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3D Modeling from images

Martin Jagersand



Pinhole camera

• Central projection

• Principal point & aspect





































=
































→

1
0100

000

000

~

1

)/,/(),,(

Z

Y

X

f

f

Z

fY

fX

y

x

ZfYZfXZYX TT







































=

























+

+

















1
100

1
0

0
1

1

1

1

~

1

y

x

c
p

c
p

cy
p

cx
p

v

u

y
y

x
x

y
y

x
x c

px

py
ℜ

The projection matrix:

cam

camy
y

x
x

IK

c
p

f

c
p

f

X0x

Xx

]|[

0100

00

00

=























=



Projective camera

• Camera rotation and translation

• The projection matrix
[ ] [ ]XtXXtX TT

camcam RRR −==

[ ]Xtx −= IKRT

P
In general:

•P is a 3x4 matrix with 11 DOF

•Finite: left 3x3 matrix non-singular

•Infinite: left 3x3 matrix singular

Properties:    P=[M p4]

•Center: 

•Principal ray (projection direction)
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• Infinite cameras where the last row of P is (0,0,0,1)
• Points at infinity are mapped to points at infinity

Affine cameras
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Camera calibration

• 11 DOF => at least 6 points

• Linear  solution
– Normalization required

– Minimizes algebraic error

• Nonlinear solution
– Minimize geometric error (pixel re-projection)

• Radial distortion
– Small near the center, increase towards periphery
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Application: raysets

Gortler and al.; Microsoft
Lumigraph
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H-Y Shum, L-W He; Microsoft
Concentric mosaics
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• Projection equation

xi=PiX

• Resection:
– xi,X       Pi

Multi-view geometry - resection

Given image points and 3D points calculate camera projection 
matrix.



• Projection equation

xi=PiX

• Intersection:
– xi,Pi            X

Multi-view geometry - intersection

Given image points and camera projections in at least 2 views 
calculate the 3D points (structure)



• Projection 
equation

xi=PiX

• Structure from 
motion (SFM)
– xi Pi, X

Multi-view geometry - SFM

Given image points in at least 2 views calculate the 3D points 
(structure) and camera projection matrices (motion)

•Estimate projective structure

•Rectify the reconstruction to metric (autocalibration)



Depth from stereo

•Calibrated aligned cameras
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Application: depth based reprojection

3D warping, McMillan

Plenoptic modeling, McMillan & Bishop



Application: depth based reprojection
Layer depth images,Shade et al.

Image based objects,Oliveira & Bishop



Affine camera factorization
3D structure from many images

The affine projection equations are 
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Orthographic factorization

The ortographic projection equations are 

where 
njmijiij ,...,1,,...,1,Mm === P

All equations can be collected for all i and j

where
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Note that P and M are resp. 2mx3 and 3xn matrices and 
therefore the rank of m is at most 3

(Tomasi Kanade’92)



Orthographic factorization

Factorize m through singular value decomposition

An affine reconstruction is obtained as follows

TVUm Σ=

TVMUP Σ== ~
,

~

(Tomasi Kanade’92)
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Where A is computed from 

Orthographic factorization

Factorize m through singular value decomposition

An affine reconstruction is obtained as follows
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Weak perspective factorization

[D. Weinshall]

•Weak perspective camera

•Affine ambiguity

•Metric constraints
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Extract motion parameters
− Eliminate scale 

− Compute direction of camera axis k = i x j

− parameterize rotation with Euler angles



Full perspective factorization

The camera equations 

for a fixed image i can be written in matrix form 
as

where 

njmijiijij ,...,1,,...,1,Mmλ === P

MPm iii =Λ

[ ] [ ]
( )imiii

mimiii mmm
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Perspective factorization

All equations can be collected for all i as

where
PMm =
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In these formulas m are known, but Λi,P and M are 
unknown

Observe that PM is a product of a 3mx4 matrix and a 

4xn matrix, i.e. it is a rank 4 matrix



Perspective factorization algorithm

Assume that Λi are known, then PM is known.

Use the singular value decomposition 
PM=UΣ VT

In the noise-free case
S=diag(σ1,σ2,σ3,σ4,0, … ,0)

and a reconstruction can be obtained by setting:

P=the first four columns of UΣ.
M=the first four rows of V.



