix; t 2D vector
C X
*Projection (XJ:MMH
Y Z
‘N pomts mviews: measurement matrixx = x -t
_ill ﬁ L W =UDV'
W= =]t X, -+ X,] W:Rank 3" -
ilm ')‘('rr]“ M™ ] 2m><3.33x3 3|~ MX




Projective factorization

Us coord &scalg factor

[Sturm & Triggs’ 96][ Heyden ‘97 ]
e Measurement matrix

/11 Lo A [P 3mxn matrix
W = o= X e %] Rank 4
)I"‘ O AT P
-Known prOJectlve depthi’
W =UDV'

W=U,,,D,.VI, = PX

nx4

— Projective ambiguity

elterative algorithm

—Reconstruct with A, =1
— Reestimate deptmij and iterate



_Further Factorization work

Factorization with uncertainty

(Irani & Anandan, 1IJCV’'02)

Factorization for dynamic scenes

(Costeira and Kanade ‘94)

(Bregler et al. 2000,
Brand 2001)




e |nitialize structure and motion from two views

e For each additional view

— Determine pose

Images .
| — Refine and extend structure

« Determine correspondences robustly by jointly
estimating matches and epipolar geometry




View (geollle

Epipolar geometry and
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The epipolar geometry

epipolar plane 7T

C,C',x,x" and X are coplanar



The epipolar plane

All points on Tt projecton | and I’
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Family of planes tand lines land I’
Intersection in e and e’



The epipoles

i " e 0 —
g

x . }.,4.',', | _ R -
epipoles e,e’ | - &)
= intersection of baseline with image plane
= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras




e at

infinity




Example: forward motion




algebraic representation of epipolar geometry

X

we will see that this mapping is (singular)
correlation (i.e. projective mapping from points to
lines) represented by the fundamental matrix F



algebraic derivation (of existence)

X(1)=P"x+1C (PP=1)
| =P'CxP'P’X

F=[e].PP’

(note: doesn’t work for C=C’ = F:O)/&

Alternatively can write:

F=lelH.  (H,=K™RK)



The fundamental matrix F

.
— . .
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geometric derivation

Step 1X on aplanat X' =H_X

Step 2: epipolar ling  ['=exx' = [GLHRX = FX
mapping from 2-D to 1-D family (rank 2)



The fundamental matrix F

epipolar line
forx

correspondence condition

The fundamental matrix satisfies the condition
that for any pair of corresponding points x«X’ in

the two images :
° X" Fx=0 (xTr=0)



F is the unique 3x3 rank 2 matrix that
satisfies xX'TFx=0 for all Xx<>x’

() Transpose: if Fis fundamental matrix for (P,P’), then
FT is fundamental matrix for (P’,P)

(i) Epipolar lines: I'=Fx & I=F™X’

(iii) Epipoles: on all epipolar lines, thus e'TFx=0, [Ix
—=e’'TF=0, similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(v) F is a correlation, projective mapping from a point X to
a line I'=Fx (not a proper correlation, i.e. not invertible)



_ undamental matrlx summary

-Algebralc representatlon of epipolar geome'ry

Step 2: epipolar ling  I'=exx'=[€].x’

V/\ / Step 1X on a planat  y'= Hx

N =[€],Hx = Fx
X" Fx=0
F Epipolar lines: I'=Fx | =F'x'
«3x3, Rank 2det(F)=0 Epipoles: Fe=0 F'e=0

sLinear sol. — 8 corr. Points (unique)

*Nonlinear sol. — 7 corr. points (3sol

*\/ery sensitive to noise & outliers

)

Projection matrices: P=[1[O]
P=[el,F+ev’ | e




Relatlng 3D geometry and 2D |mag

F Relates to three questions:

() Correspondence geometry: Given an image point X in
the first view, how does this constrain the position of the

corresponding point X' in the second image?

(i) Camera geometry (motion): Given a set of corresponding
image points {x; —x’}}, I=1,...,n, what are the cameras P and
P’ for the two views?

(i) Scene geometry (structure):  Given corresponding image
points x; —x’; and cameras P, P’, what is the position of
(their pre-image) X in space?



