3D Geometric Computer Vision

Martin Jagersand Univ. Alberta Edmonton, Alberta, Canada

Build 3D models from images

Carry out manipulation tasks

CAMERA-BASED 3D CAPTURE SYSTEM

http://webdocs.cs.ualberta.ca/~vis/ibmr/

Training for Amazon manipulation challenge

And many other usages...

Multi-view Geometry

Relates

- 3D world points
- Camera calibr.
- 2D image points

The reconstruction of 3D models of objects from a collection of 2D images

Multi-view Geometry

Typical processing pipeline (C. Hernandez MVS tutorial)

Middlebury multi-view benchmark

A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, Seitz, Curless, Diebel, Szeliski CVPR 2006, vol. 1, pages 519-526. Cited by 1479

<	mid G middlebur	Visio	m ×	
	🗲 🕙 vision.middlebury.edu/	∠ G ⁱ	Qs	earch
1	ECCV2016_104	0.41	99.6	0.49
	ECCV2016_624	0.37	98.9	0.49
	Fuhrmann-SG14	0.39	99.4	
	Furukawa	0.65	98.7	0.58
	Furukawa 2	0.54	99.3	0.55
	Furukawa 3	0.49	99.6	0.47
	Galliani	0.39	99.2	0.48
	Gargallo			0.88
	Generalized-SSD	0.53	99.4	0.81
	Geodesic GC			
	Goesele	0.42	98.0	0.61
	Goesele 2007	0.42	98.2	
	Guillemaut	0.43	99.0	0.71
	Habbecke	0.66	98.0	
	Hernandez	0.36	99.7	0.52
	Hongxing	0.83	95.7	0.79
	Hornung	0.58	98.7	
	ICCV2015_1020	0.45	99.2	0.56
	ICCV2015_293	0.52	99.2	

Calibration accuracy on these datasets appears to be on the order of a pixel (a pixel spans about 1/4mm on the object).

Dorsal and Ventral Pathways Where/What or Action/Perception

Dorsal (magno) Pathway
to parietal lobe
spatial vision – localization in space
"WHERE"
Ventral (parvo) Pathway
to temporal lobe
object recognition
"WHAT"

- •Humans don't internalize detailed 3D maps!
- Use external world as map. (Hayhoe, Pelz, Rensink, Goodale etc)

Course content

•Video processing: Image motion and tracking

- •2D projective geometry
- •3D projective geometry
- •Cameras, their math model and calibration
- •Two-camera "stereo" 3D reconstruction
- •Multi-view geometry and general 3D reconstruct.
- •Light, surface reflectance and math modeling
- •Computer vision systems

Challenges: Geometric size ambiguity

Challenges Light / photometric ambiguity

Fundamental types of video processing "Visual motion detecton"

•Relating two adjacent frames: (small differences): Im $(x + \delta x, y + \delta y, t + \delta t) = Im(x, y, t)$

1

Fundamental types of video processing Visual Tracking" / Stabilization

•Globally relating all frames: (large differences):

Intensity images / video non-trivial to get information

abs(Image 1 - Image 2) = ?

Note: Almost all pixels change!

Constancy: The physical scene is the same

How do we make use of this?

1/9/2018

Modular Tracking Framework

A Unified Approach to Registration based Tracking

Abhineet Singh and Martin Jagersand

- Open source
- C++ implementation
- ROS interface
- Matlab/Pyhton
- Cross platform

Application: Augmenter Reality

Se tra

Successful: 0/5 Border Lost:2 Orient Lost:0 Thresh 128

1ode=Pattern NICorners: off (Sub-Pixel: off) PS: 1.000000

Beyond 3D Non-rigid and articulated motion

- Humans ubiquitous in graphics applications
- A practical, realistic model requires
 - Skeleton
 - Geometry (manually modeled, laser scanned)
 - Physical simulation for clothes, muscle
 - Texture/appearance (from images)
 - Animation (mocap, simulation, artist)

Beyond 3D: Non-rigid and articulated motion

PhD work of Neil Birkbeck, Best thesis prize winner

Uses of partial information from 2D-3D camera geometry

- •Measurements in single images
- Visual constraints: verify alignments, detect impossible configurations (Escher paintings)
- •Visual servoing
- Video tracking
- •Rendering
- •... many more
- Why? Compact, accurate

Few relative alignments vs. complete global geometry

Single View Metrology

The distance || t_r - b_r || is known
Used to estimate the height of the man in the scene

Single View Metrology (559 citations)

A. Criminisi, I Reid, A Zisserman International Journal of Computer Vision 40 (2), 123-148, 2000

Geometry for hand-eye coordination Image-Based Visual Servoing (IBVS)

Vision-Based Control (Visual

Servoing)

Current Image Features
 : Desired Image Features

Vision-Based Control (Visual Servoing)

Current Image Features
 : Desired Image Features

Vision-Based Control (Visual Servoing)

Current Image Features: Desired Image Features

Vision-Based Control (Visual

Servoing)

: Current Image Features
 : Desired Image Features

Vision-Based Control (Visual

Servoing)

Current Image Features
 : Desired Image Features

u, v Image-Space Error

Current Image Features
 : Desired Image Features

$\mathbf{E} = [\mathbf{O} - \mathbf{O}]$
--

One point $\mathbf{E} = \begin{bmatrix} \mathbf{y}_0 - \mathbf{y}^* \end{bmatrix}$ Pixel coord $\mathbf{E} = \begin{bmatrix} y_u \\ y_v \end{bmatrix} - \begin{bmatrix} y_u \\ y_v \end{bmatrix}^*$

Many points $\mathbf{E} = \begin{bmatrix} y_1 \\ \vdots \\ y_8 \end{bmatrix}^* - \begin{bmatrix} y_1 \\ \vdots \\ y_8 \end{bmatrix}_0^*$

Problem: Lots of coordinate frames to calibrate

Camera

- Center of projection
- Different models

Robot and scene

- Base frame
- End-effector frame
- Object

•Point to Point task "error":

 $\mathbf{E} = [\mathbf{y}^* - \mathbf{y}_0]$

$$\mathbf{E} = \begin{bmatrix} y_1 \\ \vdots \\ y_{16} \end{bmatrix}^* - \begin{bmatrix} y_1 \\ \vdots \\ y_{16} \end{bmatrix}_0$$

Why 16 elements?

