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Ihe equation of project
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How do we develop a consistent mathematical
framework for projection calculations?
Mathematically:

Intuitively: - Cartesian coordinates:
X
(xy.2) - (=, 12)
2z

 Projectively: x = PX

(=]
plane




Challenges IN Computer Vision:

lengths

. depth



Distant objects are smalle
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*Will the scissors cut the paper in the
middle?



A

* Will the scissors cut the paper in the middle?
NO!



Visual ambiguity
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*|s the probe contacting the wire?



*|s the probe contacting the wirBi®!



Visual ambiguity

*|s the probe contacting the wire?



Ambiguit
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*|s the probe contacting the wirBi®!



__ History of Perspective
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\ |suaI|zmg perspectlve Durer

Perspectograph
1500’s
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common to draw image plane

Image in front of the focal point
plan
Centre of
projection
H 0
3D world




2erspective Imaging Properties

Challenges with measurements in
multiple images:

 Distances/angles change
 Ratios of dist/angles change

e Parallel lines intersect




Invariants:

* Points map to points

* Intersections are preserved
e Lines map to lines
 Collinearity preserved

» Ratios of ratios (cross ratio)
e Horizon

horizon



e each set of parallel lines (=direction) meets

at a different point

— Thevanishing poinfor this direction
— How would you show this?

» Sets of parallel lines on the same plane lead

to collinearvanishing points.
— The line is called thhorizonfor that plane



Seometric properties of projection
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e Points go to points

* Lines go to lines

e Planes go to whole image
e Polygons go to polygons

 Degenerate cases

— line through focal point to
point

— plane through focal point
to line




a2 0lyhedra project to polygons
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 (because lines project to
lines)




Junctions are constrained

- & - } — = . ] - ﬁl’.:'."o.

 Thisleadsto a
process called “line
labelling”

— one looks for consistent
sets of labels, bounding

polyhedra Amrow:  Fork:
— disadv - can’t get the lines /I\ Y
and junctions to label from
real images . L: T:
“““ N g k T




ack to projectionu_”
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We will develop a framework to express projection
asx=PX, wherex is 2D image projection, P a
projection matrix an& is 3D world point.



5aSIC geometric ra}ns ormatio
Translation

A translation iIs a straight line movement of an

object from one postion to another.

A point (X,y) is transformed to the poiit’,y’) by adding the
translation distancel, andT,:

X' =X+ T,

y=y+Ty
=7+ 1, YA

Translation

J
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X! cosv 0 sinv| [z
p' = y’} 0 0 [Zy}RyP

—sinv 0 cosv




Euler angles

eNote: Successive rotations. Order matters.

COS (¥
= | sin gp

R = R,R,R,
—sinp 0 - cosv 0 sinv
Cosgp O} 0 I 0

—smyv 0 COSV |

1 0
0 cosvy
0 siny

0
— siny

cosy |

c A~ N




Rotation and translation

N Bl e

e Translationt’ In newo’ coordinates

cosry (0 sinv

—sinv 0 cosv




5aSIC ranstormator

A scaling transformation alters the scale of areob;
Suppose a point (x,y) Is transformed to the pothy'] by
a scaling with scaling factors and §, then:

X' = X3
y =VYS
' =729

* A uniformyscaling Is produced4i,S S, = SZ

Scaling about the Or g n



DaASIC transtormation

Scaling

The previous scaling transformation leaves therig
unaltered. If the point ¢y;) Is to be the fixed point, the
transformation is:

X = %+ (X-%)S,

Y =%+t -wS
This can be rearranged to give:

X 2 x3+ (1-3)x

Y 3yS +(@-3)Y A
==

L
’

X, x

Scaling about (x,,y,)

J



,fflne Geometrlc Transforms

In general, a point in n-D space transforms by
P’ = rotate(point) + translate(point)
In 2-D space, this can be written as a matrix equation:
(x'] _ (Cos(é’) - Sin(é’)j( xj N (txj
y' Sin(d) Cog96) \y) \ty
In 3-D space (or n-D), this can generalized as a matrix equation:

P=Rp+T or p=R'(p'-T)
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p=(1,0)

Suppose we rotate the coordinate
system through 45 degrees (note
that this is measured relative to the
rotated system!

