Image registration

Dana Cobzas January 2016

Image registration

WHAT is image registration

Transform a "source" image to **match** a "target" image

Image registration

WHAT is image registration

Transform a "source" image to **match** a "target" image

Medical image registration

WHAT is image registration

Transform a "source" image to **match** a "target" image

Medical image registration

Medical image registration

WHAT is image registration

Transform a "source" image to **match** a "target" image

Medical image registration

Medical applications

MÜNCHEN

- Data (source, target)
 - different medical images modalities (MRI, XRay, CT...)
 - pre-acquired medical images with real time images (video)
 - patient data with an atlas
- <u>For:</u>
- atlas generation
- augmented reality (surgery)
- better diagnosis

reference

source

Affine registration 6DOF – 2D 12 DOF - 3D Low number DOF

Similar to tracking

reference

source

Reference image

Source image

Affine registration 6DOF – 2D 12 DOF - 3D Low number DOF

Similar to tracking

reference

source

Reference image

Registered source

Affine registration 6DOF – 2D 12 DOF - 3D Low number DOF

Similar to tracking

Deformable registration Many DOF Points move independently

Similar to optic flow

Formulation

Tracking

 $\min_{p} (I_t(T(p,x) - I_0(x))^2) = Optic flow$

$$\begin{split} \min_{p} (I_{t}(x+p) - I_{0}(x))^{2} \\ \min_{p} (I_{t}(T(p,x)) - I_{0}(x))^{2} , \ T(p,x) = x+p \end{split}$$

Formulation

Tracking

target

Registration

source

's

 $\min_{p} (I_{s}(T(p,x) - I_{T}(x))^{2})$

T = image transformation model

 $\min_{p} (I_t(T(p,x) - I_0(x))^2)$ **Optic flow**

 $\min_{p} (I_1(x+p) - I_0(x))^2$ $\min_{p} (I_1(T(p,x)) - I_0(x))^2$, T(p,x) = x+p

BUT ...

 $\min_{p} (I_{S}(T(p,x) - I_{T}(x))^{2})$

BUT ...

 $\min_{p} (I_{s}(T(p,x) - I_{T}(x))^{2})$

Source and target image can be very different

 $\min_{p} \frac{sim(I_{s}(T(p,x) - I_{T}(x)))}{Similarity score : SSD, NCC, MI ...}$

Similarity score

BUT ...

 $\min_{p} (I_{s}(T(p,x) - I_{T}(x))^{2})$

Source and target image can be very different

 $\begin{array}{l} {{{\rm{min}}_{{_{\rm{p}}}}}\, {{\rm{sim}}({{\rm{I}}_{{_{\rm{S}}}}}({{\rm{T}}}({{\rm{p}}},{{\rm{x}}}) - {{\rm{I}}_{{_{\rm{T}}}}}({{\rm{x}}}))} \\ {{\rm{Similarity \, score}}: \, {\rm{SSD}}, \, {\rm{NCC}}, \, {\rm{MI}} \, \dots } \end{array} \\ \end{array} \\$

Similarity score

Motion is large No continuous flow of images

Transformation models

Linear registration – few DOF Deformable registration – many DOF

Optimization Difficult optimization

Similarity scores

- SSD SAD
- Cross correlation
- Mutual information

SSD-SAD

Limitations of SSD

Illumination change affects similarity function

• Idea: normalization of images $\tilde{X} = \frac{X - \mathbb{E}[X]}{\sigma(X)}$

Normalized cross-correlation NCC

Multi-modality registration

• More complex intensity relationship

- Approaches:
 - Simulate one modality from the other one
 - Apply sophisticated similarity measures

Information theoretical approach

Information theoretical approach

Image histogram

Joint histogram

Joint histogram

Joint histogram

 Histogram for images from different Modalities

[Slides from Christian Wachinger MICCAI 2010 registration tutorial]

Source: PhD Thesis, L. Zöllei

Information theoretical approach

How to qualify quality of alignment between two images ? > measure the *structure* of the joint distribution