Computlng 3 pt alg

X' Fx=0
Xl Xfll t Xl yf12 t Xl f13 T yl Xf21 t y' yf22 T y' f23 t Xf31 T yf32 t f33 = O
separate known from unknown

XXX Y XY XYY Y X YA i fias fias fon fan fag, Fag, Ty Fog] =0
(data) (unknowns)
(linear)

Xi XY X YiX Viw Vi % oyl

_X'n X X'n Y X'n yln X yln A y'n X Y 1

Af =0



8-point algorithm

f12
_ ] ) ] ] ) ) I
XX VX X XY, iy ox oy 1 f
% Yo% X %Y, YY) Y % Ve 1T
. . . . . . . . 22 | —
- - - - g
XX YoXo o X0 XoVao Yo¥no Yoo X% Yo 1)
Af =0 f‘°’1
Solve for nontrivial solution using SVD: f32
A=USVT JusvT=[svT] i =|vx -

Var subst:y =Vx Now Min Sy < y=[0,0,...0]]
Hencex = last vector i1V



(Algo 3,

5 o y :
» Trifocal tensor (3 view geometrv)
[Hartley '97][Torr & Zisserman '97][ Faugeras '97]

T:[T,T,,T;] 3x3x3tensor;
27 params. (18 indep.

-y ) %

'[TLT2 T3 =1" lines
X1.(EXT)[x'], =0 points

* Quadrifocal tensor (4 view geometiyjggs '95]
*Multiview tensorgHartley'95][ Hayden ‘98

There is no additional constraint between more thamages. All the constraints
can be expressed using Ftriliear tensor or quathiftensor.



Using Fundamental Matrix F to

Ite structure and moilon

Epipolar geometry H Projecnve callbratlon

m.Fm, =0 .=l 0
P, = ﬂe]X F+ea' e]
compatible with F

Yields correct projective camera setup
(Faugeras '92,Hartley "92)
Obtain structure through triangulation

Use reprojection error for minimization
Avoid measurements in projective space



F matrix corresponds to P,P’ iff P’TFP is skew-symmetric
(X"P" FPX=0,0X)

F matrix, S skew-symmetric matrix
P=[110] P'=[SF|e']l (fund.matrix=F)

T _|F'S'F 0|_|F'S'TF 0
([SHeﬂ SICECAIE OD
Possible choice:

P=[110] P=[le'].F|e]

Canonical representation:
P=[1|0] P'=[[e'].F+e'v |Are']



1. Compute P1 and P2
2. Triangulate 3D points



Structure from images:
3D Point reconstruction

l=FTX’ ® X

image 1




linear triangulation

homogeneous invariance?

inhomogeneous algebraic error yes,
constraint no
(except for affine)



Linear triangulation

hg. N
a Tk
R - “_1'

-y ) %

Alternative way of linear intersection:

e Formulate a set of linear equations explicitly
solving forA’s

Arxy = P X and Asxy = X and rewrite

~ X7
0 = .f"l X[ 0{ A
o .{"2 OT X1 !
- A2 -

See our VR2003 tutorial p. 26



Reconstruction uncertainty

consider angle between rays



. Given two uncalibrated i Images comput@ (PM,P \,.t‘y*o, j%‘f- 4

(i.e. within similarity of original scene and cameras)
Algorithm
(i) Compute projective reconstruction (P,P‘,{X})
(a) Compute F from XX
(b) Compute P,P‘ from F
(c) Triangulate X; from XX/,
(i) Rectify reconstruction from projective to metric
Direct method : compute H from control points X = HX.

