Optic Flow and Motion Detection
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Readings: |
Szeliski Ch 8 i
3DV Ma, Kosecka, %astry Ch4

a—




Somehow quantify the
frame-to-frame differencesy
IN Image sequences.

Image intensity difference.
Optic flow ’
3-6 dim image motion
computation




head control
hand control

e Attention: Detect and
direct using eye and
head motions tool control

eControl: Locomotion,
manipulation, tools

*Vision: Segment, depth,
trajectory ‘*P‘“/*':"%




Note: Almost all pixels change!




o« Still camera, single moving object
o Still camera, several moving objects

Moving car
Moving car




The optic flow field
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*VVector field over the image:
[u,v] = f(X,y), u,v= Vel vectorx,y =Im pos
*FOE, FOC Focus of Expansion, Contraction
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MOVING CAMERAS ARE LIKE

STEREO

/

;
The change in spatial location
between the two cameras (the “motion”) Locations of

points on the object
(the “structure”)



Given an image point in left image, what is the (corresponding) point in the right
image, which is the projection of the same 3-D point



Correspondance for a box

. J % "___ B -~
: s = ol

/

;
The change in spatial location
between the two cameras (the “motion”) Locations of

points on the object
(the “structure”)



I\/Iotlon/Optlc flow vectors

Im(z, y, t) Im(x + dz, y+ dy, t+ 6t) '

— Solve pixel correspondence problem
—given a pixel in Im1, look for same pixels in Im2

 Possible assumptions
1. color constancy: a point in H looks the same in |
— For grayscale images, thishsightness constancy
2. small motion: points do not move very far
— This is called theptical flow problem



Assume;

1. Image intensities from object points remain constant over time
2. Image displacement/motion small

Im(z +dx, y+dy, t+ot) = Im(z, y, t)




Tayor expansion of intensity variatic

n.“‘_:,‘
e

Im(z + 8z, y + 0y, t + 6t) = Im(z,y,t) + 226z +581—fy“6y + 205t + h.o.t.

J

Keep linear terms
e Use constancy assumption and rewrite:

_ 0OIm . OIm . OIm
0 = ——0z A aycSy. ~—0t

* Notice: Linear constraint, but no unigue solution



Aperture problerv

Rewrite as dot product

8Im olm dm\ . [ 0T\ WV 0x
L) e ()
e equation in two u kn WNS:

. Each pixel gives o
n*f =k

e Min length solution: Can only detect vectors normal
to gradient direction

 The motion of a line cannot be recovered using only
local information




Aperture problem 2 _




‘ T he flow continuity const‘raint
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* Flows of nearby pixels or
patches are (nearly) equal

e Two equations, two

unknowns:
n,* f=k;
n,* f =k,

e Unigque solutiorf exists,
providedn, andn, not
parallel




Sensitivity to error
. . P e o —_ - ,“-'i 3
*n, andn, might bealmost
parallel

e Tiny errors in estimates &fs
orn’s can lead to huge errors
In the estimate df




* Typically solve for motion in 2x2, 4x4 or larger age
patches.

e Over determined equation system:

2 B oy

dim = Mu

e Can be solved in least squares sense using Matlab
u = M\dIim

e Can also be solved be solved using normal equations
u=(M"M)"*M Tdim




O or solvability
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— SSD Optimal (u, v) satisfies Optic Flow equation
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When is this solvable?

e ATA should be invertible
e ATA entries should not be too small (noise)
e ATA should be well-conditioned
« Study eigenvalues:
— A,/ A, should not be too large (A, = larger eigenvalue)



ic_FI Real Image Challenge

.r_ .‘j

eCan we solve for accurate optic flow vectors
everywhere using this image sequence?



— gradients very large or very small
— large A;, small A,



— gradients have small magnitude
—small A, small A,



S vi(vi' P
— gradients are different, large magnitudes " -~
—large A4, large A,



*This Is a two Iimage problem BUT
— Can measure sensitivity by just looking at onehefitnages!
— This tells us which pixels are easy to track, wtaoh hard
—very useful later on when we do feature tracking...



Irors In Optlc flow Computatlon

\What are the potential causes of errors in this

procedure?