Iterative perspective 
factorization

When Λi are unknown the following algorithm can be 
used:

1. Set λij=1 (affine approximation).

2. Factorize PM and obtain an estimate of P and M. 
If σ5 is sufficiently small then STOP.

3. Use m, P and M to estimate Λi from the camera
equations (linearly)  mi Λi=PiM

4. Goto 2.

In general the algorithm minimizes the proximity 
measure P(Λ,P,M)=σ5

Note that structure and motion recovered 
up to an arbitrary projective transformation



N-view geometry
Affine factorization 

(HZ Ch 17, 18)
[Tomasi &Kanade ’92]

•Affine camera 

•Projection

•n points, m views: measurement matrix
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Projective factorization
Homogeneous coord &scale factors

[Sturm & Triggs’96][ Heyden ‘97 ]

•Measurement matrix

•Known projective depth

– Projective ambiguity 

•Iterative algorithm
– Reconstruct with
– Reestimate depth       and iterate 
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Further Factorization work

Factorization with uncertainty

Factorization for dynamic scenes

(Irani & Anandan, IJCV’02)

(Costeira and Kanade ‘94)

(Bregler et al. 2000, 
Brand 2001)



Sequential 3D structure from motion
using 2 and 3 view geom

• Initialize structure and motion from two views

• For each additional view
– Determine pose

– Refine and extend structure

• Determine correspondences robustly by jointly 
estimating matches and epipolar geometry 

Images



2 view geometry 
Epipolar geometry and 
Fundamental matrix F



The epipolar geometry

C,C’,x,x’ and X are coplanar



The epipolar plane

All points on π project on l and l’



The epipolar planes

Family of planes π and lines l and l’ 
Intersection in e and e’



The epipoles

epipoles e,e’
= intersection of baseline with image plane 
= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras



Example: motion parallel with image plane



Example: forward motion

e

e’



The fundamental matrix F

algebraic representation of epipolar geometry 

l'xa

we will see that this mapping is (singular) 
correlation (i.e. projective mapping from points to 
lines) represented by the fundamental matrix F



The fundamental matrix F

algebraic derivation (of existence)

( ) λCxPλX += + ( )IPP =+

[ ] +
×= PP'e'F

xPP'CP'l +×=

(note: doesn’t work for C=C’ ⇒ F=0)

xP+

( )λX

[ ] ∞×= He'F ( )RKKH 1−
∞ =

Alternatively can write:



The fundamental matrix F

geometric derivation

xHx'
π

=
x'e'l' ×= [ ] FxxHe'

π
== ×

mapping from 2-D to 1-D family (rank 2)

Step 1: X on a plane π

Step 2: epipolar line l’



The fundamental matrix F

correspondence condition

0Fxx'T =

The fundamental matrix satisfies the condition 
that for any pair of corresponding points x↔x’ in 
the two images ( )0l'x'T =



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’

(i) Transpose: if F is fundamental matrix for (P,P’), then 
FT is fundamental matrix for (P’,P)

(ii) Epipolar lines: l’=Fx & l=FTx’
(iii) Epipoles: on all epipolar lines, thus e’TFx=0, ∀x
⇒e’TF=0, similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
(v) F is a correlation, projective mapping from a point x to 

a line l’=Fx (not a proper correlation, i.e. not invertible)



Fundamental matrix, summary

• Algebraic representation of epipolar geometry

Step 1: X on a plane π

Step 2: epipolar line l’
xxe

xexel

xx

FH

H

==
=×=

=

×

×

]'[

']'['''

'

0' =xx FT

F

•3x3, Rank 2, det(F)=0

•Linear sol. – 8 corr. Points (unique)

•Nonlinear sol. – 7 corr. points (3sol.)

•Very sensitive to noise & outliers

[Faugeras ’92, Hartley ’92 ]

Epipolar lines:

Epipoles:

Projection matrices:

[ ]'|']'['
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0'0
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evee

0

ee

xlxl

λT

T

T

FP

IP

FF
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+=
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(i) Correspondence geometry: Given an image point x in 
the first view, how does this constrain the position of the 
corresponding point x’ in the second image?

(ii) Camera geometry (motion): Given a set of corresponding 
image points {xi ↔x’i}, i=1,…,n, what are the cameras P and 
P’ for the two views?

(iii) Scene geometry (structure): Given corresponding image 
points xi ↔x’i and cameras P, P’, what is the position of 
(their pre-image) X in space?