R, =PH! P, =PH? X, =HX,

Stratified method :
(a) Affine reconstruction :compute T, H :F |O}
T

(0¢]

(b) Metric reconstruction :compute IAC w

H:[AO'1 fﬂ AAT =(MToM]"




Compute Pi+1 using robust approach
Find additional matches using predicted projection
Extend, correct and refine reconstruction



4.8im/pt

64 images

Problem:
Features are lost
and reinitialized as
new features

Solution:
Match with other
close views



- Relating to more views

Fr e

For every view i

Extract features

Compute two view geometry i-1/i and matches

Compute pose using robust algorithm

For all close views k
Compute two view geometry k/i and matches
Infer new 2D-3D matches and add to list

Refine pose using all 2D-3D matches

Refine existing structure

Initialize new structure

Problem:
find close views in projective frame




» w.J %

. Determiningclose view

If viewpoints areclose then most image changes
can be modelled throughpkanar homography

« Qualitative distance measure is obtained by
looking at theaesidual error on thebest possible
planar homography

Distance = min medianD(Hm, m’)




QL1

llect

9.8im/pt

64 images

4.8im/pt

64 images



eflnlng structure and motlon

— Maximum Likelyhood Estimation
(if error zero-mean Gaussian noise)

— Huge problem but can be solved efficiently
(Bundle adjustment)



* Refine structure Xand motion P o

« Minimize geometric error min» d(P'X,x!)?
« ML solution, assuming noise is Gaussian

* Tolerant to missing data



Projective ambiguity and
seli-calibration

b A

 Autocalibration (self-calibrationPetermine a projective
transformation T that upgrades the projective reconstruction to ametri
one.

m=PM=PT)TM) =P'M




Remembe

Stratlflcatlon of geometry

Projective Affine

15 DOF 12 DOF 7 DOF
plane at infinity absolute conic
parallelism angles, rel.dist.

More general

Goto slide 78 More structure




Constraints ?

,"'/‘

-

e Scene constraints

— Parallellism, vanishing points, horizon, ...
— Distances, positions, angles, ...

Unknown scene - no constraints
e Camera extrinsics constraints

—Pose, orientation, ...

Unknovv_n camera motion — no constraints
e Camera Intrinsics constraints

—Focal length, principal point, aspect ratio & skew

Perspective camera model too general
— Some constraints



Euclidean projection matrix

. v
# -

Y

Factorization of Euclidean projection matrix
P=K[R" -R]

f s u,
Intrinsics: K = fy u, (camera geometry)
1
. . . t
Extrinsics: (R,t) (camera motion)

Note: every projection matrix can be factorized,
but only meaningful for euclidean projection matrices



Cnstralnts on |ntr|nS|C parameter

f, s u,]
K = fy uy
l —
Constant
e.g. fixed camera: _ —
K,=K, =--
Known
e.g. rectangular pixels: s=0
square pixels: £ of =0

principal point known: x )_(w hj
)=l =2



Self-calibration

- %

Upgrade fronmprojective structure to
metric structure usingonstraints on
Intrinsic camera parameters

— Constant intrinsics
(Faugeras et al. ECCV'92, Hartley 93,

Triggs 97, Pollefeys et al. PAMI'98, ...)
— Some known intrinsics, others varying

(Heyden&Astrom CVPR 97, Pollefeys et al. ICCV'98,...)
— Constraints on intrincs and restricted motion
(e.g. pure translation, pure rotation, planar motion)

(Moons et al.”94, Hartley 94, Armstrong ECCV'96, ...)



A counting argument

& ok’

- 4 i c‘,/-,..
g =) % - X At s

e To go from projective (15DOF) to metric (7/DOF) at least 8
constraints are needed

* Minimal sequence length should satisfy

n ><(# Known )+ (n —1)><(#fixed) > 8
 Independent of algorithm
e Assumes general motion (i.e. not critical)



— Euclidean geometry: hyperbola, ellipse, parabola & degenerate
— Projective geometry: equivalent under projective transform
— Defined by 5 points

" a b/2 d/2

Z+bxy+cy’ +dx+ey+ f =
af bxy+cy” +dx+ey+ 1 =0 C=|b/2 ¢ el2
x Cx=0 d/2 el2 f |

e Tangent
. T *:
Dual conic C* 'Cl1=0  E=» §




Quadrics: Q

4x4 symmetric matrix

9 DOF (defined by 9 points in general pose) X' QX =0

Dual: Q*

Planes tangent to the quadric 2 Q*n=0



Summary:

.

onlcs & Quadrlcs

-y b

conics quadrics
m'Cm=0 1'C1=0
C =C™

C > C’'~HCH'

projection

C ~PQP’



