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First 1D Projective line
Projective Coordinates

• Basic projective invariant in P1: the cross ratio
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Requires 4 points:
3 to create a coordinate system
The fourth is positioned within that system

inhomogeneous



Cross ratio

• Basic projective invariant in P1: the cross ratio

•Properties:
– Defines coordinates along a 1d projective line

– Independent of the homogeneous representation of x
– Valid for ideal points 

– Invariant under homographies
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Projective 3D space
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•Projective transformation:
–4x4 nonsingular matrix H
–Point transformation
–Plane transformation

•Quadrics: Q Dual: Q*
–4x4 symmetric matrix Q

–9 DOF (defined by 9 points in general pose)

•Points

•Planes
0
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•Lines: 5DOF, various parameterizations



3D points
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XX' H= (4x4-1=15 dof)

projective transformation

3D point
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Planes
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Dual: points ↔ planes, lines ↔ lines 

3D plane
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Planes from points
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0πX  0πX 0,πX  π 321 === TTT andfromSolve

(solve    as right nullspace of            )π
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Or implicitly from coplanarity condition
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Representing a plane by
by lin comb of 3 points

xX M= [ ]321 XXX=M
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Representing a plane by its nullspace span M

All points lin 
comb of basis

Canonical form:
Given a plane

nullspace span M is



Points from planes
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Lines
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Example: X-axis

(4dof)

Join of two points: A, B

Intersection of two planes: P, Q



Points, lines and planes
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Join of point X and line W is plane π

Intersection of line W with plane π is point X



Affine space

Difficulties with a projective space:
– Nonintuitive notion of direction:

–Parallelism is not represented
– Infinity not distinguished
– No notion of “inbetweenness”: 

–Projective lines are topologically circular
– Only cross-ratios are available

–Ratios are required for many practical tasks

A

B +/-∞

Solution: find the plane at infinity!

•Transform the model to give π∞ its canonical coordinates

•2D analogy: fix the horizon line

Determining the plane at infinity upgrades the geometry from projective to affine
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From projective to affine

• Finding the plane (line, point) at infinity 
– 2 or 3 sets of parallel lines (meeting at “infinite” points)

– a known ratio can also determine infinite points
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From projective to affine

HZ

2D

3D

Projective Affine



Affine space

•Affine transformation
– 12 DOF

– Leaves ππππ∞ unchanged

•Invariants
– Ratio of lengths on a line

– Ratios of angles

– Parallelism
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Kutulakos and Vallino, Calibration-
Free Augmented Reality, 1998



Metric space

•Metric transformation (similarity)
– 7 DOF

– Maps absolute conic to itself 

•Invariants
– Length ratios

– Angles

– The absolute conic
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Without a yard stick, this is the highest level of geometric 
structure that can be retrieved from images



The absolute conic

• Absolute conic       is an imaginary circle on

• It is the intersection of every sphere with 

• In a metric frame
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From affine to metric

•Identify on OR identify
– via angles, ratios of lengths

– e.g. perpendicular lines

•Upgrade the geometry by bringing to its 
canonical form via an affine transformation 
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1D ?



Examples

2D

3D

Affine Metric

Two pairs of perpendicular lines

5 known points



What good is a projective model?

Represents fundamental feature interactions

Used in rendering with an unconventional engine:

Achieving 3d tasks
via

2d image control

Visual Servoing

Physical Objects!

f1

f2

f3

Tcol(f1,f2,f3) =    f1 - f2f3

collinearity task



What good is a projective model?

Represents fundamental feature interactions

Used in rendering with an unconventional engine:

Achieving 3d tasks
via

2d image control

Visual Servoing

Physical Objects!
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image collinearity constraint



A point meets a line in each of two images...

Collinearity?



Collinearity?

But it doesn’t guarantee task achievement !



All achievable tasks...

are ALL projectively 
distinguishable 

coordinate systems

One point
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Noncoincidence

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

0
1
0
0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

0
1
0
0

1
0
0
0

0
1
0
0

0
0
1
0

Collinearity

General Position

2pt. coincidence

3pt. coincidence

1
0
0
0

0
1
0
0

1
1
0
0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0
0

0
1
0
0

0
1
0
0

1
0
0
0

0
1
0
0

1
1
0
0

α
1
0
0

1
0
0
0

0
1
0
0

0
0
1
0

1
1
1
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

4pt. coincidence

2 2pt. coincidence

Cross Ratio

General Position

Coplanarity



Tpp

Tcol

Tcopl

Tcrα

point-coincidence 

collinearity
coplanarity
cross ratios (α)

Cinj

Cwk

Task primitives

Tpp

Injective

Projective

Composing possible tasks

Task operators

T1 ∧∧∧∧ T2 = T1 ∨∨∨∨ T2  =  T1•T2 ¬¬¬¬T = 
0   if T = 0 

1   otherwise

T1

T2

AND OR NOT



wrench: view 1 wrench: view 2

Twrench(x1..8) =

Tcol(x2,x5,x6)
Tcol(x4,x7,x8) ∧∧∧∧

Tpp(x1,x5) ∧∧∧∧
Tpp(x3,x7) ∧∧∧∧1

2

3
4

56

78

Result: Task toolkit



Group Transformation Invariants Distortion

Projective

15 DOF

• Cross ratio

• Intersection

• Tangency

Affine

12 DOF

• Parallelism

• Relative dist in 1d

• Plane at infinity

Metric

7 DOF

• Relative distances

• Angles

• Absolute conic

Euclidean

6 DOF

• Lengths

• Areas

• Volumes

Geometric strata: 3d overview
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Perspective and projection

• Euclidean geometry is not the only representation
- for building models from images
- for building images from models

representations ?

• But when 3d realism is the goal, 
how can we effectively build and use

projective
affine
metric