F Relates to three questions:

Relating 3D geometry and 2D images
The Fundamental Matrix F



Computing F; 8 pt alg

0Fxx'T =

separate known from unknown

0'''''' 333231232221131211 =++++++++ fyfxffyyfyxfyfxyfxxfx

[ ][ ] 0,,,,,,,,1,,,',',',',',' T
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(data) (unknowns)
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8-point algorithm

Solve for nontrivial solution using SVD:

0Af =

TUSVA = TSVUSVT = Vxx =

Var subst: Vxy = Now Min [ ]T1,0,...,0,0=⇔ ySy
Hence x = last vector in V



(Also 3,4,N view geometry. HZ 15,16)

• Trifocal tensor (3 view geometry)

],,[: 321 TTTT 3x3x3 tensor; 

27 params. (18 indep.)

0]"[)(]'[

"]3,2,1['

=
=

×× ∑ xxx

lll

i
i

i

T

T

TTT lines

points

• Quadrifocal tensor (4 view geometry) [Triggs ’95]

•Multiview tensors [Hartley’95][ Hayden ‘98]

There is no additional constraint between more than 4 images. All the constraints 
can be expressed using F,triliear tensor or quadrifocal tensor. 

[Hartley ’97][Torr & Zisserman ’97][ Faugeras ’97]



Using Fundamental Matrix F to 
compute structure and motion

[ ]
[ ][ ]eeaFeP

0IP
T

x2

1

+=

=

Epipolar geometry ↔ Projective calibration

012 =FmmT

compatible with F

Yields correct projective camera setup
(Faugeras´92,Hartley´92)

Obtain structure through triangulation

Use reprojection error for minimization
Avoid measurements in projective space



Canonical cameras given F

F matrix corresponds to P,P’ iff P’TFP is skew-symmetric

( )X0,FPXP'X TT ∀=

F matrix, S skew-symmetric matrix

  ]e'|[SFP'   0]|[IP ==
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Possible choice:

  ]e'|F][[e'P'   0]|[IP ×==

Canonical representation:

  ]λe'|ve'F][[e'P'   0]|[IP T+== ×



1. Compute P1 and P2

2. Triangulate 3D points

2D-2D

2D-3D 2D-3D

mi
mi+1

M

new view

Determine coordinates of 3D Points
compatible with P1 and P2



Structure from images:
3D Point reconstruction

PXx = XP'x' =



linear triangulation

XP'x' =PXx =

0XP'x =×
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)1,,,( ZYX

inhomogeneous

invariance?

e)(HX)(AH -1 =

algebraic error yes, 
constraint no 
(except for affine)



Linear triangulation

Alternative way of linear intersection:

•Formulate a set of linear equations explicitly 
solving for λ’s

See our VR2003 tutorial p. 26



Reconstruction uncertainty

consider angle between rays



Objective
Given two uncalibrated images compute (PM,P‘M,{XMi})
(i.e. within similarity of original scene and cameras)
Algorithm
(i) Compute projective reconstruction (P,P‘,{Xi})

(a) Compute F from xi↔x‘i
(b) Compute P,P‘ from F
(c) Triangulate Xi from xi↔x‘i

(ii) Rectify reconstruction from projective to metric
Direct method : compute H from control points  

Stratified method :
(a) Affine reconstruction : compute π

∞

(b) Metric reconstruction : compute IAC ω
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Summary: 2view Reconstuction



Compute Pi+1 using robust approach
Find additional matches using predicted projection
Extend, correct and refine reconstruction

2D-2D

2D-3D 2D-3D

mi
mi+1

M

new view

Determine pose towards existing  structure



Non-sequential image collections

4.8im/pt
64 images

37
92

 p
oi

nt
s

Problem:
Features are lost 
and reinitialized as 
new features

Solution:
Match with other 
close views 



For every view i
Extract features
Compute two view geometry i-1/i and matches 
Compute pose using robust algorithm
Refine existing structure
Initialize new structure

Relating to more views

Problem: 
find close views in projective frame

For every view i
Extract features
Compute two view geometry i-1/i and matches 
Compute pose using robust algorithm
For all close views k

Compute two view geometry k/i and matches
Infer new 2D-3D matches and add to list

Refine pose using all 2D-3D matches
Refine existing structure
Initialize new structure



