Optic Flow and Motion Detection

Computer Vision and Imaging Martin Jagersand

Readings: Szeliski Ch 8

3DV Ma, Kosecka, Sastry Ch 4

INTERDISCIPLINARY APPLIED MATHEMATIC

An Invitation to 3-D Vision

Image motion

- Somehow quantify the frame-to-frame differences in image sequences.
- 1. Image intensity difference.
- 2. Optic flow
- 3. 3-6 dim image motion computation

Motion is used to:

- •Attention: Detect and direct using eye and head motions
- **Control:** Locomotion, manipulation, tools
- Vision: Segment, depth, trajectory

tool control target pursuit

Small camera re-orientation

Note: Almost all pixels change!

The second second

Classes of motion

- •Still camera, single moving object
- •Still camera, several moving objects
- •Moving carr
- •Moving carr

The optic flow field

Vector field over the image: [u,v] = f(x,y), u,v = Vel vector, x,y = Im pos
FOE, FOC Focus of Expansion, Contraction

between the two cameras (the "motion")

Locations of points on the object (the "structure")

Image Correspondance problem

Given an image point in left image, what is the (corresponding) point in the right image, which is the projection of the same 3-D point

Correspondance for a box

The change in spatial location between the two cameras (the "motion")

E TY TO

Locations of points on the object (the "structure")

- Solve pixel correspondence problem

– given a pixel in Im1, look for same pixels in Im2

• Possible assumptions

- **1.** color constancy: a point in H looks the same in I
 - For grayscale images, this is **brightness constancy**
- 2. small motion: points do not move very far
 - This is called the **optical flow** problem

Assume:

- 1. Image intensities from object points remain constant over time
- 2. Image displacement/motion small

$$\operatorname{Im}(x + \delta x, y + \delta y, t + \delta t) = \operatorname{Im}(x, y, t)$$

$$\operatorname{Im}(x + \delta x, y + \delta y, t + \delta t) = \operatorname{Im}(x, y, t) + \frac{\partial \operatorname{Im}}{\partial x} \delta x + \frac{\partial \operatorname{Im}}{\partial y} \delta y + \frac{\partial \operatorname{Im}}{\partial t} \delta t + h.o.t.$$

Keep linear terms

• Use constancy assumption and rewrite:

$$0 = \frac{\partial \mathrm{Im}}{\partial x} \delta x + \frac{\partial \mathrm{Im}}{\partial y} \delta y + \frac{\partial \mathrm{Im}}{\partial t} \delta t$$

• Notice: Linear constraint, but no unique solution

Aperture problem

• Rewrite as dot product

$$\frac{-\frac{\partial \mathrm{Im}}{\partial t}}{\partial t}\delta t = \left(\frac{\partial \mathrm{Im}}{\partial x}, \frac{\partial \mathrm{Im}}{\partial y}\right) \cdot \left(\frac{\delta x}{\delta y}\right) = \nabla \mathrm{Im} \cdot \left(\frac{\delta x}{\delta y}\right)$$

- Each pixel gives one equation in two unknowns:
 n*f = k
- Min length solution: Can only detect vectors normal to gradient direction
- The motion of a line cannot be recovered using only local information

Aperture problem 2

per 10

The flow continuity constraint

- Flows of nearby pixels or patches are (nearly) equal
- Two equations, two unknowns:

$$\boldsymbol{n}_1 * \boldsymbol{f} = \mathbf{k}_1$$
$$\boldsymbol{n}_2 * \boldsymbol{f} = \mathbf{k}_2$$

• Unique solution *f* exists, provided *n*₁ and *n*₂ not parallel

Sensitivity to error

- • n_1 and n_2 might be *almost* parallel
- Tiny errors in estimates of *k*'s or *n*'s can lead to huge errors in the estimate of *f*

Using several points

- Typically solve for motion in 2x2, 4x4 or larger image patches.
- Over determined equation system:

$$\begin{pmatrix} \vdots \\ \frac{\partial Im}{\partial t} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots & \vdots \\ \frac{\partial Im}{\partial x} & \frac{\partial Im}{\partial y} \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \end{pmatrix}$$
$$dIm = Mu$$

- Can be solved in least squares sense using Matlab $u = M \setminus dIm$
- Can also be solved be solved using normal equations $u = (M^T M)^{-1*} M^T dIm$

- SSD Optimal (u, v) satisfies Optic Flow equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

When is this solvable?

