Computer Vision cmput 428/615

Basic 2D and 3D geometry and Camera models

Martin Jagersand

Challenges in Computer Vision: What images *don't* provide

lengths

Distant objects are smaller

Visual ambiguity

the settles of

•Will the scissors cut the paper in the middle?

Ambiguity

•Will the scissors cut the paper in the middle? NO!

Visual ambiguity

man an

E D

• Is the probe contacting the wire?

• Is the probe contacting the wire? **NO!**

Visual ambiguity

the setting of

• Is the probe contacting the wire?

• Is the probe contacting the wire? **NO!**

History of Perspective

Prehistoric:

Roman

Visualizing perspective: Dürer

The second

Perspectograph 1500's

Parallel lines meet

S. El Yo

Perspective Imaging Properties

Challenges with measurements in multiple images:

- Distances/angles change
- Ratios of dist/angles change
- Parallel lines intersect

What is preserved?

Invariants:

- Points map to points
- Intersections are preserved
- Lines map to lines
- Collinearity preserved
- Ratios of ratios (cross ratio)
- Horizon

What is a good way to represent imaged geometry?

Vanishing points

- each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
 - How would you show this?
- Sets of parallel lines on the same plane lead to *collinear* vanishing points.
 - The line is called the *horizon* for that plane

Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to whole image
- Polygons go to polygons
- Degenerate cases
 - line through focal point to point
 - plane through focal point to line

Polyhedra project to polygons

• (because lines project to lines)

Junctions are constrained

- This leads to a process called "line labelling"
 - one looks for consistent sets of labels, bounding polyhedra
 - disadv can't get the lines and junctions to label from real images

Back to projection

We will develop a framework to express projection as x=PX, where x is 2D image projection, P a projection matrix and X is 3D world point.

Basic geometric transformations: Translation

• A translation is a straight line movement of an object from one postion to another.

A point (x,y) is transformed to the point (x',y') by adding the translation distances T_x and T_y :

And And

•Example: Around y-axis

•Note: Successive rotations. Order matters.

•Translation t' in new o' coordinates

Basic transformations Scaling

• A scaling transformation alters the scale of an object. Suppose a point (x,y) is transformed to the point (x',y') by a scaling with scaling factors S_x and S_y, then:

$$x' = x S_x$$
$$y' = y S_y$$
$$z' = z S_z$$

• A uniform scaling is produced if $S_x = S_y = S_z$.

Scaling about the Origin

Basic transformations Scaling

The previous scaling transformation leaves the origin unaltered. If the point (x_f, y_f) is to be the fixed point, the transformation is:

$$x' = x_{f} + (x - x_{f}) S_{x}$$

$$y' = y_{f} + (y - y_{f}) S_{y}$$
This can be rearranged to give:
$$x' \neq x S_{x} + (1 - S_{x}) x_{f}$$

$$y' = y S_{y} + (1 - S_{y}) y_{f}$$

$$y' = y S_{y} + (1 - S_{y}) y_{f}$$
Scaling about (x, y)

In general, a point in n-D space transforms by

P' = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Cos(\theta) & -Sin(\theta) \\ Sin(\theta) & Cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} tx \\ ty \end{pmatrix}$$

In 3-D space (or n-D), this can generalized as a matrix equation:

$$p' = R p + T$$
 or $p = R^t (p' - T)$

A Simple 2-D Example E El Y

Suppose we rotate the coordinate system through 45 degrees (note that this is measured relative to the rotated system!

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} \cos(\pi/4) \\ \sin(\pi/4) \end{pmatrix}$$
$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} -\sin(\pi/4) \\ \cos(\pi/4) \end{pmatrix}$$

A Samala

Matrix representation and Homogeneous coordinates

- Often need to combine several transformations to build the total transformation.
- So far using affine transforms need both add and multiply
- Good if all transformations could be represented as matrix multiplications then the combination of transformations simply involves the multiplication of the respective matrices
- As translations do not have a 2 x 2 matrix representation, we introduce homogeneous coordinates to allow a 3 x 3 matrix representation.