Determining close views

• If viewpoints are close then most image changes 
can be modelled through a planar homography

• Qualitative distance measure is obtained by 
looking at the residual error on the best possible 
planar homography

Distance = ( )m´,mmedian min HD



9.8im/pt

4.8im/pt

64 images

64 images

37
92
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Non-sequential image collections (2)



Refining structure and motion

• Minimize reprojection error

– Maximum Likelyhood Estimation 
(if error zero-mean Gaussian noise)

– Huge problem but can be solved efficiently
(Bundle adjustment)

( )∑∑
= =

m

k

n

i
ikD

ik 1 1

2

ki
M̂,P̂

M̂P̂,mmin



Refining a captured model:
Bundle adjustment

• Refine structure Xj and motion Pi

• Minimize geometric error
• ML solution, assuming noise is Gaussian
• Tolerant to missing data

∑
ji

i
jj

iPd
,

2),ˆˆ(min xX



Projective ambiguity and
self-calibration

Given an uncalibrated image sequence with corresponding point it is 
possible to reconstruct the object up to an unknown projective 
transformation

• Autocalibration (self-calibration):Determine a projective 
transformation T that upgrades the projective reconstruction to a metric 
one.

T

´M´M))((Mm 1 PTPTP === −



Remember:
Stratification of geometry

15 DOF 12 DOF
plane at infinity

parallelism

More general

More structure

Projective Affine Metric

7 DOF
absolute conic
angles, rel.dist.

Goto slide 78



Constraints ?

• Scene constraints
– Parallellism, vanishing points, horizon, ...
– Distances, positions, angles, ...

Unknown scene → no constraints

• Camera extrinsics constraints
–Pose, orientation, ...

Unknown camera motion → no constraints 
• Camera intrinsics constraints

–Focal length, principal point, aspect ratio & skew

Perspective camera model too general
→ some constraints



Euclidean projection matrix

[ ]tRRKP TT −=
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Factorization of Euclidean projection matrix

Intrinsics:

Extrinsics: ( )t,R
Note: every projection matrix can be factorized, 
but only meaningful for euclidean projection matrices

(camera geometry)

(camera motion)



Constraints on intrinsic parameters

Constant 
e.g. fixed camera:

Known
e.g. rectangular pixels:

square pixels:
principal point known:

L== 21 KK
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Self-calibration

Upgrade from projective structure to 
metric structure using constraints on
intrinsic camera parameters
– Constant intrinsics

– Some known intrinsics, others varying

– Constraints on intrincs and restricted motion
(e.g. pure translation, pure rotation, planar motion)

(Faugeras et al. ECCV´92, Hartley´93,
Triggs´97, Pollefeys et al. PAMI´98, ...)

(Heyden&Astrom CVPR´97, Pollefeys et al. ICCV´98,...)

(Moons et al.´94, Hartley ´94, Armstrong ECCV´96, ...)



A counting argument

• To go from projective (15DOF) to metric (7DOF) at least 8 
constraints are needed

• Minimal sequence length should satisfy

• Independent of algorithm

• Assumes general motion (i.e. not critical)

( ) ( ) ( ) 8#1# ≥×−+× fixednknownn



Conics
•Conic: 

– Euclidean geometry: hyperbola, ellipse, parabola & degenerate

– Projective geometry: equivalent under projective transform

– Defined by 5 points

•Tangent

•Dual conic C*
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Quadrics

Quadrics:  Q
4x4 symmetric matrix 

9 DOF (defined by 9 points in general pose)

•Dual: Q*
Planes tangent to the quadric

0=XX QT

0* =ππ QT



Summary:
Conics & Quadrics

 0mmT =C  0ll *T =C
1*  −= CC

conics

 0MMT =Q  0*T =ΠΠ Q
1*  −= QQ

quadrics

1T´~ −− CHHCCa
T*** ´~ HHCCC a

T´ TTQ~QQ ***
a

1T´~ −− QTTQQ a

transformations

T** ~ PPQC

projection



The absolute conic

• Absolute conic       is a imaginary circle on

• The absolute dual quadric (rim quadric)

• In a metric frame
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Self-calibration

•Theoretically formulated by [Faugeras ’92]

•2 basic approaches
– Stratified: recover                    

– Direct: recover                                 [Triggs’97]

