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 Data (source, target)

• different medical images modalities
(MRI, XRay, CT…)

• pre-acquired medical images with real-
time images (video)

• patient data with an atlas

 For: 

• atlas generation

• augmented reality (surgery)

• better diagnosis

• data analysis

Medical applications 
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Affine registration 
6DOF – 2D 
12 DOF - 3D 
Low number DOF

Similar to tracking

reference registered
source
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Affine registration 
6DOF – 2D 
12 DOF - 3D 
Low number DOF

Similar to tracking

reference source

Deformable registration 
Many DOF
Points move independently

Similar to optic flow

Registered source
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T = image transformation model 

target source

Registration
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min
p
 sim(I
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Similarity score : SSD, NCC, MI ...

Similarity score 

Motion is large
No continuous flow of images

Transformation models 
Linear registration – few DOF
Deformable registration –
many DOF

Optimization 
Difficult optimization 



  

Similarity scores

● SSD SAD
● Cross correlation 
● Mutual information 



  [Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 

SSD-SAD



  

Limitations of  SSD

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Normalized cross-correlation NCC

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Multi-modality registration 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Information theoretical approach 



  

Information theoretical approach 

Image histogram 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Joint histogram 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Joint histogram 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Joint histogram 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Information theoretical approach

How to qualify quality of alignment between two images ?
> measure the structure of the joint distribution

How to measure the structure ?  
> Shannon Entropy 



  

Entropy

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Mutual information 

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Derivatives of similarity measures

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 
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Derivatives of similarity measures

[Slides from Christian Wachinger MICCAI 2010 registration tutorial ] 



  

Transformation models
and optimization 

● Linear : rigid affine
● Interpolation models : Bsplines
● Continuous models and regularization 



  

I
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min
p
 (I

S
(T(p,x) - I

T
(x))2

target source

1. Linear registration  : 
      > few (12) DOF 
      > nonlinear least square optimization 
      > very similar to tracking 

p
t+1

 = p
t
 + Δp

Gauss Newton : Δp = -(J'J)-1J'e
J = Jacobian  of the warp J =   I

S
 (∂T/∂p)

● “t” artificial time
● “e” defined over the whole image 
● “far” from solution > multiresolution 

∇



  

2. Non-linear (deformable) registration

● many DOF : one vector for every image point 
Looking for a deformation field (vector field) v that will “move” each voxel in
image B (source) to the corresponding voxel in image A(target)
                    min

v
 sum

x
 (I

T
(x) – I

S
(x+v))2



  

2. Non-linear (deformable) registration

● many DOF : one vector for every image point 
Looking for a deformation field (vector field) v that will “move” each voxel in
image B (source) to the corresponding voxel in image A(target)
                    min

v
 sum

x
 (I

T
(x) – I

S
(x+v))2

● ill-posed problem
● similar to optic flow but motion is large
● need for regularization of deformation field v

> solution 1: reduce DOF – interpolation models (ex. Bsplines, FEM)
> solution 2: add explicit regularization terms in the energy 



  

Linear vs nonlinear registration 



  

Interpolation models 
Parametric deformable models 

● Bsplines (Free Form Deformations)
● Radial Basis Functions (RBF)
● Trigonometric functions (Discrete Fourier, Cosine basis) 
● Finite element methods 



  

Basis representation 
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[Slides from Darko Zikic  MICCAI 2010 registration tutorial ] 
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B-spline parametrization

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

B-spline parametrization
Free Form Deformations (FFD)

y
i
 control points 

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

Basis functions

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

B-splines practically

Translated versions of B

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

B-spline parametrization 

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

Optimization with B-splines

Analytic derivatives of the warp 

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

Optimization with B-splines

Analytic derivatives of the warp 

Regularization terms

Valid deformation fields 
Prevent fording
● Smoothness of T

[Slides from Marius Staring  MICCAI 2010 registration tutorial ] 



  

Other basis



  

Non-parametric models 
Energy-based formulations 

 min
v
 sum

x
 (I

T
(x) – I

S
(x+v))2

● Ill-posed > regularization for v
● Optimization : solve for v iteratively adding small updates delta δv 
                        Each step is similar to an optic flow problem

min
δv

 sum
x
 (I

T
(x) – I

S
(x+v+δv))2



  