— Suppose AA is easily invertible
— Suppose there is not much noise in the image

*\When our assumptions are violated
— Brightness constancy mot satisfied
— The motion inot small
— A point doexnot move like its neighbors
—window size Is too large
—what is the ideal window size?



lterative Refinement‘

» =) %

 Used in SSD/Lucas-Kanade tracking
algorithm

1. Estimate velocity at each pixel by solving Lucaside equations
2. Warp H towards | using the estimated flow field

- use image war ping techniques
3. Repeat until convergence



| |t|ng the small motlon assumptl

|
p—

ols thls motlon smaII enough’P
— Probably not—it's much larger than one pixeld@der terms
dominate)

— How might we solve this problem?






u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



run iterative L-K = ———

warp & upsample

1

run iterative L-K +——

Gaussian pyramid of image H Gaussian pyramid of image |



Application: mpeg compression
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HW accelerated computation of flo

*Norbert’s trick: Use an mpeg-card to speed
up motion computation



Other applications:

- IR

*Recursive depth recovery: Kostas and Jane
* Motion control (we will cover)

e Segmentation

e Tracking



* Assignmentl.:

e Purpose:

— Intro to image capture and
processing

—Hands on optic flow
experience

«See www page for
detalls.

e Suggestions welcome!




Transform
a “source” image
to match a “target” image




Transform a “source” image
match a “target” image




Transform a “source” image
match a “target” image




Transform a “source” image
match a “target” image




Medlcal appllcatlons

= different medlcal |mages
modalities (MRI, XRay,
CT..)

» pre-acquired medical ima
with real-time images (video)

= patient data with an atlas

spatial registered
3D imaging data

TECHNISCHE Chair for Computer Aided Medical Procedures & Augmented Reality
nﬂﬁgﬂ‘g Lehrstuhl far Informatikanwendungen in der Medizin & Augmented Reality



.

Vry similar to tracking and ob’tic flow.
" | Transform a “source” image to
match a “target” image

Find best transformation T
through the minimization of an
energy

min, Sim(l, - T(l3))




shtransformation T
through the minimization of an

_ | energy

A B
Maching — similarity score : Sim _
- depends on data min, Sim(l, - T(l3))

- simple — same type of data - SSD : sum (1,(x) - T(I5(x)))?
- different illumination : NCC normalized cross correlation

- different imaging modalities : Ml mutual information e
Transformation : T

- (linear) rigid, affine [ex. Same patient]

-(nonliear) image points are allowed to move differently




Source (Ig) Target (/4)

Looking for a deformation field (vector field) v that will move each

voxel in image A to the corresponding voxel in image B

min, sum_ (1,(X) — l5(Xx+Vv))?

Gradient descent: solve for v iteratively adding small updates delta dv
Each step is similar to an optic flow problem

ming, sum_ (1,(X) — l5(x+v+8v))?

Ov=-(1,(x) — Ig(x+Vv))/grad I5(x+V)



Source (/g) Target (/4)

Looking for a deformation field (vector field) v that will move each
voxel in image A to the corresponding voxel in image B
min, sum, (1,(x) — Ig(x+Vv))?
Gradient descent: solve for v iteratively adding small updates delta év
Each step is similar to an optic flow problem
In practice — motion between images is not small > needs

regularization and image pyramid to solve robustly
min, sum (1,(x) — I;(x+v(x)))* + R(v)



Organizing Optic Flow

AN -";yg__rad. Optional e
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All: optional fromthe "0

o, A L PCA on vectors (slide 48) .. =




Organizing different kinds of motio

‘ - j - '“ - RN .--" “'n. ¢
- ‘ . - ‘., .a 3 ‘_’. .}‘.

Two examples:
1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low
dimensional subspace for complex motion



Remember:

e optic flow field ., . .
2 ' - | ™ = -,_ 3

*VVector field over the image:
[u,v] = f(X,y), u,v= Vel vectorx,y =Im pos
*FOE, FOC Focus of Expansion, Contraction
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| Remember last lecture:
— T— | —— & '2 ;;

Over determined equation system:

(2).(+9)E

Imt = Mu

eCan be solved in e.g. least squares sense usir
matlabu = M\Imt

* Solving for the motion of a patch _t |+1

g




3 6D Optlc flow

*Generalize to many freedooms (DOFs)

M= [IzllyllrII.] !.argelesgl X Translation Y Translalioa Bolalion

2=I(z:y)-1(m_lay) V78 L
I, =I(z,y) — I(z,y — 1) ‘A

Ir = ""'ylz + zIy

51 = |1 - Il
0l = Méu




X Y Rotation  Scale Aspect Shear



Know what type of motion
. g Hager, Peter BelhumeLg)&_\__ ;




