Computing models of 3D geometry and appearance for photo-realistic rendering Martin Jagersand,

newsen 10 newsen 10 newsen 10

video

Low budget 3D from video example Capture objects

•Inexpensive

•Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

Low budget 3D from video

•Inexpensive

\$100: Webcams, Digital Cams

\$100,000 Laser scanners etc.

Low budget 3D from wide

•Inexpensive

Modeling geom primitives into scenes: >>Hours

•Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

Capturing 3D from 2D video: minutes

Low budget 3D from video

•Inexpensive

• Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

Application Case Study Modeling Inuit Artifacts

Martin Jagersand U of Alberta

- New acquisition at the UofA: A group of 8 sculptures depicting Inuit seal hunt
- Acquired from sculptor by Hudson Bay Company

Application Case Study Modeling Inuit Artifacts

Martin Jagersand U of Alberta

Results:

1. A collection of 3D models of each component

2. Assembly of the individual models into <u>animations</u> and <u>Internet web study material</u>.

Preliminaries: Capturing Macro geometry:

Martin Jagersand U of Alberta

Shape From Silhouette

- Works for objects
- Robust
- Visual hull not true object surface

• Structure From Motion

- Works for Scenes
- Typically sparse
- Sometimes fragile (no salient points in scene)
- Space carving
 - Use free space constraints
- (Dense "Stereo" -- later)
 - Use as second refinement step

3D Modeling System

•Online, incremental handling of new-information events

- Inputs continuously change online
- Different types of changes trigger tailored processing

-tier Macro, Meso, Micro model

Martin Jagersand

- Multi-Tiered Models:
 - Commonly:
 - Two tiers: 3D Geometry and appearance (* texture mapping)
 - Used in graphics applications, recovered in Vision applications
 - Three-Tier
 - Macro scale: describes scene geometry (triangulated mesh)
 - Meso scale: fine scale geometric detail (displacement map)
 - Micro: fine scale geometry and reflectance (Texture basis)
 - Captured by sequential refinement

Geometry alone does not solve model if gal

Multi-Scale model: Macro geometry, Meso depth, Micro texture

Three scales map naturally to CPU^{of} amod GPU hardware layers

Key issue: Efficient memory access and processing

- 1. Macro: Conventional geometry processing
- 2. Meso: Pixel shader
 - Fixed code, variable data access

3. Micro: Shader or Register comb.

- Fixed code, fixed data access

10x

10x

Speedup

2. Meso Structure: Depth with respect to a plane

displacement mapped

geometry

Martin Jagersand

U of Alberta

ň

base geometry

displacement map

Soffset mapping demo

Flat texture

Displacement mapped

Computing Meso structure: ^{Martin Jagersand} U of Alberta Variational shape and reflectance

Days the

Per-point cost function

$$\Phi(\mathbf{X}, \mathbf{n}) = \sum_{i} h(\mathbf{X}, P_{i}) \| I_{i}(P_{i}(\mathbf{X})) - R(\mathbf{X}, \mathbf{n}, \mathbf{L}_{i}) \|$$
Visibility+sampling
reflectance
$$\frac{\partial S}{\partial t} = (2\Phi k - \langle \nabla \Phi, \mathbf{n} \rangle) \mathbf{n}$$

Deformable mesh

Depth from Base

Rendering Meso Structure: GPU: 83 pixel shader instructions

Martin Jagersand

- 1. Sample d and ray at N (say15) points.
- 2. Find point location j of intersection
- 3. Approximate d with line, calculate intersection
- 4. Potentially iterate if needed for accuracy

Over 100 fps on consumer graphics cards

3. Micro structure: Spatial texture basis

Martin Jagersand U of Alberta

=> very fast implementation in graphics hardware

Martin Jagersand U of Alberta How/why do dynamic textures work?

3D geometry and texture warp map between views and texture images

View

I.