- **A^TA** should be invertible
- A^TA entries should not be too small (noise)
- **A^TA** should be well-conditioned
- Study eigenvalues:

 $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

•Can we solve for accurate optic flow vectors everywhere using this image sequence?

Low texture region

 $\sum \nabla I (\nabla I)^T$ - gradients have small magnitude
- small λ_1 , small λ_2

Observation

•This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Optic flow computation

- •What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible

The state

- Suppose there is not much noise in the image
- •When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is **not** small
 - A point does **not** move like its neighbors
 - -window size is too large
 - -what is the ideal window size?

Iterative Refinement

• Used in SSD/Lucas-Kanade tracking algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

Application: mpeg compression

11

•Norbert's trick: Use an mpeg-card to speed up motion computation

Other applications:

- •Recursive depth recovery: Kostas and Jane
- •Motion control (we will cover)
- •Segmentation
- •Tracking

- •Assignment1:
- Purpose:
 - Intro to image capture and processing
 - Hands on optic flow experience
- •See www page for details.
- •Suggestions welcome!

Image registration

WHAT is image registration

Transform a "source" image to **match** a "target" image

Image registration

WHAT is image registration

Transform a "source" image match a "target" image

Medical image registration

WHAT is image registration

Transform a "source" image match a "target" image

Medical image registration

Medical image registration

WHAT is image registration

Transform a "source" image match a "target" image

Medical image registration

Medical applications

Data (source, target)

- different medical images modalities (MRI, XRay, CT...)
- pre-acquired medical image
 with real-time images (video)
- patient data with an atlas

For:

atlas generation
augmented reality (surgery)
better diagnosis
data analysis

Chair for Computer Aided Medical Procedures & Augmented Reality Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Formulation

Very similar to tracking and optic flow.

Transform a "source" image to match a "target" image

Find best transformation T through the minimization of an energy

 $\min_{\mathsf{T}} \operatorname{Sim}(\mathsf{I}_{\mathsf{A}} - \mathsf{T}(\mathsf{I}_{\mathsf{B}}))$

Formulation

Very similar to tracking and optic flow.

Transform a "source" image to match a "target" image

Find best transformation T through the minimization of an energy

Maching – similarity score : Sim

- depends on data

- $\min_{\mathsf{T}} \operatorname{Sim}(\mathsf{I}_{\mathsf{A}} \mathsf{T}(\mathsf{I}_{\mathsf{B}}))$
- simple same type of data SSD : sum $(I_A(x) T(I_B(x)))^2$
- different illumination : NCC normalized cross correlation
- different imaging modalities : MI mutual information

Transformation : T

- (linear) rigid, affine [ex. Same patient]
- -(nonliear) image points are allowed to move differently

Looking for a deformation field (vector field) v that will move each voxel in image A to the corresponding voxel in image B min_v sum_x $(I_A(x) - I_B(x+v))^2$ Gradient descent: solve for v iteratively adding small updates delta δv Each step is similar to an optic flow problem min_{δv} sum_x $(I_A(x) - I_B(x+v+\delta v))^2$

 $\delta v = -(I_A(x) - I_B(x+v))/\text{grad } I_B(x+v)$

Looking for a deformation field (vector field) v that will move each voxel in image A to the corresponding voxel in image B $min_v sum_x (l_A(x) - l_B(x+v))^2$ Gradient descent: solve for v iteratively adding small updates delta δv Each step is similar to an **optic flow problem** In practice – motion between images is not small > needs **regularization** and **image pyramid** to solve robustly $min_v sum (l_A(x) - l_B(x+v(x)))^2 + R(v)$

Organizing Optic Flow

Ugrad: Optional Grad: Cursory reading All: optional from the PCA on vectors (slide 48)

Martin Jagersand

Two examples:

- 1. Greg Hager paper: Planar motion
- 2. Mike Black, et al: Attempt to find a low dimensional subspace for complex motion

