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First 1D Projective line
| 'ectlve Coordmates v

ac _ ac
bd — bd
inhomogeneous

Requires 4 points:

3 to create a coordinate system
The fourth is positioned within that system
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e Basic projective invariant iR*: thecrossratio
X X5 (XX ! X,
{xl,xz;xg,x4}=‘ XalXeXs ‘xixj‘:de{)ql ’1}
homogeneous ‘X1X3HX2X4‘ X2 Xj 2
*Properties:

— Defines coordinates along a 1d projective line

—Independent of the homogeneous representatian of
— Valid for ideal points "
— Invariant under homographies




*Points X = (X, %1 X1 X,), X, 0
(X, %5, %3.0) (X,Y,ZD) < (X,Y,2)

(30 %55 %5, %) = (41 X4, % [ %4, %51 X,)

nt = (71, 7,, 715, 71,)

nmmmner
7' X=0

Lines: 5DOF, various parameterizations

*Projective transformation:

—Ax4 nonsingular matrix H
—Point transformation X'=HX
—Plane transformation a=H "

Planes

eQuadrics: QQ x"Qx =0
—Ax4 symmetric matrix Q
—9 DOF (defined by 9 points in general pose)




3D points
3D point

(X,Y,z)" inR3

X =(X,, X,, X5, X, )" in P3

- R

]
X, X, X T
X=| 21,22 58| =(X,Y,2,1

projective transformation

X'=HX (4x4-1=15 dof)



Planes

3D plane Transformation

X +n,Y+n,Z+m, =0 X=I:|TX
n=H"x

X, +m, X, +n, X, +7m, X, =0
n'X=0
Euclidean representation
n'X +d=0 n=(n,7m,,71,) X=(X)Y,Z)
X,

@ T, — d =1
< d/[n|

Dual: points « planes, lines < lines



Planes from pomts

S ' ‘t.' =y T
-« P =) o - > %“ ?- R ;. ¥:
Solve 1t from XTn 0,XIm= Oand XT = JBs

T -
Xl X:'LI'
X} |m=0 (solve Tas right nullspace of | X] | )
Xs Xs

Or implicitly from coplanarity condition

X, jxf gngl gxg

Xol (X)g (%), (Xa),|
R ), (x|

X, (X1)4 \ X2 ), (X3)4_

D !

X1Dp3 = X3Dygy + XDy, _TX4D123 =0
n= (D234’_ D134 D1~ Dizs)



Representing a plane by

lin

. ?‘/1
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Representing a plane by its nullspace span M

All points lin ~ X=Mx M =[X,X,X,]
comb of basis «'M =0

Canonical form:
Givenaplane m= (a, b,C, d)T

nullspace spanMis M = {ﬂ
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X =0 (solve Xas right nullspace of




N (4dof) = gt AA+uB
/ Intersection of two plane®, Q
AN . | P!
W = o AP+ 1Q

* 1

WW'=WW" = 0.,
Example: X-axis

O 001 . 100 10
W = W =
1 00O 0100



Pomts Ilnes and planes

Join of pointX and lineW is planert

W
W
M = N Mn=0
Intersection of lin&V with planertis pointX W

M=l | Mx=0
7_[T



Difficulties with a projective space:

— Nonintuitive notion of direction:
—Parallelism is not represented

— Infinity not distinguished B

— No notion of “inbetweenness”:
—Projective lines are topologically circular

— Only cross-ratios are available
—Ratios are required for many practical tasks

Solution find the plane at infinity! &, = (0,0,0,1)
*Transform the model to givee, its canonical coordinates
2D analogy: fix the horizon line 1 =(0,0)




_ __ prolectlve to afflne

. ‘a_‘zL\._ -
 Finding the plane (line, point) at infinity

— 2 or 3 sets of parallel lin@seeting at “infinite” points)
— a known ratio can also determine infinite points

1D 00 200 _ _IX  (noss ratio

2 1 X Peo 300 B 2(1"‘)()
1 |
1 1
2







« Affine transformation U B B A

12 DOF H, =[P %2 % %
j Ay dgp g3 gy
— Leavest, unchanged o o0 o0 1
Invariants

— Ratio of lengths on a line
— Ratios of angles
— Parallelism

Kutulakos and Vallino, Calibration-
Free Augmented Reality, 1998




e Metric transformation (similarity)
—7 DOF {SR t}

— Maps absolute conic to itself Hs =

e Invariants

— Length ratios
—Angles
— The absolute conic

o' 1



The absolute conic

Ty —
‘ v g ~. "'% 3 G
* Absolute conicQ_ IS an |mag|nary C|rcle an

e [t IS the Intersection of every sphere with

*In a metric frame [r_=(0,0,02)

Q XX HXT|
X, B

On =, 1(%, %, %) (%, %,%)" =0

absolute dual quadric




From affine to medtric
S ' — ‘ - %«

eldentify o_on =, OR identifyQ .
— via angles, ratios of lengths
— e.g. perpendicular lines d,'Q.d,=0

Upgrade the geometry by bringimg  to its
canonical form via an affine transformation

1D ?



Affine 5 known points

Metric



hat good |s a prOJectlve model’>

Represents fundamental feature interactions
Used in rendering with an unconventional engine:

Tolfifofs) = || fi- fofs

Visual Servoind

Achieving 3d tasks

° i .f
via ’
2d Image control collinearity task
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hat good Is a projective

-
f‘"/‘,‘ P

Represents fundamental feature interactions
Used in rendering with an unconventional engine:

Visual Servoind

Achieving 3d tasks
via
2d image control

image collinearity constraint




A point meets a line in each of two images...



Collinearity?

But it doesn't guarantee task achievement |




_I achievable tasks...

00 o / 1100
00 110 0000
Coincidence /A‘// 001l 2 2pt. coincidenc&?000,
000

é : .OOO ‘A// (101q)
/ 0 2pt. coincidence O 0111
" 0000
0 “« _ loooo,

- . 101 Cross Ratio

One point / 011

%cl’ / 000 / (1001
00 C 000 ~ 0101
00 Collinearity e 0011
. . \ . \OOOO}

Noncoincidence / 100 Coplanarity
a 010 ~., . |
/ 001 / 1000
are ALL projectively .- 000 . 0100
distinguishable D L / """" (9010
General Position 0001

coordinate systems

General Position



Composing possible tasks

. \ Tpp point-coincidence

Injective Cin; —
) h Task primitives
Q‘ﬂ Teol  collinearity
TN c ; Tpp Tcopl coplanarity
Projective " Tera  cross ratiosd)
AND OR NOT
T, 0T,z | ' T dT = T T, _JO fTZO
g U1 T
T, 1 otherwise

Task operators




wrench: view 2

Top(X1,X5) O
Top(X3.X7) O
Teol(Xa.%7,Xg) O
Teol(X2.X5,%6)

Twrench(xl..S) -



aSeometric strata. 3d overwew

Projective _ A t | |*Cross rat.io g
H p— T e [ntersection

15 DOF _V V_ e Tangency

: B A '[_ e Parallelism

Affine H,= T « Relative dist in 1d Zﬁ

12 DOF _O 1_ * Plane at infinity 7,

M ri » Relative distances

etric . - SRt |10

7 DOF O" 1| |.Absolute conic Q,_

Euclidean R t] |"Lenaths
H e = T * Areas

6 DOF O 1 * \olumes

Faugeras '95



_Perspectlve and prOJectlon

* Euclidean geometry Is not the only representation

- for building models from images
- for building images from models

 But when 3d realism is the goal,
how can we effectively build and use

projective’

affine  + representations ?
metric

/