ľ

Re-projected geometry

Texture warp Texture

Problem: Texture images different

Sources of errors:

3D geometry and texture warp map between views and texture images

1: Planar error: Incorrect texture coordinates /

Spatial basis intro

1. Moving sine wave can be modeled:

$$I(t) = \sin(u + at)$$

= $\sin(u) \cos(at) + \cos(u) \sin(at)$
= $\sin(u)y_1(t) + \cos(u)y_2(t)$
Spatially fixed basis

2. Small image motion

$$I = I_0 + \frac{\partial I}{\partial u} \Delta u + \frac{\partial I}{\partial v} \Delta v$$

Spatially fixed basis

Linear basis for spatio-temporal variation

Martin Jagersand

On the object/texture plane:

- Variation resulting from small warp perturbations

Similarly: Can derive linear basis for out of plane and light variation!

Geometric spatio-temporal variability

Martin Jagersand U of Alberta

Image "warp"

 $T(\mathbf{x}) = I(W(\mathbf{x}, \mu))$

Image variability caused by an imperfect warp $\Delta T = I(W(\mathbf{x}, \mu + \Delta \mu)) - T_w$

First order approximation

$$\Delta T = I(W(\mathbf{x}, \mu)) + \nabla T \frac{\partial W}{\partial \mu} - T_{w} = \nabla T \frac{\partial W}{\partial \mu}$$

Concrete examples

– Image plane

-Out of plane

Variability due to a planar projective warp (homography)

• Homography warp

$$\begin{bmatrix} u'\\v'\end{bmatrix} = \mathcal{W}_h(\mathbf{x}_h, \mathbf{h}) = \frac{1}{1+h_7 u + h_8 v} \begin{bmatrix} h_1 u & h_3 v & h_5\\h_2 u & h_4 v & h_6 \end{bmatrix}$$

• Projective variability:

 $\Delta \mathbf{T}_{h} = \frac{1}{c_{1}} \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial u}, \frac{\partial \mathbf{T}}{\partial v} \end{bmatrix} \begin{bmatrix} u & 0 & v & 0 & 1 & 0 & -\frac{uc_{2}}{c_{1}} & -\frac{vc_{2}}{c_{1}} \\ 0 & u & 0 & v & 0 & 1 & -\frac{uc_{3}}{c_{1}} & -\frac{vc_{3}}{c_{1}} \end{bmatrix} \begin{bmatrix} \Delta h_{1} \\ \vdots \\ \Delta h_{8} \end{bmatrix}$

Out-of-plane variability

the stand

•Let $r = [\alpha, \beta]$ angle for ray to scene point

E E

Scene • Pre-warp texture plane rearrangement: $\begin{bmatrix} \delta u \\ \delta v \end{bmatrix} = \mathcal{W}_p(\mathbf{x}, \mathbf{d}) = \mathbf{d}(\mathbf{u}, \mathbf{v}) \begin{bmatrix} \tan \alpha \\ \tan \beta \end{bmatrix}$ Depth w.r.t. model facet •Texture basis $\Delta \mathbf{T}_{\mathbf{p}} = \mathbf{d}(\mathbf{u}, \mathbf{v}) \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial \mathbf{u}}, \frac{\partial \mathbf{T}}{\partial \mathbf{v}} \end{bmatrix} \begin{bmatrix} \frac{1}{\cos^{2} \alpha} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\cos^{2} \beta} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \alpha \\ \mathbf{\Delta} \beta \end{bmatrix} =$ $= \mathbf{B}_{\mathbf{p}}\mathbf{y}_{\mathbf{p}}$ Texture plane

Photometric variation

Analytic formula for irradiance for a convex Lambertianobject under distant illumination (with attached shadows)- spherical harmonics

[Barsi and Jacobs, Ramamoorthi and Hanrahan 2001]

$$T(\alpha,\beta,\theta,\phi) \approx \sum_{l=0}^{2} \sum_{k=-l}^{l} L_{lk}(\alpha,\beta) A_{l} Y_{lk}(\theta,\phi)$$

 $T = [B_1 \cdots B_9][L_1 \cdots L_9]^T$

Example of photometric variation

Martin Jagersand

Composite variability

Similarly, composite texture intensity variability

Can be modeled as sum of basis $\Delta \mathbf{T} = \mathbf{B}_{s} \mathbf{y}_{s} + \mathbf{B}_{d} \mathbf{y}_{d} + \mathbf{B}_{l} \mathbf{y}_{l} + \Delta \mathbf{T}_{e}$ $= \mathbf{B} \mathbf{y} + \Delta \mathbf{T}_{e}$

How to compute?