How to measure the structure ? > Shannon Entropy

Entropy

Shannon Entropy, developed in the 1940s (communication theory)

$$H = -\sum_{i} p_i \log p_i$$

Mutual information

$$MI(X,Y) = H(X) + H(Y) - H(X,Y)$$
$$= \sum_{i} \sum_{j} p_{xy}(i,j) \log \frac{p_{xy}(i,j)}{p_{x}(i)p_{y}(j)}$$

- Maximized if X and Y are perfectly aligned
- H(X) and H(Y) help to make the measure more robust
- Maximization of mutual information leads to minimization of joint entropy

General form of derivative of similarity metrics

$$\frac{\partial \operatorname{SM}(X, Y(T_p))}{\partial p} = \frac{\partial \operatorname{SM}(X, Y)}{\partial Y} \qquad \frac{\partial Y}{\partial T_p} \qquad \frac{\partial T_p}{\partial p}$$

- SSD:

 ∂p

$$\nabla SSD(X,Y) = -2 \cdot (X-Y)$$

$$-\mathsf{MI}$$

$$\nabla \mathrm{MI}(X,Y) = G_{\Psi} * \frac{1}{|\Omega|} \left(\frac{\partial_2 p(X,Y)}{p(X,Y)} - \frac{p'(Y)}{p(Y)} \right)$$

Hermosillo, G., Chefd'Hotel, C., Faugeras, O.: Variational Methods for Multimodal Image Matching, International Journal of Computer Vision 50(3) (2002)

General form of derivative of similarity metrics

Transformation models and optimization

- Linear : rigid affine
- Interpolation models : Bsplines
- Continuous models and regularization

1. Linear registration :

- > few (12) DOF
- > nonlinear least square optimization
- > very similar to tracking

 $\begin{array}{l} p_{t+1} = p_t + \Delta p \\ \text{Gauss Newton} : \Delta p = -(J'J)^{-1}J'e \\ J = Jacobian \ \text{of the warp } J = \nabla I_s \ (\partial T/\partial p) \end{array}$

- "t" artificial time
- "e" defined over the whole image
- "far" from solution > multiresolution

2. Non-linear (deformable) registration

• many DOF : one vector for every image point Looking for a deformation field (vector field) v that will "move" each voxel in image B (source) to the corresponding voxel in image A(target) $\min_{v} \operatorname{sum}_{x} (I_{T}(x) - I_{S}(x+v))^{2}$

2. Non-linear (deformable) registration

• many DOF : one vector for every image point

Looking for a deformation field (vector field) v that will "move" each voxel in image B (source) to the corresponding voxel in image A(target) min_sum_ $(I_{\tau}(x) - I_{s}(x+v))^{2}$

- ill-posed problem
- similar to optic flow but motion is large
- need for regularization of deformation field v
 - ><u>solution 1:</u> reduce DOF interpolation models (ex. Bsplines, FEM)
 - > <u>solution 2</u>: add explicit regularization terms in the energy

Linear vs nonlinear registration

Interpolation models Parametric deformable models

- Bsplines (Free Form Deformations)
- Radial Basis Functions (RBF)
- Trigonometric functions (Discrete Fourier, Cosine basis)
- Finite element methods

Basis representation

[Slides from Darko Zikic MICCAI 2010 registration tutorial]

Basis representation

[Slides from Darko Zikic MICCAI 2010 registration tutorial]

B-spline parametrization

- Rueckert 1999
- Cubic B-splines (degree D = 3), basis functions all have same shape and are translated versions of each other
- **Compact support** of *D*+1 control points

- Regular grid of control points
- **More:** piecewise polynomial, inherent smoothness, differentiability, hierarchical

B-spline parametrization Free Form Deformations (FFD)