•Constraints:
– Camera internal constraints

–Constant parameters  [Hartley’94][ Mohr’93]

–Known skew and aspect ratio[Hayden&Åström’98][Pollefeys’98]

– Scene constraints (angles, ratios of length)

•Choice of H:
Knowing camera K and 
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Absolute Dual Quadric and Self-
calibration

Eliminate extrinsics from equation

Equivalent to projection of dual quadric

))(Ω)((Ω
*1* TTTTT PTTTPTPPKK −
∞

−
∞ ∝∝

Abs.Dual Quadric also exists in projective world

T´Ω´´ * PP ∞∝
Transforming world so that

reduces ambiguity to metric

**
ΩΩ´ ∞∞ →



ωωωω*

ΩΩΩΩ*

Absolute conic = calibration object which is 
always present but can only be observed 
through constraints on the intrinsics

T
ii

T
iii Ωω KKPP ∝∝ ∗∗

Absolute Dual Quadric and 
Self-calibration

Projection equation:

Translate constraints on K 
through projection equation to 
constraints on ΩΩΩΩ*
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∞

to an image is given by the planar 
homogaphy x=Hd, with H=KR

image of the absolute conic (IAC)  = I
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(i) IAC depends only on intrinsics
(ii) angle between two rays
(iii) DIAC= ωωωω*=KKT

(iv) ωωωω ⇔⇔⇔⇔ K (cholesky factorisation)
(v) image of circular points
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Image of the absolute conic 

HZ 7.5.1:



Constraints on ω*∞
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Summary: Self calibration 
based on the IADC

•Calibrated camera
–Dual absolute quadric (DAC)

–Dual image of the absolute conic (DIAC)

•Projective camera
–DAC

–DIAC

•Autocalibration
–Determine        based on constraints on

–Decompose  

TKK

diagI

=
=
*

)0,1,1,1(
~

ω

T
ii

iTii

T

KKPQP

HIHQ

==

=

∞

∞

**

* ~

ω

∞Ω* i*ω
THIHQ

~* =∞

π∞

ωi
∞

Ω

ωj
∞

Ci

Cj



Illustration of self-calibration

Projective Affine Metric



Degenerate configurations

• Pure translation: affine transformation (5 DOF)

• Pure rotation: arbitrary pose for        (3 DOF) 

• Planar motion: scaling axis perpendicular to plane 
(1DOF)

• Orbital motion: projective distortion along rotation axis 
(2DOF)  

∞π

Not unique solution !



A complete modeling system
projective

Sequence of frames        scene structure

1. Get corresponding points (tracking).

2. 2,3 view geometry: compute F,T between consecutive frames 
(recompute correspondences).

3. Initial reconstruction: get an initial structure from a 
subsequence with big baseline (trilinear tensor, factorization …) 
and bind more frames/points using resection/intersection.

4. Self-calibration.

5. Bundle adjustment.



A complete modeling system
affine

Sequence of frames        scene structure

1. Get corresponding points (tracking).

2. Affine factorization. (This already computes ML 
estimate over all frames so no need for bundle 
adjustment for simple scenes.

3. Self-calibration.

4. If several model segments: Merge, bundle adjust.



Examples – modeling with dynamic texture

Cobzas,Yerex,Jagersand



Examples: geometric modeling

Debevec and Taylor:Façade



Examples: geometric modeling

Pollefeys: Arenberg Castle



Examples: geometric modeling

INRIA –VISIRE project



Examples: geometric modeling

CIP Prague –
Projective Reconstruction Based on Cake Configuration



Examples: geometric modeling

Pollefeys: Arenberg Castle



Stereo reconstruction

Rectified left
image I(x,y)

Rectified right
image I´(x´,y´)

Dense Disparity map D(x,y)

How to go from sparse SFM

…to detailed,  model?
Here in the form of 
disparity/depth map



Reading: FP Chapter 11.

• The Stereopsis Problem: Fusion and Reconstruction
• Human Stereopsis and Random Dot Stereograms
• Cooperative Algorithms
• Correlation-Based Fusion
• Multi-Scale Edge Matching
• Dynamic Programming
• Using Three  or More Cameras

Dense stereo

•Go back to original images, do dense matching.