Remember: The optic flow field

Vector field over the image: [u,v] = f(x,y), u,v = Vel vector, x,y = Im pos
FOE, FOC Focus of Expansion, Contraction

Remember last lecture:

•Solving for the motion of a patch Over determined equation system:

$$\begin{pmatrix} \vdots \\ -\frac{\partial Im}{\partial t} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots & \vdots \\ \frac{\partial Im}{\partial x} & \frac{\partial Im}{\partial y} \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \end{pmatrix}$$
$$Imt = Mu$$

•Can be solved in e.g. least squares sense using matlab $u = M \setminus Imt$

3-6D Optic flow

•Generalize to many freedooms (DOFs)

$$\begin{split} \delta I &= ||I - I_i|| \\ \delta I &= M \delta \mu \\ M &= [I_x |I_y| I_r |I_s] \\ I_x &= I(x, y) - I(x - 1, y) \\ I_y &= I(x, y) - I(x, y - 1) \\ I_r &= -y I_x + x I_y \\ I_s &= \frac{1}{\sqrt{x^2 + y^2}} (x I_x + y I_y) \end{split}$$

Im = Mu

Example: All 6 freedoms

Template

Difference images $M(u) = \partial Im / \partial u$

X

Υ

Rotation

Scale

Aspect

Shear

Know what type of motion (Greg Hager, Peter Belhumeur)

E.g. Planar Object => Affine motion model: $u'_i = A u_i + d$

 $\mathbf{I}_{t} = \mathbf{g}(\mathbf{p}_{t}, \mathbf{I}_{0})$

Mathematical Formulation

• Define a "warped image" g

- f(p,x) = x' (warping function), p warp parameters
- I(x,t) (image a location x at time t)
- $g(p,I_t) = (I(f(p,x_1),t), I(f(p,x_2),t), \dots I(f(p,x_N),t)))'$
- Define the Jacobian of warping function
 - $\mathbf{M}(\mathbf{p}, \mathbf{t}) = \begin{bmatrix} \frac{\partial \mathbf{I}}{\partial p} \end{bmatrix}$
- Model
 - $I_0 = g(p_t, I_t)$ (image I, variation model g, parameters p)
 - $\Delta I = \mathbf{M}(\mathbf{p}_t, \mathbf{I}_t) \Delta \mathbf{p} \quad (\text{local linearization } \mathbf{M})$
- Compute motion parameters $\Delta p = (\mathbf{M}^{T} \mathbf{M})^{-1} \mathbf{M}^{T} \Delta I \text{ where } \mathbf{M} = \mathbf{M}(p_{t}, I_{t})$

Planar 3D motion

The second second

- From geometry we know that the correct planeto-plane transform is
- 1. for a perspective camera the *projective homography* $\begin{bmatrix} u'\\v' \end{bmatrix} = \mathcal{W}_h(\mathbf{x}_h, \mathbf{h}) = \frac{1}{1+h_7u+h_8v} \begin{bmatrix} h_1u & h_3v & h_5\\h_2u & h_4v & h_6 \end{bmatrix}$
- 2. for a linear camera (orthographic, weak-, paraperspective) the *affine warp*

$$egin{bmatrix} u_w \ v_w \end{bmatrix} = \mathcal{W}_a(\mathbf{p},\mathbf{a}) = egin{bmatrix} \mathbf{a_3} & \mathbf{a_4} \ \mathbf{a_5} & \mathbf{a_6} \end{bmatrix} \mathbf{p} + egin{bmatrix} \mathbf{a_1} \ \mathbf{a_2} \end{bmatrix}$$

Planar Texture Variability 1 Affine Variability

•Affine warp function

$$egin{bmatrix} u_w \ v_w \end{bmatrix} = \mathcal{W}_a(\mathbf{p},\mathbf{a}) = egin{bmatrix} \mathbf{a_3} & \mathbf{a_4} \ \mathbf{a_5} & \mathbf{a_6} \end{bmatrix} \mathbf{p} + egin{bmatrix} \mathbf{a_1} \ \mathbf{a_2} \end{bmatrix}$$