•Old way: $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$

•New way:

 $\begin{pmatrix} x'\\y'\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \Delta x\\0 & 1 & \Delta y\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\1 \end{pmatrix}$

Relationship between 3D homogeneous and inhomogeneous

• The Homogeneous coordinate corresponding to the point (x,y,z) is the triple (x_h, y_h, z_h, w) where:

 $\begin{array}{rcl} x_h &=& wx\\ y_h &=& wy\\ z_h &=& wz\\ We \ can \ (initially) \ set \ w=1. \end{array}$

Suppose a point P = (x,y,z,1) in the homogeneous coordinate system is mapped to a point P' = (x',y',z',1) by a transformations, then the transformation can be expressed in matrix form.

Matrix representation and Homogeneous coordinates

• For the basic transformations we have:

-Translation

$$P' = \begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

-Scaling

$$P' = egin{bmatrix} x' \ y' \ z' \ w \end{bmatrix} = egin{bmatrix} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ z \ w \end{bmatrix}$$

Using the idea of homogeneous transforms, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p$$

R and T both require 3 parameters.

$$\mathbf{R} = \begin{bmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\nu & 0 & \sin\nu\\ 0 & 1 & 0\\ -\sin\nu & 0 & \cos\nu \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\psi & -\sin\psi\\ 0 & \sin\psi & \cos\psi \end{bmatrix}$$

If we compute the matrix inverse, we find that

$$p = \begin{pmatrix} R' & -R'T \\ 0 & 0 & 0 & 1 \end{pmatrix} p'$$

R and T both require 3 parameters. These correspond to the 6 extrinsic parameters needed for camera calibration

Rotation about a Specified Axis

- •It is useful to be able to rotate about any axis in 3D space
- •This is achieved by composing 7 elementary transformations (next slide)

· BY AR
Rotation through θ about Specified Axis

Comparison:

•Homogeneous coordinates

- Rotations and translations are represented in a uniform way
- Successive transforms are composed using matrix products: y = Pn*..*P2*P1*x
- •Affine coordinates
 - Non-uniform representations: y = Ax + b
 - Difficult to keep track of separate elements

Camera models and projections Geometry part 2.

- •Using geometry and homogeneous transforms to describe:
 - Perspective projection
 - Weak perspective projection
 - Orthographic projection

y

The equation of projection

• Cartesian coordinates:

- We have, by similar triangles, that $(x, y, z) \rightarrow (f x/z, f y/z, -f)$

– Ignore the third coordinate, and get

The camera matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation (X,Y,Z,T) is the same as (k X, k Y, k Z,k T)
- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$(U,V,W) \rightarrow (\frac{U}{W},\frac{V}{W}) = (u,v)$$

Camera parameters

- Issue
 - camera may not be at the origin, looking down the z-axis
 - extrinsic parameters
 - one unit in camera coordinates may not be the same as one unit in world coordinates
 - intrinsic parameters focal length, principal point, aspect ratio, angle between axes, etc.
- $\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{intrinsic parameters} \end{pmatrix} \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{projection model} \end{pmatrix} \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{extrinsic parameters} \end{pmatrix} \begin{pmatrix} A \\ Y \\ Z \\ T \end{pmatrix}$

Note: f moved from proj to intrinsics!