•Try to get dense depth maps



Many object/surface representation

Image-centered

� Depth/disparity w.r. to image 
plane

Image plane

3D point

� Voxels

� Level sets (implicit)

�Mesh

� Depth with respect to a base 
mesh
� Local patches

3D plane

Object-centered

time

Partial object reconstr.

Limited resolution 

Viewpoint dependent



Stereo image rectification



Stereo image rectification

• reproject image planes onto a common
• plane parallel to the line between optical 

centers
• pixel motion is horizontal after this transformation
• two homographies (3x3 transform), one for each 

input image reprojection
�C. Loop and Z. Zhang. Computing Rectifying Homographies for 

Stereo Vision. IEEE Conf. Computer Vision and Pattern 
Recognition, 1999.



All epipolar lines are parallel in the rectified image plane.

Rectification



simplify stereo matching 
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

e

e

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image

He
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

Image rectification through
homography warp



Example
Unrectified

Rectified



Depth from disparity

f

x x’
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z

C C’

X
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Stereo matching algorithms
•Match Pixels in Conjugate Epipolar Lines

– Assume brightness constancy

– This is a tough problem

– Numerous approaches

–A good survey and evaluation:  
http://www.middlebury.edu/stereo/



Your basic stereo algorithm

For each epipolar line

For each pixel in the left image
• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows
• This should look familar...



Stereo as energy minimization

• Find disparities d that minimize an energy 

function 

• Simple pixel / window matching

SSD distance between windows 

I(x, y) and J(x, y + d(x,y))=



Stereo as energy minimization

I(x, y) J(x, y) 

y = 141

C(x, y, d); the disparity space image (DSI)x

d



Stereo as energy minimization

y = 141

x

d

Simple pixel / window matching: choose the minimum of each 

column in the DSI independently:



Matching windows
Similarity Measure Formula

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation 
(NCC)

http://siddhantahuja.wordpress.com/category/stereo-vision/
SAD SSD NCC Ground truth



Stereo matching

Optimal path
(dynamic programming )

Similarity measure
(SSD or NCC)

Constraints
• epipolar
• ordering
• uniqueness
• disparity limit
• disparity gradient limit

Trade-off
• Matching cost (data)
• Discontinuities (prior)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen´97;
Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02)



Disparity map

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)



Hierarchical stereo matching
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Allows faster computation

Deals with large disparity 
ranges

(Falkenhagen´97;Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02)



Example: reconstruct image from 
neighboring images



Many SFM and stereo systems 
you can try

•Microsoft Photosynth: SFM only, on-line

•Arc3D: SFM + Stereo, on-line

•VisualSFMSFM + Stereo, download and install



Visual SFM, House by Bin



Visual SFM, House by Bin



Reconstructing scenes
‘Small’ scenes (one, few buildings)

� SFM + multi view stereo 

� man made scenes: prior on architectural elements

� interactive systems

City scenes (several streets, large area)

� aerial images 

� ground plane, multi cameras

SFM + stereo [+ GPS]

depth map fusions



Modeling dynamic scenes 

Large scale (city) modeling  



Modeling (large scale) scenes

[Adam 

Rachmielowski ]



SFM + stereo 

[Dellaert et al 3DPVT06 ]
[Zisserman, Werner ECCV02 ]

Man-made environments :
� straight  edges
� family of lines
� vanishing points



SFM + stereo
� dominant planes 
� plane sweep – homog between 3D pl. and camera pl.
� one parameter search – voting for a plane

[Zisserman, Werner ECCV02 ] [Bischof et al 3DPVT06 ]



SFM + stereo

[Zisserman, Werner ECCV02 … ]

� refinement – architectural primitives 



SFM+stereo

• Refinement – dense stereo

[Pollefeys, Van Gool 98,00,01 ]

www.arc3d.be



Façade – first system

[Debevec, Taylor et al. Siggraph 96 ]

Based on SFM 
(points, lines, stereo)
Some manual modeling
View dependent texture



Priors on architectural primitives

θ – parameters for architectural priors 

type, shape, texture

M – model

D – data (images)

I – reconstructed structures (planes, lines …)

[Cipolla, Torr,  … ICCV01 ]

prior

Occluded windows



Interactive systems

[Torr et al. Eurogr.06, Siggraph07 ]

Video, sparse 3D points, user input

M – model primitives
D- data
I – reconstructed geometry
Solved with graph cut



City modeling – aerial images

[Heiko Hirschmuller et al - DLR ]
Airborne pushbroom camera

Semi-global stereo matching 
(based on mutual information)