_ ΓΛ

•Corresponding image variability

$$\Delta \mathbf{I}_{a} = \sum_{i=1}^{6} \frac{\partial}{\partial a_{i}} \mathbf{I}_{w} \Delta a_{i} = \begin{bmatrix} \frac{\partial I}{\partial u}, \frac{\partial I}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial a_{1}} & \cdots & \frac{\partial u}{\partial a_{6}} \\ \frac{\partial v}{\partial a_{1}} & \cdots & \frac{\partial v}{\partial a_{6}} \end{bmatrix} \begin{bmatrix} \Delta a_{1} \\ \vdots \\ \Delta a_{6} \end{bmatrix}$$
• Discretized for images

$$egin{aligned} \Delta \mathbf{I_a} &= egin{bmatrix} rac{\partial \mathbf{I}}{\partial \mathbf{u}}, rac{\partial \mathbf{I}}{\partial \mathbf{v}} \end{bmatrix} egin{bmatrix} \mathbf{1} & \mathbf{0} & * \mathbf{u} & \mathbf{0} & * \mathbf{v} & \mathbf{0} \ \mathbf{0} & \mathbf{1} & \mathbf{0} & * \mathbf{u} & \mathbf{0} & * \mathbf{v} \end{bmatrix} egin{bmatrix} \mathbf{y_1} \ dots \ \mathbf{y_6} \end{bmatrix} \ &= [\mathbf{B}_1 \dots \mathbf{B}_6] [y_1, \dots, y_6]^T = B_a \mathbf{y_a} \end{aligned}$$

On The Structure of M

Planar Object + linear (infinite) camera -> Affine motion model $U = \frac{\partial g}{\partial p}$

Shear

Planar motion under perspective projection

•Perspective plane-plane transforms defined by homographies

Planar Texture Variability 2 Projective Variability

• Homography warp

$$\begin{bmatrix} u'\\v'\end{bmatrix} = \mathcal{W}_h(\mathbf{x}_h, \mathbf{h}) = \frac{1}{1+h_7u+h_8v} \begin{bmatrix} h_1u & h_3v & h_5\\h_2u & h_4v & h_6 \end{bmatrix}$$

• Projective variability:

$$\Delta \mathbf{I}_{h} = \frac{1}{c_{1}} \begin{bmatrix} \frac{\partial \mathbf{I}}{\partial u}, \frac{\partial \mathbf{I}}{\partial v} \end{bmatrix} \begin{bmatrix} u & 0 & v & 0 & 1 & 0 & -\frac{uc_{2}}{c_{1}} & -\frac{vc_{2}}{c_{1}} \\ 0 & u & 0 & v & 0 & 1 & -\frac{uc_{3}}{c_{1}} & -\frac{vc_{3}}{c_{1}} \end{bmatrix} \begin{bmatrix} \Delta h_{1} \\ \vdots \\ \Delta h_{8} \end{bmatrix}$$
$$= [\mathbf{B}_{1} \dots \mathbf{B}_{8}] [y_{1}, \dots, y_{8}]^{T} = B_{h} \mathbf{y}_{h}$$

• Where $c_1 = 1 + h_7 u + h_8 v$, $c_2 = h_1 u + h_3 v + h_5$ and $c_3 = h_2 u + h_4 v + h_6$

Planar-perspective motion 3

- In practice hard to compute 8 parameter model stably from one image, and impossible to find out-of plane variation
- •Estimate variability basis from several images:

Computed

Estimated

Another idea Black, Fleet) Organizing flow fields

•Express flow field f in subspace basis m

$$\vec{f}_k = \sum_{i=1}^k a_i \vec{m}_i$$

• Different "mixing" coefficients a correspond to different motions

Let:
$$\rho(r,\sigma) = r^2/(\sigma^2 + r^2)$$
Robust error normMinimize objective function:Motion
basis $E(\vec{b}; \vec{a}) = \sum_{\vec{x} \in R} \rho(I(\vec{x} + \vec{u}(\vec{x}; \vec{a} + \vec{b}), t+1) - I(\vec{x}, t), \sigma)$ $=$ $\sum_{\vec{x} \in R} \rho(\vec{u}(\vec{x}; \vec{b}) \cdot \nabla I(\vec{x} + \vec{u}(\vec{x}; \vec{a}), t+1) + r(\vec{x}, \vec{a}), \sigma)$

Where $\vec{\nabla} I(\vec{x} + \vec{u}(\vec{x}; \vec{a}), t + 1) = [I_x, I_y]^T$

Experiment Moving camera

- •4x4 pixel patches
- •Tree in foreground separates well

Experiment: Characterizing lip motion

•Very non-rigid!

