Computer Vision cmput 428/615

Lecture 2: Cameras and Images Martin Jagersand Readings: Sz 2.3, (HZ ch1, 6) FP: Ch 1, 3DV: Ch 3

000				Untitled3				
000			Computer v	nsion. Aigorianns ar	ю мррпсан	VIIS		
∲ ∙ ∳ ∙	🥑 📀 🏠 🧕) http://research.mi	crosoft.com/en–us/u	im/people/szeliski/Bo	ok/	🔻 🕨 🚺 🕇 Google	0	
Getting Started	Latest Headlines	Google Apple	Yahoo! YouTube	Wikipedia 🛛 News 🔻	Popular 🔻	Google Maps Elsevier Editorial Sys		
Computer Vision: Algorithms and Applications								

(c) Richard Szeliski, Microsoft Research

Welcome to the repository for drafts of my computer vision textbook.

This book is largely based on the computer vision courses that I have co-taught at the University of Washington (2008, 2005, 2001) and Stanford (2003) with Steve Seitz and David Fleet.

While I am working on the book. I would love to have nearly "test-drive" it in their computer vision courses (or their research) and send me feedback

Learn the details of each stage

Stages in processing:

- 1. Physical properties
 - Camera calibration, reflectance models etc.
- 2. Low level processing
 - Extraction of local features: lines/edges, color, texture
- 3. Midlevel
 - Regional grouping and inter features
- 4. High level
 - Task dependent global integration, e.g. AI: make inference in scene,
 - Graphics: use 3D scene model

Now: Learn about cameras and how they form images Readings: Sz 2.3 FP: Ch 1, 3DV: Ch 3

How the 3D physical world is captured on a 2D image plane

Aires

Pinhole cameras

20

- Abstract camera model box with a small hole in it
- Image formation described by geometric optics
- Note: equivalent image formation on virtual and real image plane

The equation of projection

How do we develop a consistent mathematical framework for projection calculations?

Intuitively:

Mathematically:

• Cartesian coordinates:

Pinhole cameras: Historic and real

- First photograph due to Niepce,
- First on record shown 1822
- Basic abstraction is the pinhole camera
 - lenses required to ensure image is not too dark
 - various other abstractions can be applied

Animal Eyes

Fig. 1.6 A patch of light sensitive epithelium can be gradually turned into a perfectly focussed cameratype eye if there is a continuous selection for improved spatial vision. A theoretical model based on

Real Pinhole Cameras

- Pinhole too big many directions are averaged, blurring the image
- Pinhole too smalldiffraction effects blur the image
- Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.

2 mm

100

l mm

0.6mm

0.35 mm

0.15 mm

0.07 mm

Lenses: bring together more rays

The second

Note: Each world point projects to many image points.

With a 1mm pinhole and f=10mm how many points at 1m distance?

Lens Realities

Real lenses have a finite depth of field, and usually suffer from a variety of defects

Lens Distortion

magnification/focal length different for different angles of inclination

pincushion (tele-photo)

barrel

(wide-angle)

Can be corrected! (if parameters are know)

Image streams -> Computer

The second second

A Modern Digital Camera (Firewire)

Alina

CCD camera

- separate photo sensor at regular positions
- no scanning
- charge-coupled devices (CCDs)
- area CCDs and linear CCDs
- 2 area architectures :
- Global shutte frame transfer and rolling shutter, interline transfer

The CCD camera

CMOS

Same sensor elements as CCD Each photo sensor has its own amplifier More noise (reduced by subtracting 'black' image) Lower sensitivity (lower fill rate)

Uses standard CMOS technology

Allows to put other components on chip 'Smart' pixels

CCD vs. CMOS

- Mature technology
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout
- Low noise

- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

A consumer camera

Note: Gamma curve Ijpeg = I^{gamma} Warning: Non-linear response!!

Colour cameras

We consider 3 concepts:

- 1. Prism (with 3 sensors)
- 2. Filter mosaic
- 3. Filter wheel
- ... and X3

Prism colour camera

Separate light in 3 beams using dichroic prism Requires 3 sensors & precise alignment Good color separation

Prism colour camera

Filter mosaic

Coat filter directly on sensor

Bayer filter

Demosaicing (obtain full colour & full resolution image)

Filter wheel

Rotate multiple filters in front of lens Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. mosaic vs. wheel

- E. E. Mar Mar .

<u>approach</u>	Prism	Mosaic	<u>Wheel</u>
# sensors	3	1	1
Separation	High	Average	Good
Cost	High	Low	Average
Framerate	High	High	Low
Artefacts	Low	Aliasing	Motion
Bands	3	3	3 or more
Use:	High-end	Low-end	Scientific
	cameras	cameras	applications

Minal

new color CMOS sensor Foyeon's X3

smarter pixels

better image quality

Biological implementation of camera:

The Human Eye is a camera...

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris
- Lens changes shape by using ciliary muscles (to focus on objects at different distances)
- What's the "film"?