Simple 2D Exampl

(Coqrr/4) -Sin(rr/4))(1
| Sin(7z/4)  Cog7r/4) ](oj

(Coq 71/ 4)
| sin(7r/ 4))

(Cogrrl4) - Sin(7t/4))( 0
_Sin(rr/4)  Cogr/4) |1

(- Sin(77/ 4)
\ Coqrr/ 4)




_|\/|atI'IX representatlon and

e Often need to combine several transformations tiol bu
the total transformation.

« S0 far using affine transforms need both add ankiphu

e Good If all transformations could be representethasix
multiplications then the combination of transforroas
simply involves the multiplication of the respeetiv
matrices

 As translations do not have a 2 x 2 matrix regméion,
we Introduce homogeneous coordinates to allowxa3 3
matrix representation.



How to translate a 2D point:
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Relationship between 3
hoggogeneous and iInhomogeneous

n b

 The Homogeneous coordinate corresponding to thd poi
(Xx,y,2) Is the triple (X V., Z,, W) where:

X, = WX
Yh = WY
Z, = WZ

We can (initially) set w = 1.

e Suppose a point P =(x,y,z,1) in the homogeneous
coordinate system is mapped to a point
P'=(xy',z',1) by a transformations, then the
transformation can be expressed in matrix form.



I\/Iatrlx representation and

e For the basic transformations we have:

—Translation
T 1 0 0 1,7 [x~
! O 1 0 T
P=1|Y|= y| | Y
z 0 0 1 T, z
_Scaling L w 0 0 0 14 Lwld
ol s, 0 0 07 a7
P vl _ |0 s, 0 0O Y
2/ 0 0 s, O 2
W L0 0 0 14 Lw-
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Geometric Transforms
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Using the idea of homogeneous transforms,
we can write:

(R T
P=lo 0 0 1P

R and T both require 3 parameters.

cosp —sinp 0 cosv 0 sinv| [1 0 0
R = [singp COS O] 0 I 0 0 cosy —siny
0 0 11 |—sinv 0 cosv| |0 siny cosyp |




)
e

Geometric Transforms

- IR -

If we compute the matrix inverse, we find that

)= R -R'T )
O 0 O 1

R and T both require 3 parameters. These correspond
to the 6 extrinsic parameters needed for camera calibration



_Rotation about a Specified Axis
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s N - (- ""-

oIt Is useful to be able to rotate about any axis in
3D space

*This Is achieved by composing 7 elementary
transformations (next slide)



ROtatlon througl@ about Specn‘led

Y P2 Y y
P O
o PI
Ly X X
Z Z iransiate P1 y4 (/rOtCIte so that
initial position to origin P2 lies on z-axis
(2 rotations)
4 y Y P2

O
O
o Pl
X X — X
, o rotate through rotate axis

Z Z franslate back
J fequ'd angle, 6 to orig orientation



eHomogeneous coordinates

— Rotations and translations are represented in a uniform way

— Successive transforms are composed using matrix proguets:
Pn*. *P2*P1*x

e Affine coordinates

— Non-uniform representationg.= Ax + b
— Difficult to keep track of separate elements



Camera models and projections

*Using geometry and homogeneous

transforms to describe:
— Perspective projection
—Weak perspective projection

s —Orthographic projection
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The equation of projectic

e Cartesian coordinates:
— We have, by similar triangles, that (x, y, z) ->

(fx/z, fylz, -f)
— Ignore the third coordinate, and get

(xy,2) - (f2,12)
Y4 Z

f




The camera matrix

st =) %

« Homogenous coordinates for 3D

— four coordinates for 3D point
— equivalence relation (X,Y,Z,T) isthesame as (k X, k¥,kT)

e Turn previous expression into HC’s
— HC'’s for 3D point are (X,Y,Z,T)
— HC'’s for point in image are (U,V,W)

X
vy 10 o o\(Y\ Y
LVJ=|O L 0 0 UVW) = () = (UY)

| Z
w/ {0 0} o)




e |SSUE

— camera may not be at the origin, looking down the z-axis
— extrinsic parameters

— one unit in camera coordinates may not be the same as one
unit in world coordinates

— Intrinsic parameters - focal length, principal point,
aspect ratio, angle between axes, etc.