Questions to think about

Readings: Book chapter, Fleet et al. paper.

Compare the methods in the paper and lecture

- 1. Any major differences?
- 2. How dense flow can be estimated (how many flow vectore/area unit)?
- 3. How dense in time do we need to sample?

Summary

- Three types of visual motion extraction
 - 1. Optic (image) flow: Find x,y image velocities
 - 2. 3-6D motion: Find object pose change in image coordinates based more spatial derivatives (top down)
 - 3. Group flow vectors into global motion patterns (bottom up)
- Visual motion still not satisfactorily solved problem

(Parenthesis) Euclidean world motion -> image

Let us assume there is one rigid object moving with velocity T and w = d R / dt

For a given point P on the object, we have p = f P/z

The apparent velocity of the point is $V = -T - w \times P$

Therefore, we have $v = dp/dt = f (z V - V_z P)/z^2$

Component wise:

Motion due to translation: depends on depth

Motion due to rotation: independent of depth

Sensing and Perceiving Motion

Martin Jagersand

and the second sec

Counterphase sin grating

• Spatio-temporal pattern – Time t, Spatial x,y

 $s(x, y, t) = A\cos(Kx\cos\Theta + Ky\sin\Theta - \Phi)\cos(\omega t)$

Counterphase sin g

• Spatio-temporal pattern

– Time t, Spatial x,y

 $s(x, y, t) = A\cos(Kx\cos\Theta + Ky\sin\Theta - \Phi)\cos(\omega t)$

Rewrite as dot product:

Analysis:

- •Only one term: Motion left or right
- Mixture of both: Standing wave
- •Direction can flip between left and right

Reichardt detector

the states

•QT movie

object based	متقافد
token matching	
$\mathbf{V} = \Delta \mathbf{x} / \Delta t$	

- Gradient: in Computer Vision
- Correlation: In bio vision

intensity based

• Spatiotemporal filters: Unifying model

Spatial response: Gabor function

•Definition:

$$D_{\rm s}(x, y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) \cos(kx - \phi)$$

Adelson, Bergen '85

$$D_{\rm t}(\tau) = \alpha \exp(-\alpha \tau) \left(\frac{(\alpha \tau)^5}{5!} - \frac{(\alpha \tau)^7}{7!} \right)$$

Note: Terms from taylor of sin(t)

Spatio-temporal D=D_sD_t

Receptor response to Counterphase grating

•Separable convolution

$$L(t) = L_{\rm s} L_{\rm t}(t) \,,$$

$$L_{\rm s} = \int dx dy D_{\rm s}(x, y) A \cos\left(Kx \cos(\Theta) + Ky \sin(\Theta) - \Phi\right)$$

$$L_{\rm t}(t) = \int_0^\infty d\tau \, D_{\rm t}(\tau) \cos\left(\omega(t-\tau)\right) \, .$$

•For our grating: (Theta=0)

$$L_s = \frac{A}{2} \exp\left(\frac{-\sigma^2(k-K)^2}{2}\right) \cos(\phi - \Phi)$$

•Write as sum of components:

$$= \exp(\ldots)^*(cos\ldots + bsin\ldots)$$

Space-time receptive field

THE ARE A

Combined cells

• Spat:

Temp:

1 200

AN

• Both:

• Comb:

•More directionally specific response

Energy model:

- •Sum odd and even phase components
- •Quadrature rectifier

Adaption: Motion aftereffect

Where is motion processed?

Higher effects:

Alter

the star of

Equivalence: Reich and Spat

REICHARDT MODEL

-

Conclusion

- •Evolutionary motion detection is important
- •Early processing modeled by Reichardt detector or spatio-temporal filters.
- •Higher processing poorly understood