From a 3D graphics model:

- 1. Texture intensity derivatives
- 2. Jacobian of warp or displacement function
- Results in about 20 components:
 - T₀
 - 8 for planar,
 - 2 out-of plane (parallax),
 - 3-9 light

From video:

- We can expect an approximately 20dim variation in the space of all input texture images.
- => Extract this subspace

How to compute from images (cont)...

Martin Jagersand U of Alberta

- 1. Take input video sequence, use SFS/SFM geometry to warp into texture space
 - **Input Images**

1

Geometry Texture

2. Extract a 20-dim subspace through PCA TexDemo

Martin Jagersand Are analytic image derivatives Alberta and PCA basis the same?

• Same up to a linear transform!

• Experimental verification: planar homog

Example renderings from 3D models

Recap: hierarchical model scale levels

Martin Jagersand U of Alberta

1. <u>Macro:</u>

- SFM, SFS can generate coarse geometry but not detailed enough for realistic rendering
- Integrate tracking and structure computation

Scale: dozen pixels and up

2. <u>Meso :</u>

Refine coarse geometry and acquire reflectance
 – variational surface evolution

Scale: 1-dozen pixels

- 3. Micro spatial basis :
 - Represents appearance and corrects for small geometric texture errors limited by linearity of image Scale: 0-5 pixels

videos

Comparison

- 1. Static texturing: (Many, e.g. Baumgartner et al. 3DSOM)
 - Average color projected to point.
 - Better: Pick color minimizing reprojection error over all input images
 Works when model geometry is close to ground truth and light simple
- 2. Viewdependent texture (Debevec et al)
 - Pick color from closest input photograph (or interpolate from nearest 3)
 Works when possible to store large numbers of images
- 3. Lumigraph / Surface light field (Buehler et al / Wood et al)
 - Store all ray colors (plenoptic function) intersecting a proxy surface
 Works if proxy surface close to true geometry
- 4. Dynamic texture (Ours: Jagersand '97/ Matusik / Ikeuchi99 /Vasilescu04...
 - Derive a Taylor expansion and represent derivatives of view dependency
 Works for light and small (1-5 pixel) geometric displacements.

From Simple to Complex Scenes^{Martin Jagersand} 4 test cases

- 1. Simple Geom: SFS alone ok
- 2. General Geom: SFS + Variational Shape and Reflectance fitting (+View dep texture)
- 3. Complex Light: Dynamic Texture / Lumigraph
- 4. Challenge for Computer Vision

From Simple to Complex Scenes^{Martin Jagersand} 4 test cases

80

- 1. Simple Geom: SFS alone ok
- General Geom: SFS +
 Variational Shape and
 Reflectance fitting (+View dep texture)
- 3. Complex Light: Dynamic Texture / Lumigraph

Vision

4.

	70 -	View-Dependent Unstructured Lumigraph Dynamic Texture										
	60 -						5		,	\sim		
_	50 -											
esidus	40	\wedge	~~		Л	N			$\int \Lambda$	$ \land \land$	$\left(\right)$	
Ω Δ	30	And		Λ	Λ	M	AA	YM	Uh	$\left(\right)$		
	20 -	VV M	M A	m	Men	V V	V M M				\mathbb{V}_{-}	
	10 -	1	1								-	
	0	I										
	0	10	20	30	40	50	60	70	80	90	100	
						Image						

err (var)	temple	house	eleph.	wreath
Static	10.8(1.5)	11.8(1.2)	19.0(1.4)	28.4(2.8)
VDTM	8.3(1.9)	9.8(1.3)	10.1(1.9)	21.4(3.5)
Lumigr	10.8(2.5)	9.8(1.2)	5.9(0.7)	14.3(1.3)
DynTex	7.3(1.0)	9.4(1.0)	6.6(0.7)	13.4(1.2)

Table 1. Numerical texture errors and variance. %-scale.