The absolute conic

* Absolute conlcnw

,f‘;

iS a imaginary circlemh

v o N
é ’ St L 4
- ‘—‘_‘1."
g
'

» The absolute dual quadric (rim quadriQ)-

*|n a metric frame
Q

e}

Onm,

x_ =(0,0,00)

XX+ | _
X4

:()(1,X2,X3)| (X1’X2’X3

)' =0

. I
.yl

TQ r=0

Note: is the nullspace of) .
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«Theoretically formulated bfFaugerasc

2 basic approaches

— Stratified: recover T, £,
— Direct: recover Q. [Triggs’97]

e Constraints:
— Camera internal constraints
—Constant parametefsiartiey’94][ Mohr'93]
—Known skew and aspect rat{elayden&Astrom’98][Pollefeys’98]
— Scene constraints (angles, ratios of length)

*Choice of H: H{ K o} =T D)

. AT
Knowing camer& and 7., pK 1



Absolute Dual Quadric and Self-

Ilbratlon |

Eliminate extrinsics from equation

P-KR"™ -RTt|— KRRK™ KK’

Equivalent to projection of dual quadric
POPTocKK™ Q =diag(1110)

Abs.Dual Quadric also exists in projective world
KK'OPQ. PT OPT YN TQ.T'NT'P")
OPQ" P’

Transforming world so that QL Q.
reduces ambiguity to metric



Absolute Dual Quadric ar

_Seli-calibration

- {.'_' N
= : N NG

Projection equation:

ol DPQPT OK K]

Translate constraints df

through projection equation t
constraints orf*

constrai ts




_mage of the absolute co

nic

A - B W S

-

HZ 7.5.1: Y
x =PX_ =KR]l |—C](Oj = KRd

mapping between T, to an image is given by the planar
homogaphy x=Hd, with H=KR

image of the absolute conic (IAC) =1
o=(KKTJ =K TK* [crs HTCH?)

(i) IAC depends only on intrinsics

(i) angle between tworays — COSO = ———
(iii) DIAC= w=KKT \/(Xl (Dxl)(xz 0)X2)
(iv) w < K (cholesky factorisation)

(v) image of circular points

T




~. .
2 2 2 7
fo+s +c, s, +cc,
* 2 2
o, =| s, +CC, f;+c,
i C, Cy |
condition constraint type #constraints
Zero skew * %= % % | quadratic m
;W33 = W3135053
Principal point o = linear 2m
W3 = My =0
Zero skew (& p.p.) x linear m
Fixed aspectratio (& * »« _ * | quadratic m-1
p.p.& Skew) 07100 55 = W50 14
Known aspect ratio (x)* — (x)* linear m
(& p.p.& Skew) - 22
Focal length Wy = M, linear m
(& p.p. & Skew)




Summary Self Callbratlon

-Callbrated camera

—Dual absolute quadric (DAC) | =diag (1110)
—Dual image of the absolute conic (DIA®@) = KK’

*Projective camera

_DAC Q, =HIH'

—DIAC @' =PQPT=KK
e Autocalibration

—Determine@)’., based on constraintscoh
—DecomposeQ’ =HIH"




lllustration of self-calibration

. i
* YIS

Projective Affine Metric




Degenerate configurations

: s

D e A S
x i ﬂ\ ‘5 .g' .v ‘:JF-

R 2
 Pure translatioraffine transformation (5 DOF)

* Pure rotationarbitrary pose forr, (3 DOF)

 Planar motionscaling axis perpendicular to plane
(1DOF)

 Orbital motion:projective distortion along rotation axis
(2DOF)




A complete modeling system

projective

—— ) i 'i.
e ~ R,

Sequence of frames=>  scene structure

1. Get corresponding points (tracking).

2. 2,3 view geometrycompute F,T between consecutive frames
(recompute correspondences).

3. Initial reconstructionget an initial structure from a
subsequence with big baseline (trilinear tensor, factorization ...
and bind more frames/points using resection/intersection.