Intrinsic Parameters

Intrinsic Parameters describe the conversion from metric to pixel coordinates (and the reverse)

Note: Focal length is a property of the camera and can be incorporated as above

Example: A real camera

• Laser range finder

• Camera

Relative location Camera-Laser

• Camera

• Laser

• Rotation:

• Translation

$$R = \begin{bmatrix} \cos - 10 & 0 & \sin - 10 \\ 0 & 1 & 0 \\ -\sin - 10 & 0 & \cos - 10 \end{bmatrix} \qquad T = \begin{pmatrix} 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -9 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Full projection model

•Camera internal •Camera parameters projection

The second and

 $p_{camera} = \begin{pmatrix} 1278.6657 & 0 & 256 \\ 0 & 1659.5688 & 240 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0.985 & 0 & -0.174 & 0 \\ 0 & 1 & 0 & 0 \\ 0.174 & 0 & 0.985 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 16 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -9 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.6612 \\ -10.55 \\ 108.0 \\ 1 \end{pmatrix} = \begin{pmatrix} 22262 \\ 16755 \\ 97.47 \end{pmatrix}$

Extrinsic rot and translation

Camera parameters

- Issue
 - camera may not be at the origin, looking down the z-axis
 - extrinsic parameters
 - one unit in camera coordinates may not be the same as one unit in world coordinates
 - intrinsic parameters focal length, principal point, aspect ratio, angle between axes, etc.
- $\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{intrinsic parameters} \end{pmatrix} \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{projection model} \end{pmatrix} \begin{pmatrix} \text{Transforma tion} \\ \text{representing} \\ \text{extrinsic parameters} \end{pmatrix} \begin{pmatrix} A \\ Y \\ Z \\ T \end{pmatrix}$

Note: f moved from proj to intrinsics!

• Camera image

• Laser measured 3D structure

Orthographic projection

The second second

v = y

The fundamental model for orthographic projection

 $\begin{pmatrix} U \\ U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} X \\ Y \\ Z \\ T \end{vmatrix}$

Perspective and Orthographic Projection

perspective

Orthographic (parallel)

Weak perspective

- Issue
 - perspective effects, but not over the scale of individual objects
 - collect points into a group at about the same depth, then divide each point by the depth of its group
 - Adv: easy
 - Disadv: wrong

u = Tx

v = Ty

The fundamental model for weak perspective projection

Note Z* is a fixed value, usually mean distance to scene

Weak perspective projection for an arbitrary camera pose R,t

Weak perspective projection

Full Affine linear camera

Affine camera (8dof)

$$P_{A} = \begin{bmatrix} \alpha_{x} & s \\ \alpha_{y} \\ 1 \end{bmatrix} \begin{bmatrix} r^{1T} & t_{1} \\ r^{2T} & t_{2} \\ 0 & 1/k \end{bmatrix} P_{A} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & t_{1} \\ m_{21} & m_{22} & m_{23} & t_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$P_{A} = \begin{bmatrix} 3 \times 3 \text{ affine} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \times 4 \text{ affine} \end{bmatrix}$$

- 1. Affine camera=camera with principal plane coinciding with Π_{∞}
- 2. Affine camera maps parallel lines to parallel lines
- 3. No center of projection, but direction of projection $P_A D=0$ (point on Π_{∞})

Camera Models

- Internal calibration:
- Weak calibration:
- Affine calibration:
- Stratification of stereo vision:
 - characterizes the reconstructive certainty of weakly, affinely, and internally calibrated stereo rigs

Visual Invariance

Miral

The second second

Perspective Camera Model Structure

Assume R and T express camera in world coordinates, then

$${}^{c}p = \begin{pmatrix} R' & -R'T \\ 0 & 0 & 0 & 1 \end{pmatrix}^{w} p$$

Combining with a perspective model (and neglecting internal parameters) yields

$${}^{c}u = M^{w}p = \begin{pmatrix} -R'_{x} R'_{x}T \\ -R'_{y} R'_{y}T \\ \frac{R_{z}}{f} \frac{-R_{z}T}{f} \end{pmatrix}^{w}p$$

Note the M is defined only up to a scale factor at this point! If M is viewed as a 3x4 matrix defined up to scale, it is called the *projection matrix*.