-photoreceptor cells (rods and cones) in the retina

Density of rods and cones

• Rods and cones are *non-uniformly* distributed on the retina

- Rods responsible for intensity, cones responsible for color
- Fovea Small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods).
- Less visual acuity in the periphery—many rods wired to the same neuron

Slide by Steve Seitz

Blindspot

color? structure? motion? ttp://ourworld.compuserve.com/homepages/cuius/idle/percept/blindspot.htm

Left eye

Right eye

i.	a	b	C	d	е	f	ġ	h
	Ι	£	k	I	m	п	o	P
	q	г	S	t	Ų	v	w	х

Rod / Cone sensitivity

Why can't we read in the dark?

Slide by A. Efros

THE ORGANIZATION OF A 2D MAGE

Mathematical / Computational image models

•Continuous mathematical:

 $\mathbf{I} = \mathbf{f}(\mathbf{x}, \mathbf{y})$

- •Discrete (in computer) adressable 2D array: I = matrix(i,j)
- •Discrete (in file) e.g. ascii or binary sequence: 023 233 132 232 125 134 134 212

Sampling

- •Standard analog NTSC video: 640x480
- •Digital: from 320x240 (old webcam) to 4k
- •Subsample ¹/₂, ¹/₄...
- •Quantization: typ 8 bit, sometimes lower

THE ORGANIZATION OF AN IMAGE SEQUENCE

Frames Frames are acquired at 30Hz (NTSC) Interlaced video: Frames are composed of two *fields* consisting of the even and odd rows of a frame Progressive scan: All rows in one field.

BANDWIDTH REQUIREMENTS

Binary

1 bit * 640x480 * 30 = 9.2 Mbits/second

The star

Grey

1 byte * 640x480 * 30 = 9.2 Mbytes/second

<u>Color</u>

3 bytes *640x480 * 30 = 27.6 Mbytes/second (actually about 37 mbytes/sec)

Typical operation: 3x3 convolution
9 multiplies + 9 adds → 180 Mflops
Today's PC's are just getting to the point they can process images at frame rate

Digitization Effects

• The "diameter" d of a pixel determines the highest frequency representable in an image

l = 1/2d

- Real scenes may contain higher frequencies resulting in aliasing of the signal.
- In practice, this effect is often dominated by other digitization artifacts.

Other image sources:

- •Optic Scanners (linear image sensors)
- •Laser scanners (2 and 3D images)
- •Radar
- •X-ray
- •NMRI

Image display

- •VDU
- •LCD
- Printer
- Photo process
- •Plotter (x-y table type)

Image representation for display

The Annual Marcal

•True color, RGB,

 $(R,G,B) (R,G,B) \dots (R,G,B)$

:

(R,G,B)

Image representation for display

The state of a

•Indexed image

Matlab Programming

<u>Raw Material</u>: Images = Matrices

<u>Themes</u>: Build systems, experiment, visualize!

Platform: Matlab ("matrix laboratory")

- Widely-used mathematical scripting language
- Easy prototyping of systems
- Lots of built-in functions, data structures
- GUI-building support
- All in all, hopefully a labor-saving tool

Matlab availability

- In lab, csc2-35 machines ul01 to ul10
- For remote logins: ssh to "consort", then ulXX
- For your own use: Can buy student edition

Homework: Go though exercises in matlab compendium posted on lab www-page.

Matlab basics

• Starting, stopping, help, demos, math, & variables

a stand

- Matrix definition and indexing
 - $>> A = [1 \ 2 \ 3 ; 4 \ 5 \ 6 ; 7 \ 8 \ 9]$ or >> A(3,2)

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}$$

- >> A(3,:)
- $>> A(3,1:2) = [0 \ 0]$

>> A'

How would you set the middle row to be the first column?

>> A(:,:,2) = A >> size(A)

See Assignment 1, part 1 for a more thorough introduction.

Image \leftrightarrow Matrix

size(A)

Matlab matrix A

A(1:10,1:10,:)

A(200, 50:300, 3)

The large "M"?

The spam's location?

Matlab Built-Ins

• for, if, while, switch -- execution control

19. All 19

- who, whos, clear
- save, load <file>
- diary <file> diary off ; diary on
- path, addpath
- close, close all, clc
- double vs. uint8
- zeros(x,y,...)

- -- variable listing and removing
- -- saving or restoring a workspace
- -- start recording to a file
- -- display or add to search path
- -- close windows, clear console
- -- data casting functions
- -- creates an all-zero x by y ... matrix used for basic memory allocation

Images in Matlab (& Functions)

Built-in functions:

A =imread(<filename>, <type>) -- pull from file
imwrite(A, <filename>, <type>) -- write to file
image(A) -- display image

I'm dia 1

imshow(A) functions:

show(A)

Add:

-- display and tools for

Types 'tif' 'jpg' 'bmp' 'png' 'hdf' 'pcx' 'xwd'

-- display image) single-quoted strings

Altinati