4. Self-calibration.
5. Bundle adjustment.

N



A complete modeling system

_affine

Sequence of framee-» scene structure |

1. Get corresponding points (tracking).

2. Affine factorization. (This already computes ML
estimate over all frames so no need for bundle
adjustment for simple scenes.

3. Self-calibration.
4. |If several model segments: Merge, bundle adjust.



amic text

- ;' g {_
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Debevec and TaylorFacade

Tower Photographs




xamples geometrlc modellng

POIIefeySArenberg Castle




INRIA —VISIRE project

Reconstruction
from single

images using
parallelepipeds




CIP Prague —

Projective Reconstruction Based on Cake Configuration




xamples geometrlc modellng

POIIefeySArenberg Castle




...to detailed, model?
Here in the form of
disparity/depth map

Rectified left Rectified right
image I'(x",y")

Dense Disparity map D(X,y)

image 1(x,y)




*Go back to original images, do dense matching.
*Try to get dense depth maps

* The Stereopsis Problem: Fusion and Reconstruction
« Human Stereopsis and Random Dot Stereograms

» Cooperative Algorithms

 Correlation-Based Fusion

« Multi-Scale Edge Matching

* Dynamic Programming

e Using Three or More Cameras

Reading: FP Chapter 11.



any object/surface representatio

" “.'/ - R - "“—:‘1.

Image-centered Object-centered
= Depth/disparity w.r. to image | | = \loxels
plane
Q@ = L evel sets (implicit)
3D point
Image plane
= Mesh
Partial object reconstr.
Limited resolution = Depth with respect to a base
Viewpoint dependent mesh
» | ocal patches




tereo Image rectlflcatlon

N




-9

__t"/q.

= "ﬂ".

* reproject image planes onto a commo

. plane parallel to the line between optics
centers

 pixel motion is horizontal after this transformattio

» two homographies (3x3 transform), one for each
Input image reprojection

»C. Loop and Z. Zhang.
. IEEE Conf. Computer Vision and Pattern
Recognition, 1999

Stereo Image rectification

-~

o> .
-v-'l.‘.‘ .

n—



All epipolar lines are parallel in the rectified image plane.



Image rectification through

simplify stereo matching
by warping the images

Apply projective transformation so that epipolar lines

correspond to horizontal scanlines
e

4—

\

e

———

map epipole e to (1,0,0)
try to minimize image distortion

problem when epipole in (or close to) the image



Rectifled




Depth from dlsparlty

C Dbaseline

1 — baselinexf
disparity = x — &' = p




Stereo matchlng algorlthms
atch Plxelsm Conjugate Epipolz ine

— Assume brightness constancy
—This is a tough problem
—Numerous approaches

—A good survey and evaluation:



., baS|c stereo algorlthm

"HON. ABRATIAM l.l’“‘Ol.N Prcsldcnt ot United Mutes. o |
P S

For each epipolar line

For each pixel in the left image
e compare with every pixel on same epipolar line in right image

o pick pixel with minimum match cost

Improvement: match windows
* This should look familar...



tereo as energy minimization

- b
wJ N : L

* Find disparities d that minimize an energy

function E(d)

e Simple pixel / window matching

Ed) =Y Cla,y.d.y)

(x,y)eT

__ SSD distance between windows
C@, 9, d(,Y)) = 1 )y and e,y + docy)



_ Stereo as energy minimization




__Stereo as energy minimizatio

RV AN

Simple pix@’)’ window matching: choose the minimum of each
column in the DSl independently:

d(x,y) = argmin C(z,y,d)
d/




I\/Iatchlng windows

Sum of Absolute Differences (SAD) D, W) — G+ iy +))

(L.j)ew

Sum of Squared Differences (SSD) D, (G~ LG+ iy+)

(Ljew

Y @) =) ~ b+ Ly +) + G+ iy + )|

Zero-mean SAD

E el e
11(i.)) — TG+Ly+)) Lx+i,y+j)|
Locally scaled SAD e

2apew W@ ). L(x+i,y+))

ijE(i,j)ewff(i.j)-E(E,j)ew Z(x+iy+j)