Perspective Camera Model Structure

Assume R and T express camera in world coordinates, then

$${}^{c}p = \begin{pmatrix} R' & -R'T \\ 0 & 0 & 0 & 1 \end{pmatrix}^{w} p$$

Combining with a weak perspective model (and neglecting internal parameters) yields

$${}^{c}u = M^{w}p = \begin{pmatrix} -R'_{x} & R'_{x}T \\ -R'_{y} & R'_{y}T \\ 0 & \underline{R}_{z}(\overline{P} - T) \\ f \end{pmatrix}^{w}p$$

Where \overline{P} is the nominal distance to the viewed object

Other Models

- The *affine camera* is a generalization of weak perspective.
- The *projective camera* is a generalization of the perspective camera.
- Both have the advantage of being linear models on real and projective spaces, respectively.
- But in general will recover structure up to an affine or projective transform only. (ie distorted structure)

Camera Internal Calibration Recall: Intrinsic Parameters

Intrinsic Parameters describe the conversion from metric to pixel coordinates (and the reverse)

$$x_{mm} = - (x_{pix} - o_x) s_x$$

$$y_{mm} = - (y_{pix} - o_y) s_y$$

Or

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix}_{pix} = \begin{pmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}_{mm} = M_{int}p$$

CAMERA INTERNAL CALIBRATION

Compute Sx Focal length = 1/Sx $\frac{rk_i}{d} = (x_i - o_x)s_x$ $\frac{r}{d} = (x_{i+1} - x_i)s_x$

A simple way to get scale parameters; we can compute the optical center as the numerical center and therefore have the intrinsic parameters

Camera calibration

- Issues:
 - what are intrinsic parameters of the camera?
 - what is the camera matrix? (intrinsic+extrinsic)
- General strategy:
 - view calibration object
 - identify image points
 - obtain camera matrix by minimizing error
 - obtain intrinsic parameters from camera matrix

- Error minimization:
 - Linear least squares
 - easy problem numerically
 - solution can be rather bad
 - Minimize image distance
 - more difficult numerical problem
 - solution usually rather good, but can be hard to find
 - start with linear least squares
 - Numerical scaling is an issue

Stereo Vision

- GOAL: Passive 2camera system for triangulating 3D position of points in space to generate a depth map of a world scene.
- Humans use stereo vision to obtain depth

Stereo depth calculation: Simple case, aligned cameras

Epipolar constraint

Special case: parallel cameras – epipolar lines are parallel and aligned with rows

Stereo measurement example:

 Left image
 Resolution = 1280 x 1024 pixels
 f = 1360 pixels

Right image
Baseline d = 1.2m
Q: How wide is the hallway

How wide is the hallway? General strategy

•Similar triangles:

$$\frac{W}{Z} = \frac{v}{f}$$

- \bullet Need depth Z
- •Then solve for W

How wide is the hallway? Steps in solution:

- 1. Compute focal length f in meters from pixels
- 2. Compute depth Z using stereo formula (aligned camera planes)

$$\mathbf{Z} = \frac{\mathbf{d}^*\mathbf{f}}{(\mathbf{X}\mathbf{L} - \mathbf{X}\mathbf{R})}$$

3. Compute width:

$$W = Z \frac{v}{f}$$
Focal length:

Here screen projection is metric image plane.

f = 1360 pixels

$$f = \frac{1360}{1280} * 0.224 = 0.238 \mathrm{m}$$

0.224m is 1280 pixels

How wide... Depth calculation

Disparity: XL - XR = 0.07m

(Note in the disparity calculation the choice of reference (here the edge) doesn't matter. But in the case of say X-coordinate calculation it should be w.r.t. the center of the image as in the stereo formula derivation

• Depth

$$Z = \frac{1.2 * 0.238}{0.07} = 4.1m$$

How wide...? Answer:

• Similar triangles:

$$W = Z \frac{v}{f}$$

• The width of the hallway is:

$$W = 4.1 * \frac{0.135}{0.238} = 2.3m$$