Example of render differences

- Jade Elephant
 - Complex Reflectance (specularities and scattering)

Specular highlight

Tracking with a dyntex model + AR

Successful: 0/5 Border Lost:2 Orient Lost:0 Thresh 1 28

Mode=Pattern All Corners: off (Sub-Pixel: off) FPS:1.000000

Capturing non-rigid animatable models current PhD project, Neil Birkbeck

Martin Jagersand U of Alberta Capturing non-rigid animatable models

For better movies see: http://webdocs.cs.ualberta.ca/~birkbeck/phd/

nce

a

Capgui Demo

Martin Jagersand U of Alberta

http://webdocs.cs.ualberta.ca/~vis/ibmr/

Capgui demo

Camera-based 3D capture

SYSTEM

Step 1 Calibration

Compute camera – object pose

- •Flat radial calib pattern
 - Rotating all-around capture
- Each row a unique code
- Crossratio
 projective
 invariant

Step 2 Segmentation

- •Background removal
- •PCA model
 - see tracking lectures
- •One or more pixel samples

U of Alberta tep 3: Shape From Silhouette

- With multiple views of the same object, we can intersect the generalized cones generated by each image, to build a volume which is guaranteed to contain the object. The limiting smallest volume obtainable in this way is known as the visual hull of the object.
 - Use 8 60 images

Martin Jagersand

Step 3: Shape From Silhouette

• With multiple views of the same object, we can intersect the *generalized cones* generated by each image, to build a volume which is guaranteed to contain the object.

Martin Jagersand

• The limiting smallest volume obtainable in this way is known as the *visual hull* of the object.

SFS Methods

Voxel-based Image ray based Axis-aligned

- Inaccurate
- + Triangulate w. marching cubes

+ Accurate

- Moderatly accurate
- + Fast
- + Marching intersections

Step 4 Photo-textures and texture mapping

Martin Jagersand U of Alberta

For each triangle in the model establish a corresponding region in the phototexture

During rasterization interpolate the coordinate indices into the texture map

Simple models can be manually Alberta

3D geometry and texture warp map between views and texture images

View

I,

Re-projected geometry

Texture coordinate warp Texture

Texture Mapping Difficulties

- •Tedious to specify texture coordinates for every triangle
- •Acquiring textures is s
 - Texture image can't have pr
 - Seamless tiling
 - Non-repeating textures

Martin Jagersand

Complex, detailed models: ^{Martin Jagersand} U of Alberta Automatic texture split and flatten

Common Texture Coordinate Mappings

- Orthogonal
- •Cylindrical
- •Spherical
- •Perspective Projection
- •Texture Chart

Advanced texture splitting and of Alberta

•Floating Planes (Mathieu Desbrun, INRIA, CalTech)

•LCSM: Least Squares Conformal Mapping

Step 6 Texture basis computation

Martin Jagersand

https://webdocs.cs.ualberta.ca/~vis/ibmr/capgui/guide.html

Questions?

More information: •Downloadable renderer+models www.cs.ualberta.ca/~vis/ibmr •Capturing software + IEEE VR tutorial text www.cs.ualberta.ca/~vis/VR2003tut •Main references for this talk: Jagersand et al "Three Tier Model" 3DPVT 2008 Jagersand "Image-based Animation..." CVPR 1997 •More papers: www.cs.ualberta.ca/~jag

CAMERA-BASED 3D CAPTURE SYSTEM

•More papers: www.cs.ualberta.ca/~jag

•Dov

•Cap

•Mai