Normalized Cross Correlation

Ground truth



Constraints

* epipolar

e ordering

* uniqueness

e disparity limit

o disparity gradient limit
; Optimal path

5F (dynamic programmin

&

Trade-off
« Matching cost (data)
 Discontinuities (prior)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen 97,
Van Meerbergen,Vergauwen,Pollefeys,VanGool [JCV*‘02)



image 1(x,y) Disparity map D(X,y)

(X",y )=(x+D(x,y),y)



Allows faster computation

Deals with large disparity

ranges
=~ c
on = R
:E i
= © S
2 g
a
T c
L g
(7,]
;m
g3 z
| -
Q S
a
2
()

(Falkenhagen "97;Van Meerbergen,Vergauwen,Pollefeys,VanGool 1JCV‘02)



Example: reconstruct image from

gjhboring images.. .
; i . e o~ ] '*:“.ﬁ,:'&_: '




Many SFM and stereo systems

* Microsoft Photosynth: SFM only, on-line
eArc3D: SFM + Stereo, on-line
*VisualSFMSFM + Stereo, download and install

3 Sparse Reconstruction

1 — N —
[/, VisualSFM - [Sparse Reconstruction] - m‘l%L ' [ (=@ = ]

File SfM View Tools Help
B @ oo ma L@ X &AW

4 4

1 Add some images 2 Match the images 4 Dense Reconstruction




A2

Visual SFM, House by Bin

|/. VisualSFM - [Sparse Reconstruction] - [0] - []
File SfM View Tools Help

B @ oomem hEth@ X $wan

#24 : IMG_20160303_174108

#points w/ large errors: 77

Focal Length : [2705.872]->[2714.921]
Radial Distortion : [-0.142 -> -84]

R i i e e e 5
#36: [IMG..74108] sees 2370 (+279) 3D points
Estimated Focal Length [2759][0.85N]

# 1561 projs (323 pts and 60 merges)

SKIP: 0 cams, 2213 points, 7124 projs

PBA: 6671 3D pts, 20 cams and 32602 projs...
PBA: 1.803 -> 1.483 (5LMs in 0.45sec)
#points w/ large errors: 20

Focal Length : [2758.833]->[2683.024]

Radial Distortion : [-0.141 -> -85)

END: No more images to add [0 projs]

RN SRR LR R RSN N LN
Failed to find two images for initialization
Resuming SfM finished, 40 sec used

36 cams, 8893 pts (3+: 5660)
39387 projections (3+: 32900)

1 model(s) reconstructed from 36 images;
36 modeled; 0 reused; 0 EXIF;
1MB(1) used to store feature location.

EREREER timing-—-——---## 22525
Structure-From-Motion finished, 42 sec used
40.6(35.9) seconds on Bundle Adjustment (+)
39.9(35.4) seconds on Bundle Adjustment (*)
B RR R R RRREERRERRREERREREE

Run full 3D reconstruction, finished
Totally 42.000 seconds used

L T




Visual SFM, House by Bin

b '_,. ‘1«‘ -




Reconstructlng scenes

Small’ scenes' (one, few building

= SFM + multi view stereo
* man made scenes: prior on architectural elements

= [nteractive systems

City scenes (several streets, large area)

= aerial images
= ground plane, multi cameras
SFM + stereo [+ GPS]

depth map fusions






-

Modeling (large scale) scenes




Man-made environments :

= straight edges
= family of lines
= vanishing points

[Dellaert et al 3DPVTO06 |
[Zisserman, Werner ECCV02 |



= dominant planes
= plane sweep — homog between 3D pl. and camera pl.

(d) )

[Zisserman, Werner ECCV02 | [Bischof et al SDPVT06 |



4
&y : S .."'"“
» refinement — architectural primitives

e c—————

1 " T .
= | hypothesized -

{ “Segmenty ! | \ inital
. \segment

\ =
\ |

axs

[Zisserman, Werner ECCVO02 ... ]



L

_ ARC 3D Webservice
 Refinement — dense stereo a Family of Web Tools for Remote 3D Reconstruction

www.arc3d.be

[Pollefeys, Van Gool 98,00,01 ]



Based on SFM

(points, lines, stereo)
Some manual modeling
View dependent texture

[Debevec, Taylor et al. Siggraph 96 |



Rriors on architectural primitives

—

Pr(M#6|DI) o Pr(DIMOI)APr(MI)

0 — parameters for architectural priors
type, shape, texture

M — model

D — data (images)

| — reconstructed structures (planes, lines ...) &

[Cipolla, Torr, ... ICCVO01 ]

Pediment

Entablature — PI‘(D|M9L959TI) PI‘(OTleLMI)
Column PI‘(95|9LMI) PI'(GL |MI)

Door

Window .