•Point to Line

Note: y's in homogeneous coord.

Line:
$$\mathbf{E}_{pl}(\mathbf{y}, \mathbf{l}) = \begin{bmatrix} \mathbf{y}_l \cdot \mathbf{l}_l \\ \mathbf{y}_r \cdot \mathbf{l}_r \end{bmatrix}$$

 $\mathbf{l}_l = \begin{bmatrix} y_2 \times y_3 \end{bmatrix}_l$

How to design visual specifications in a principled way?

The 2D projective plane

 $\mathbf{X}_{\infty} = \mathbf{Y}$

- 2D projective space models perspective imaging
- Each 3D ray is a point in P^2 : homogeneous coords.
- Ideal points
- P^2 is R^2 plus a "line at infinity" $|_{\infty}$

Projective Lines

Duality: For any 2d projective property, a dual property holds when the role of points and lines are interchanged.

$$I = X_1 \times X_2$$

The line joining two points

$$X = I_1 \times I_2$$

The point joining two lines

Projective transformations

- Homographies, collineations, projectivities
- 3x3 nonsingular H
 - maps *P*² to *P*²
 8 degrees of freedom
 determined by 4 corresponding points
- Transforming Lines?

subspaces preserved

 $\mathbf{x}^T \mathbf{l} = 0 \qquad \mathbf{x}'^T \mathbf{l}' = 0$

substitution

 $x^T H^T \mathbf{l}' = 0$ $\mathbf{l}' = H^{-T} \mathbf{l}$

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$x' = Hx$$

dual transformation

Homographies a generalization of affine and Euclidean transforms

Group	Transformation	Invariants	Distortion	
Projective	$H - \begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Cross ratio		
8 DOF	$\mathbf{I}_{P} = \begin{bmatrix} \mathbf{v}^{T} & v \end{bmatrix}$	IntersectionTangency		
Affine	$\begin{bmatrix} A & \mathbf{t} \end{bmatrix}$	• Parallelism		$2 dof \mathbf{l}_{\infty}$
6 DOF	$H_A = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	• Relative dist in 1d • Line at infinity \mathbf{l}_{α}		
Metric	[sR t]	• Relative distances		2 dof
4 DOF	$H_{S} = \begin{bmatrix} \mathbf{O}^{T} & 1 \end{bmatrix}$	• Angles • Dual conic C^*_{α}		
Euclidean	$\begin{bmatrix} R & \mathbf{t} \end{bmatrix}$	• Lengths		
3 DOF	$H_E = \begin{bmatrix} \mathbf{O}^T & 1 \end{bmatrix}$	• Areas		

How to define a visual task?

Visually defined alignment: basic

A star of the film

point-to-point: $e_{pp}(y) = y_2 - y_1$ or (homogenous coord) $e_{pp}(y) = y_2 \times y_1$

point-to-line: $e_{pl}(y) = y_1 \cdot (y_2 \times y_3)$

parallel lines: $e_{par}(l) = (l_1 x l_2) x (l_3 x l_4)$ line-to-line: $e_{ll}(y) = y_1 \cdot (y_3 x y_4) + y_2 \cdot (y_3 x y_4)$

point-to-ellipse: $e_{pe}(y) = y^{T}_{1} C_{ellipse} y_{1}$

Now: Language for visual alignments What else do we need?

Need: 1. Some way of entering alignments in images 2. video tracking to perform servoing!

Feature/ trackers

Registration ______ trackers:

Download: http://webdocs.cs.ualberta.ca/~vis/mtf/

Visual ambiguity

•Will the scissors cut the paper in the middle?

ambiguity

the man

middle? NO!

Task Ambiguity

• Is the probe contacting the wire?

Task Ambiguity

• Is the probe contacting the wire? **NO!**

•Compute paper midpoint. How?

Solve the cut in the middle task?

The second of the second

•Compute paper midpoint. (Are we done yet?) $x_m = (l_1 x l_2)$

Solve the cut in the middle task?

And the second second

- •Compute vanishing point X_{∞} ,
- •Intersect X_{∞} w. midpt X_{m}

 $l_m = (\mathbf{X}_{\infty} \times X_m)$

Alternative formulations?

 $\mathbf{X}_{\infty} = (\mathbf{l}_3 \times \mathbf{l}_4)$

 1_{3}

 l_4

What information do we use to move?

Mobile robot navigation: From appearance to metric SLAM

Courtesy K. Arras

How about other applications?

LEN AR

Beyond projective camera vision and screen GUI: Pointing

The human by pointing instructs the robot which ingredients are to be placed on the pizza

CAMERA-BASED 3D CAPTURE SYSTEM

•More papers: www.cs.ualberta.ca/~jag

Dov

•Cap

•Mai

Making Pizza with my robot 3rd Prize ICRA'15 Video competition

The human by pointing instructs the robot which ing placed on the pizza

Change a Lightbulb ICRA'97 Video