City modeling – ground plane

Camera cluster
car + GPS

Calibrated cameras – relative pose
GPS – car position - 3D tracking

2D feature tracker

3D points
Dense stereo+fusion
Texture

3D MODEL

[Nister, Pollefeys et al 
3DPVT06, ICCV07]

[Cornelis, Van Gool CVPR06…] 

Video: Cannot do 
frame-frame 

correspondences

SFM



City modeling - example

[Cornelis, Van Gool CVPR06…] 

1. feature matching = tracking

2. SFM – camera pose + sparse 3D points 

3. Façade reconstruction 

– rectification of the stereo images

- vertical line correlation 

4. Topological map generation

- orthogonal proj. in the horiz. plane

- voting based carving

5. Texture generation

- each line segment – column in texture 
space VIDEO



On-line scene modeling : Adam’s project
On-line modeling from video 
Model not perfect but enough for scene visualization 
Application predictive display 

Tracking and Modeling
New image
Detect fast corners (similar to Harris)
SLAM (mono SLAM [Davison ICCV03])

Estimate camera pose
Update visible structure

Partial bundle adjustment – update all points
Save image if keyframe (new view – for texture)

Visualization
New visual pose

Compute closet view
Triangulate 
Project images from closest views onto surface

SLAM
Camera pose
3D structure
Noise model
Extended Kalman Filter



Model refinement





Modeling dynamic scenes

[Neil Birkbeck]



Multi-camera systems

Several cameras mutually registered (precalibrated)  

Video sequence in each camera

Moving object



Techniques
� Naïve : reconstruct shape every frame 

� Integrate stereo and image motion cues

� Extend stereo in temporal domain 

� Estimate scene flow in 3D from optic flow and stereo 

Representations :

� Disparity/depth 

� Voxels / level sets

� Deformable mesh – hard to keep time consistency

Knowledge:

� Camera positions 

� Scene correspondences (structured light)



Spacetime stereo

[Zhang, Curless, Seitz: Spacetime stereo, CVPR 2003]
Extends stereo in time domain: assumes intra-frame correspondences
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Spacetime stereo: Results



Spacetime stereo:video



Spacetime photometric stereo
[Hernandez et al. ICCV 2007]

One color camera  

projectors – 3 different positions

Calibrated w.r. camera

Each channel (R,G,B) – one colored light pose
Photometric stereo



Spacetime PS - Results



3. Scene flow
[Vedula, Baker, Rander, Collins, Kanade: Three dimensional scene flow, 
ICCV 99]

2D Optic flow
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Scene flow: results

[Vedula, et al. ICCV 99]



Scene flow: video

[Vedula, et al. ICCV 99]



4. Carving in 6D
[Vedula, Baker, Seitz, Kanade: Shape and motion carving in 6D]

Hexel: 
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6D slab sweeping

Slab = thickened plane (thikness = upper bound on the flow magnitude)
� compute visibility for x1

� determine search region
� compute all hexel photo-consistency
� carving hexels
� update visibility
(Problem: visibility below the top layer in the slab before carving)



Carving in 6D: results



7. Surfel sampling
[ Carceroni, Kutulakos: Multi-view scene capture by surfel samplig, ICCV01] 

Surfel: dynamic surface element
� shape component : center, normal, curvature
� motion component: 
� reflectance component: Phong parameters
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Reconstruction algorithm
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Surfel sampling : results



Modeling humans in motion

GRIMAGE platform - INRIA Grenoble

Multiple 
calibrated 
cameras

Human in 
motion

Goal: 3D model of the 
human

Instantaneous model that can 
be viewed from different poses 
(‘Matrix’) and inserted in an
artificial scene (tele-
conferences)

Our goal:      3D 
animated human 
model

� capture model 
deformations and 
appearance change in 
motion

� animated in a video 
game



Articulated model 
Geometric Model

Skeleton + skinned mesh 
(bone weights )

50+ DOF (CMU mocap data)

Tracking

� visual hull – bone weights by 
diffusion

� refine mesh/weights

Components

� silhouette extraction

� tracking the course model 
� learn deformations
� learn appearance change

[Neil Birkbeck]
Model based 
approach



Neil- tracking results



Computer Vision

Questions?