• Deformation is modeled by B-splines

$$\boldsymbol{T}_{\boldsymbol{\mu}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} u_1(\boldsymbol{x}) \\ u_2(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \sum_i \mu_{i1} \beta^3 \left(x_1 - y_{i1} \right) \beta^3 \left(x_2 - y_{i2} \right) \\ \sum_i \mu_{i2} \beta^3 \left(x_1 - y_{i1} \right) \beta^3 \left(x_2 - y_{i2} \right) \end{bmatrix}$$

$$\mathbf{y}_i \text{ control points}$$

- $\bullet \quad T \Rightarrow T_{\mu}$
- $\arg\min_{\boldsymbol{T}} \mathcal{C}(I_F, I_M, \boldsymbol{T}) \Rightarrow \arg\min_{\boldsymbol{\mu}} \mathcal{C}(I_F, I_M, \boldsymbol{T}_{\boldsymbol{\mu}})$

Basis functions

- β^3 is twice differentiable $\rightarrow \text{ so is } T_{\mu}$

- Convolution:
$$\beta^n(x) = \underbrace{\beta^0 * \cdots * \beta^0(x)}_{n+1 \text{ times}}$$

- Derivative can be done in terms of B-splines too:

$$\frac{d\beta^n(x)}{dx} = \beta^{n-1}(x+\frac{1}{2}) - \beta^{n-1}(x-\frac{1}{2})$$
[Slides from Marius Staring MICCAI 2010 registration tutorial]

B-splines practically

- control point
- ✗ world coordinate x
 - support region S(x)

B-spline parametrization

Multi-resolution: coarse to fine

Optimization with B-splines

•
$$\arg\min_{\boldsymbol{\mu}} \mathcal{C}(I_F, I_M, \boldsymbol{T}_{\boldsymbol{\mu}}), \quad \boldsymbol{\mu}_{k+1} = \boldsymbol{\mu}_k - a_k \frac{\partial \mathcal{C}}{\partial \boldsymbol{\mu}_k}$$

00

•
$$\frac{\partial \mathcal{C}}{\partial \boldsymbol{\mu}} = f\left(\cdots, \frac{\partial I_M}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{\mu}}\right)$$

Analytic derivatives of the warp

Optimization with B-splines

•
$$\arg\min_{\boldsymbol{\mu}} \mathcal{C}(I_F, I_M, \boldsymbol{T}_{\boldsymbol{\mu}}), \quad \boldsymbol{\mu}_{k+1} = \boldsymbol{\mu}_k - a_k \frac{\partial \mathcal{C}}{\partial \boldsymbol{\mu}_k}$$

•
$$\frac{\partial \mathcal{C}}{\partial \boldsymbol{\mu}} = f\left(\cdots, \frac{\partial I_M}{\partial \boldsymbol{x}}, \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{\mu}}\right)$$

Analytic derivatives of the warp

Regularization terms

folding

Valid deformation fields Prevent fording

• Smoothness of T

$$P = f\left(\frac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}}, \frac{\partial^2 \boldsymbol{T}}{\partial \boldsymbol{x} \partial \boldsymbol{x}'}\right)$$

Other basis

- Global Support
 - Fourier/Cosine Bases
 - Radial basis functions RBFs (e.g. Thin-plate Splines (TPS))
 - Gaussians (in theory)

- B-Splines
- Some RBFs
- Gaussians (in practice)

Non-parametric models Energy-based formulations

 $\min_{\mathbf{v}} \operatorname{sum}_{\mathbf{x}} (\mathbf{I}_{\mathsf{T}}(\mathbf{x}) - \mathbf{I}_{\mathsf{S}}(\mathbf{x}+\mathbf{v}))^2$

- Ill-posed > regularization for v
- Optimization : solve for v iteratively adding small updates delta δv Each step is similar to an optic flow problem

 $\min_{\mathbf{v}} \operatorname{sum}_{x} (I_{T}(x) - I_{S}(x + \mathbf{v} + \mathbf{\delta v}))^{2}$