Regularization and optimization 
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∇

v = v+δvIterative updates

1. Decouple data and regularization updates 

Demons-like 
Elastic regularization
[Thirion 1996/1998 ]
Regularize v 

δv = -   D  
v = v + αδv
v = G*v   

∇

Fluid-like
[Bro-Nielsen 1996,
Pennec 1999 ]
Regularize δv 

δv = -   D  
Δv = G*(αδv)
v = v + δv 

∇



  

Regularization and optimization 

 min
v
 D(I

T
,I
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,v) + αR(v)

SSD: D(I
T
,I

S
,v) = sum

x
 (I

T
(x) – I

S
(x+v))2 Diffusion : |     v|2

∇

v = v+δvIterative updates

1. Decouple data and regularization updates 

Challenge to preserve regular
deformations without folding

Images from 
[Christensen 1994]



  

Regularization and optimization  
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2. Optimize whole energy / Variational formulation 

δv = -(   D + α   R) = -   E 

● Gradient descent update
∇∇ ∇



  

Regularization and optimization  

SSD: D(I
T
,I

S
,v) = sum

x
 (I

T
(x) – I

S
(x+v))2 Diffusion : |     v|2

∇

 min
v
 D(I

T
,I

S
,v) + αR(v)

2. Optimize whole energy > Variational formulation 

δv = -(   D + α   R) = -   E ∇ ∇

● Gradient descent update

 Numerically unstable
 Slow convergence

> Better optimization methods
   ex. Gauss-Newton 

∇

Δv =  -(J
e

T J
e
)-1    E

With J
e

T J
e
 =   I

S
(v)    I

S
(v)T - αΔ

∇

∇ ∇



  

Diffeomorphic deformations 

Diffeomorphic transformation 
● Bijection – it can be inverted
● It's inverse is differentiable (smooth)

Practically
● No folding
● Preserves topology
● Essential for computational anatomy



  

Diffeomorphic deformations 

Diffeomorphic transformation 
● Bijection – it can be inverted
● It's inverse is differentiable (smooth)

Practically
● No folding
● Preserves topology
● Essential for computational anatomy

Methods
● FFD:  FFD are diffeomorphic by definition
● Diffeomorphic by formulation 
        Diffeomorphic Demons 
        [ Vercauterenet al., NeuroImage09]
        LDDMM – Large Deformation Diffeomorphic
        Metric Mapping (deformable reg in Sobolev space)
        [Beg et al . IJCV 2005]
● Constrain field to be diffeomorphic after each

optimization step [ANTS - SIM] 



  

Diffeomorphic deformations 



  

Jacobian of deformations



  

Evaluation methods for image registration 

● Synthetic data
Source       Deformation field    Taget

+ =
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● Manually annotated feature points in images
   Ex. POPI database
          10 volumes with 40 annotated landmarks 



  

Evaluation methods for image registration 

● Synthetic data
Source       Deformation field    Taget

+ =

● Manually annotated feature points in images
   Ex. POPI database
          10 volumes with 40 annotated landmarks 

● Use matching of manual segmentations 
compare labels after registration with ground
truth 
popular in brain registration 
Ex. CUMC12
10 subjects, 128 regions



  

Practical considerations in image registration 

min
p
 sim(I

S
(T(p,x) – I

T
(x)) [+ R(T)]  

● Choose a suitable similarity score  
SSD – same modality, no intensity variation
NCC – same modality , intensity variations
MI – different modalities

● Choose the transformation model
Linear, affine – same patient ; no additional distortion due to imaging
(ultrasound-MRI)
Nonlinear – patient-atlas; inter-patients

● Optimization - Local methods:
Good initialization : always perform an affine registration first
Multiresolution approach
Smoothing helps  

Optimization Similarity Transformation 



  

Software

Evaluation paper:
Compares several available software and methods
Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration, Neuroimage 2009
Data at http://www.mindboggle.info/data.html



  

Software

ANTS – Brian Avants U Penn
Very good linear and nonlinear diffeomorphic registration (SIM)

                    FSL 
Easy to use 

Other “tools” that can do image registration:  MedInria, 3D Slicer

Evaluation paper:
Compares several available software and methods
Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration, Neuroimage 2009
Data at http://www.mindboggle.info/data.html

ITK – diffeomorphic demons
C++ library

Registration
software
based on ITK
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