54
(U (Transformaton  \ Transformation Y Transformation A y
V | =] represening represening represening .

\W ) \intrinsic parameterg| projection model \ extrinsic parameterg,k_l_ /

Note: f moved from proj to intrinsics!



ntrinsic Parameters

Intrinsic Parameters describe the conversion from
metric to pixel coordinates (and the reverse)

Xmm = - (Xpix o Ox) Sy

= - (ypix_ Oy) Sy
or
/X\ /—f/SX 0 OX\/X\
y| = 0 —fls, o |yl =Myp
\W/ pix \ 0 0 1/\W)mm

Note: Focal length is a property of the camera and can be
Incorporated as above
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Relative location
_Cameral aser

Ny R
«Camera *Laser
R=10de
—:’.’_%_g >
'\ ____________________________ —
T:(16’6’_9)’ \
v




In homogeneous Coordlnates

e Rotation: e Translation
] ) 1 0 0 16
cos—10 0 sin—10 - 0 1 0 6
" . 10 (1) " 10 ({001 -9
_— S111 — COS — i O O O 1




Full projection mode
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ok o
- o

22262
16755
97.47

e 8 v g N, ."""-r.r'
e Camera internal e Camera
parameters projection
1278.6657 0 256 1 0 0 O
Dcamera — 0 1659.5688 240 ] {0 1 0 0
0 0 1 0 0 1 0
W5 0 —0.174 0 1 0 0 16 0.6612
0 1 0 0 01 0 6 —10.55 | _
0.174 0 0.985 0 0 0 1 —9 108.0
0 0 0 1 0 0 0 1 1

Extrinsic rot and translation

|



e |SSUE

— camera may not be at the origin, looking down the z-axis
— extrinsic parameters

— one unit in camera coordinates may not be the same as one
unit in world coordinates

— Intrinsic parameters - focal length, principal point,
aspect ratio, angle between axes, etc.

54
(U (Transformaton  \ Transformation Y Transformation A y
V | =] represening represening represening .

\W ) \intrinsic parameterg| projection model \ extrinsic parameterg,k_l_ /

Note: f moved from proj to intrinsics!



 Camera image e Laser measured 3D
structure
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rchy of different camer
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mode
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Objectplane ©
/
/0 X(origin)

~

Camera center

Perspective: non-linear

Weak perspective: linear approx

Orthographic: lin, no scaling

Para-perspective: lin




Orthographlc prOJectlon




The fundamental model for

= f/‘

rtorahlc prOjeCtIOﬂ o

(UY (1 0 0 0

VJ_Olo?JZ
W, L0 0 O




Perspectlve and Orthographic

perspective Orthographic
(parallel)



e |SsSUe

— perspective effects, but not V= Ty
over the scale of individual

objects T=1/Z

— collect points into a group at

about the same depth, then
divide each point by the dep
of its group

— Adv: easy
— Disadv: wrong




The fundamental model for weak

_I ersetlve I’OjeCtIOn

f/‘

-u o2 A
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(X )
‘'U)Y (1 0 O 0 \Y
VI =0 1 O 0 5
W/ 0 00 frz*

T

Note Z* is a fixed value, usually mean distance to scene



Weak perspectlve prOJectlon for a

Weak perspective projection
o 't
2T

P = o, r t, (7dof)
1] 0 1/k




. Full Affine linear camera

=) %

Affine camera (8dof)

1T ~
a, S r t, m,
P, = o, ' t, | Py=|my,
i 1| 0 1k 0
. 1 0 0 O]
PA:_3><3affine]O 1 0 O[4><4affine]
0 0 0 1

1. Affine camera=camera with principal
plane coinciding with I1,,

2. Affine camera maps parallel lines to
parallel lines

3. No center of projection, but direction of
projection P,D=0
(point on 1.,,)

R $ : N et




/0 X(origin)

Camera center

Perspective: f Weak perspec’[ive;k T ¢
Poersp = P = K ot
i ] 1]0" 1]

Orthographic: i Para-perspective:

P =

First order approximation of perspective
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e [nternal calibration:

 Weak calibration:

e Affine calibration:

e Stratification of stereo vision:

- characterizes the reconstructive certainty of
weakly, affinely, and internally calibrated stereo rigs

l

Csim up to a similarity (scaled Euclidean transformation

C off Uptoan affine transformation of task space

C oroj UP to a projective transformation of task space

C inj reconstruction up to a bijection of task space



sim
aff
proj

inj

aff

proj

inj

proj

inj

inj



spective Camera Model Structu

-y T/ Sa

Assume R and T express

-~ : R
ca?nera in world coord'l'nates-‘, h

C

- R -RT),
000 1

Combining with a perspective model (and neglecting internal
parameters) yields

P

(-R, R, T )
-R, R, T
u=Mp= R -RT
f o f

\ J
Note the M is defined only up to a scale factor at this point! If M is
viewed as a 3x4 matrix defined up to scale, it is called the projection
matrix.
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spective Camera Model Str
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cture

e
= A
.

Assume R and T express camera in world coordinates, then

C

) = R -R'T),
O 0 O 1

Combining with a weak perspective model (and neglecting internal
parameters) yields

P

(-R, R, T )
-R, R,T
u=M= o RMP-T) [P
f

_ \ J
Where P isthe nominal distance to the viewed object



Theaffine cameras a generalization of weak
perspective.

Theprojective cameras a generalization of the
perspective camera.

Both have the advantage of being linear modelsah r
and projective spaces, respectively.

But in general will recover structure up to anradfor
projective transform only. (ie distorted structure)



Camera Internal Calibration

Intrinsic Parameters describe the conversion from
metric to pixel coordinates (and the reverse)

(X))

W)

pix

X

(-1/s,
0

. 0

mm ~

Ymm = -

= - (Xpix — Oy) Sy
(Ypix — Oy) Sy
or
0 OX\/X\
-1l/s, o, |y
0 1Aw,

mm



CAMERA INTERNAL CALIBRATION

r XSS - ke ‘l“-;'

Compute SX

Focal length = 1/ Sx

Known r —
distance a - (Xi+1 - X| )Sx

d

known regular offset r

A simple way to get scale parameters; we can
compute the optical center as the numerical center
and therefore have the intrinsic parameters




e |SsSuUes:

— what are intrinsic parameters of

the camera?

— what is the camera matrix?

(intrinsic+extrinsic)

e General strategy:

view calibration object

identify image points

obtain camera matrix by
minimizing error

obtain intrinsic parameters from
camera matrix

e Error minimization:

— Linear least squares
— easy problem numerically
— solution can be rather bad
— Minimize image distance

— more difficult numerical
problem

— solution usually rather good,
but can be hard to find

— start with linear least
sqguares

— Numerical scaling is an issue



- Stereo Vision

‘q‘ o ..

e GOAL: Passive 2-

camera system for :
triangulating 3D b | -
position of points In e

space to generate a
depth map of a
world scene.

* Humans use stereo
vision to obtain
depth




Stereo depth calculation:

DISPARITY= (XL - XR)

Similar triangles:
Z = (f/XL) X
Z= (f/XR) (X-d)

Solve forX:
(FIXL) X = (f/XR) (X-d)
X = (XL d)/ (XL - XR)

Solve forZ:
d*f
(XL - XR)

/ =

(0.0)

(d,0)




EPIPOLA
PLANE AN

——
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S
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Special case: paralle ameras — epipolar lines are parallel and aligned with rows



o Leftimage * Right image
Resolution = 1280 x 1024 Baselined = 1.2m

pixels Q: How wide is the
f = 1360 pixels hallway



How wide Is the hallway’>

eneral strategy —

e Similar triangles:

W_v
z f

*Need deptlz
*Then solve foW




How wide Is the hallway?
o S In solution:
1. Compute focal length f in meters from pixels

2. Compute depth Z using stereo formula (aligned
camera planes)

d*f

£ = (XL-XR)

3. Compute width:



f = 1360 pixels

f = 1360, 0.224=0.238m
128(

0.224m is 1280 pixels



Disparity: XL — XR = 0.07m * Depth

(Note in the disparity calculation the choice of 1.2*0.238
reference (here the edge) doesn’t matter. Butan th - . = 4.1m
case of say X-coordinate calculation it should be 0.07 '

w.r.t. the center of the image as in the stereo
formula derivation



HOW wide...?

o Similar triangles:

w=z>
f

* The width of the hallway
IS:
0.135

W =41~ =23m