Pedestal p ror

Occluded windows




Video, sparse 3D points, user input
Pr(M|DI) o Pr(D|MI)Pr(M|I).
M — model primitives
D- data

| — reconstructed geometry
Solved with graph cut

Video lrace

[Torr et al. Eurogr.06, Siggraph07 |




Image plane

Airborne pushbroom camera

(based on mutual information)




|t modellng ground plane

Camera cluster

Calibrated cameras — relative pose
GPS — car position - 3D tracking

[Nister, Pollefeys et al
3DPVTO06, ICCVO07]

[Cornelis, Van Gool CVPRO6...]

car + GPS

2D feature tracker

Video: Cannot do
frame-frame
correspondences

‘ ]

SFM

4

3D points
Dense stereo+fusion
Texture

=)

3D MODEL




City modeling - example

*' - 4— 4 ’ ;

- & .
R - -~ Best Match

[Cornelis, Van Gool CVPRO6...]
1. feature matching = tracking

2. SFM — camera pose + sparse 3D points

0 w 0 w

3. Facade reconstruction SEAngRUN  WelSCHVE etk —

Topological Map Polygon Carving for N=4

— rectification of the stereo images \

(a) (b)

- vertical line correlation

4. Topological map generation
- orthogonal proj. in the horiz. plane

- voting based carving

5. Texture generation g

- each line segment — column in texture
space VIDEO




-~

: b ) S
On-line. modeling from video

v g

Model not perfect but enough for scene visualization

Application predictive display it
‘| SLAM |
: . ' Video —n 1
Tracking and Modeling T [y
New image rmmma

Detect fast corners (similar to Harris)
SLAM (mono SLAM [Davison ICCV03])
Estimate camera pose
Update visible structure

Partial bundle adjustment — update all points
Save image if keyframe (new view — for texture)

Visualization
New visual pose
Compute closet view
Triangulate

]
I
'd Y '
~a camera | ! .
L pose N1 f :—o\Novel View |
e nf 5 'y|Rendering |!
* keyframes 1V g !
A\ v

ha Surface

/ N\

-— - ———

Visuallzation

SLAM

Camera pose

3D structure

Noise model

Extended Kalman Filter

Project images from closest views onto surface









[Neil BirkbeckK]



. Multi-camera systems
T

Several cameras mutually registered (precalibrated)
Video sequence in each camera
Moving object



Technigues

* Integrate stereo and image motion cues
» Extend stereo in temporal domain
= Estimate scene flow in 3D from optic flow and stereo

Representations
= Disparity/depth

= \Voxels / level sets
» Deformable mesh — hard to keep time consistency

Knowledge:
= Camera positions
= Scene correspondences (structured light)

aive : reconstruct shape every frame . o 0T




= "ﬂ".

[Zhang, Curless, Seitz: Spacetime stereo, CVPR 2003]

Extends stereo in time domain: assumes intra-frame correspondences

Static cases:

A fronto-parallel surface An oblique surface

t=0,1,2 t=0,1,2

. R 1t=2 L@ e L
— e T I
il {7 ad o G
L/ [N R \ L
X Xy N Xr
4 d 4 |
Left camera Right camera Left camera Right camera

Solve for x shift.

Static scene: disparity
d(x y,t)=d, + dxO (X=%) + dy0 (Y= Yo)

Solve for x shift, X scale, y shear.

Moving case:

An oblique surface

Left camera

Right camera
Solve for x shift, x scale, y shear, t shear.