 $v = v + \delta v$

Iterative updates $v = v + \delta v$

<u>1. Decouple data and regularization updates</u>

Demons-like **Elastic** regularization [Thirion 1996/1998] Regularize v

$$\delta v = - \nabla D$$

 $v = v + \alpha \delta v$
 $v = G^* v$

Fluid-like [Bro-Nielsen 1996, Pennec 1999] Regularize δν

 $\delta v = -\nabla D$ $\Delta v = G^*(\alpha \delta v)$ $v = v + \delta v$

Iterative updates $v = v + \delta v$

<u>1. Decouple data and regularization updates</u>

Images from [Christensen 1994]

Result Fluid Challenge to preserve regular deformations without folding

2. Optimize whole energy / Variational formulation

• Gradient descent update $\delta v = -(\nabla D + \alpha \nabla R) = -\nabla E$

2. Optimize whole energy > Variational formulation

• Gradient descent update $\delta v = -(\nabla D + \alpha \nabla R) = -\nabla E$

Numerically unstable Slow convergence

> Better optimization methods ex. Gauss-Newton

 $\Delta v = -(J_e^{T} J_e^{-1} \nabla E)$ With $J_e^{T} J_e^{T} = \nabla I_s^{T}(v) \nabla I_s^{T}(v)^{T} - \alpha \Delta$

Diffeomorphic deformations

Diffeomorphic transformation

- Bijection it can be inverted
- It's inverse is differentiable (smooth)

Practically

- No folding
- Preserves topology
- Essential for computational anatomy

Diffeomorphic deformations

Diffeomorphic transformation

- Bijection it can be inverted
- It's inverse is differentiable (smooth)

Practically

- No folding
- Preserves topology
- Essential for computational anatomy

Methods

- FFD: FFD are diffeomorphic by definition
- Diffeomorphic by formulation
 - **Diffeomorphic Demons**

[Vercauterenet al., NeuroImage09]

LDDMM – Large Deformation Diffeomorphic Metric Mapping (deformable reg in Sobolev space) [Beg et al . IJCV 2005]

Constrain field to be diffeomorphic after each optimization step [ANTS - SIM]

Diffeomorphic deformations

Jacobian of deformations

• Incompressibility:

$$\mathcal{R} = \sum_{x} (J - 1)^{2}$$
$$\mathcal{R} = \sum_{x} \log J \qquad \text{(Rohlfing 2003)}$$
$$\mathcal{R} = \sum_{x} \exp(-J) \qquad \text{(Kybic 2000)}$$

• Invertibility:

Evaluation methods for image registration

• Synthetic data

Evaluation methods for image registration

• Synthetic data

 Manually annotated feature points in images Ex. POPI database
 10 volumes with 40 annotated landmarks

Evaluation methods for image registration

• Synthetic data

 Manually annotated feature points in images Ex. POPI database 10 volumes with 40 annotated landmarks

 Use matching of manual segmentations compare labels after registration with ground Template truth popular in brain registration Ex. CUMC12

10 subjects, 128 regions

Source labels before regis.

Source labels after regis.

Practical considerations in image registration

 $\min_{\mathbf{A}_{p}} sim(\mathbf{I}_{s}(T(\mathbf{p},\mathbf{x}) - \mathbf{I}_{T}(\mathbf{x})) [+ \mathbf{R}(T)]$

Optimization Similarity Transformation

Choose a suitable similarity score
 SSD – same modality, no intensity variation
 NCC – same modality, intensity variations
 MI – different modalities

 Choose the transformation model Linear, affine – same patient ; no additional distortion due to imaging (ultrasound-MRI) Nonlinear – patient-atlas; inter-patients

 Optimization - Local methods:
 Good initialization : always perform an affine registration first Multiresolution approach
 Smoothing helps

Software

Evaluation paper: Compares several available software and methods Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, Neuroimage 2009 Data at http://www.mindboggle.info/data.html

Software

Evaluation paper: Compares several available software and methods Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, Neuroimage 2009 Data at http://www.mindboggle.info/data.html

ANTS – Brian Avants U Penn Very good linear and nonlinear diffeomorphic registration (SIM)

FSL Easy to use

ITK – diffeomorphic demons C++ library

Registration software based on ITK

Other "tools" that can do image registration: MedInria, 3D Slicer