Dynamic scene:

d(x y,t)=d, +dXO(X—X0)+dyO(y— Yo) +

dt0 (t _to)




Spacetime stereo reconstruction with 9x5x5 window






One color camera

projectors — 3 different positions

Calibrated w.r. camera

Each channel (R,G,B) — one colored light pose
Photometric stereo



Non-rigid Photometric Stereo
with Colored Lights

C. Hernandez', G. Vogiatzis’, G.J. Brostow?,
B. Stenger' and R. Cipolla®

Toshiba Research C.ambridge1
University of Cambridge2




lla, Baker;Ran : |l S i ol
ICCV 99] {:} e O

Surface §°

[HNumination Flux E
(Radiance)

Camera C,
Projection Matrix P,

2D Optic flow 3D Scene flow

%' H] du, +a|i X=x(u; ():1)

dt Tt ot dx _ ox du, +6x
dt ou, dt otj,

Scene flow on Motion of x
tangent plane along a ray



Camera C, Camera C, Camera C, Camera C |

[Vedula, et al. ICCV 99]



[Vedula, et al. ICCV 99]



4
3D Vi 1 Ti t=1 H GD Space Of Hexels : 1D V. 1 Ti t=2
CERCRESIE (Pairs of Voxels; Not All Shown) i PR

Hexel: (X, Y1, Z, A%, Ay, Az)
(X5, ¥2:2Z,) = (X, V1, Z) + (A%, Ay, Az)

6D photo-consistency: g« :Z L' (P(x)); SS :Z(li‘(Pi(x‘)))2

SS'+SS7 - (SH+SH) (S + S9)
n' +n?




6D slab sweeping

~ Hexels

/ \ = =
Slab X e -
(xl,yl,zl)

j -

-——

-

Search Region e

4 Known

Occupancy

b

Approximate
Occupancy

3 \
)\ C A
\
Sweep AN
Direction \ >
\
Time 1 Time 2

Unknown

A

y  Occupancy

Slab = thickened plane (thikness = upper bound on the flow magnitude)

= compute visibility for x?
= determine search region

= compute all hexel photo-consistency

= carving hexels
= update visibility

(Problem: visibility below the top layer in the slab before carving)



Time 2

Time 1



7 Surfel ampllng

Surfel: dynamic surface element
= shape component : center, normal, curvature S= (xo,no,k>

= motion component: M =(X,, X, Xt )
= reflectance component: Phong parameters _
=(f,k{o.,--.00})



Reconstruction algorithm

Step 1: Generate Step 2: Generate Step 3: Generate S ¥
n-Samples d-Samples <S,RE>-Samples A . -
n n n B
¢
d
Step 7: Complete Query
B(o.,)
S <o eE]d> S <osn@> S <oend> B(o.e)
R <f k> R <f k> R <fl> [B=B,]
Step 4: Optimize & Test Step 5: Optimize Step 6: Optimize & Test
<SR EB>-Samples Accepted <SR E>-Samples || Accepted <SR E>-Samples
(Linear) (Linear) (Non-Linear) Choose Best
n Accepted <SR E>-Sample
/ ] or Return “B(o, €) Empty”
S <oend> S <oend> S<oe
R <flk> B=B, R<fk> R <flk> B
prry
— pred _
ESR =Y v, @)1 () -1 (p)] .
. Ci—cameral
visibility
* * . .
(S',R') =argmin(min E(S, R)) |- light |

Iipred(pi) :Zr(p,n,ci -p.l, =p)L (P)

| Phong reflectance = shadow






calibrated
cameras

I-\/Iu’lﬂlle

Human in
motion

Instantaneous model that can
be viewed from different poses
(‘Matrix’) and inserted in an
artificial scene (tele-
conferences)

Qurgoal: 3D
animated human
model

" capture model
deformations and
appearance change in
motion

GRIMAGE platform - INRIA Grenoble ;:;Z“ated in a video




~ Artic ulaIe mra.del

X metrlc Model

! - 2

Skeleton + skinned mesh
(bone weights )

50+ DOF (CMU mocap data)

Components
" silhouette extraction
= tracking the course model

= learn deformations
= learn appearance change

Tracking

= visual hull — bone weights by
diffusion

» refine mesh/weights
®







Computer Vision