_Mathematical Formulatio

e Define a “warped imagej
— f(p,x) = X’ (warping function), p warp parameters
— I(x,t) (image a location x at time t)

— 9(p.}) = (I(f(P.x0).1), 1({(P.Xx).1), ... 1(f(P,%y). 1))
o Define the Jacobian of warping function

— M(p,t) = |:3Ii|

Op
e Model

— o= 9@ I) g p
— Al= M(p, I) Ap M

« Compute motion parameters
Ap=MTM)LMTAI M =M (p,l)




 From geometry we know that the correct plane-
to-plane transform is

1. for a perspective camera theojective
homography[u, [hlu hav h5]

v’] = Wi(xs, h) = Hh?iJrth hou hyv hg

2. for alinear camera (orthographic, weak-, para-

perspective) thaffinewarp
{} ~ Wa(p.a) = [ai as 1

P+ | as




Planar Texture Variability

Afflne Varlablllty o

 Affine warp function

(2% -3-3 dy aq
— Wa(paa) = |ay ag|PTt |a,
e Corresponding image variability e
Ou ., Ou] a
AL, =Y 21,00 = [ 5] [% %_ :
*Discretized for images - P00l [ Aag_
1 0 xu 0 =xv 07 [y1
AL, = [& 4] {0 1 0 *u O *v} :
| Y6 _

— [Bl . BG] [yh ) yG]T — BaYa



cture of

~

Planar Object + linear (infinite) camera
-> Affine motion model u, = Au, +d

X Y Rotation  Scale Aspect Shear

as ay a 0 1 O
[a5 aﬁ}sR(@){o 1} [h 1}



*Perspective plane-plane transforms defined by
horroyrapniis -

uy
U114
1 2RI F

=H

'vlt) =S 'vJth

&it, - &gy
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Planar Texture Variability 2
pjective Variability

st ) %

1‘ : \_-
F ok L
. R i

e Homography warp
’U,,- hl’U, h3’U h5
v' | = Wh(xp, h) = 1+h7i+h80 hou hyv  hg

« Projective variability:

'u0v010—1—?—1—?' Ah;
AIh:L[al 81] 0O v 0 v 0 1 —= —= ;

c1 Lou’ dv 1 1

Ahyg

— [Bl- : -B8] [yla . -798]T — By,

OWhere c1 = 1+ h7u + h8U 1Co = hlu -+ hg’U —+ h5
and C3 — hQ’U; —|— h4’U —|— h6



In practice hard to compute 8 parameter model
stably from one image, and impossible to find
out-of plane variation

e Estimate variability basis from several images:
Computed Estimated

1l H
L
AUBET




Another idea Black, Fleet) Organizi
low fields

*EXxpress flow field In
subspace basm 7 EER

IIIIIII
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. a &« 440rnny \
= ZL - S 1111 —

i=1 a ¥

 Different “mixing” {00
coefficientsa :
correspond to different
motions
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I\/Iathematlcal formulatlon

Let: p(r,o) = rz/(02+r2)% Robust error norm]

Mimimize objective function;, —ioton

E(b;a@) =Y p(I(F+i(F;a+b), t+1)-1(Z,1), o)
TER

)-VI(Z + i@(Z;d),t + 1) + r(F, @), o)

-.uM

Where i 4 a@ant+1) = (L, L)



Experiment

1\

«4x4 pixel
patches
*Treein

foreground
separates well
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to think b\_\_ .

Readings: Book chapter, Fleet et al. paper.
Compare the methods in the paper and lecture
1. Any major differences?

2. How dense flow can be estimated (how many
flow vectore/area unit)?

3. How dense In time do we need to sample?



e Three types of visual motion extraction
1. Optic (image) flow: Find x,y — image velocities

2. 3-6D motion: Find object pose change in image coordinates
based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

* Visual motion still not satisfactorily solved
problem



GEEUENS

world motlon == lmae

Let us assume there is one rigid object moving with
velocity T andw=d R/ dt

For a given point P on the object, we have
p=1fP/z

The apparent velocity of the point is
V=-T—-wxP

Therefore, we have v =dp/dt=f (zV -V, P)/z?



Component wise:

- R

TXx-Tf W, XY = W, X
Vx:f Z X _Wyf+Wzy+ X y
7 f
TXx-T, f W, XY = W, y*
v, = f———w | +w,x+—- A2
7 0 f
Motion due to translation: Motion due to rotation:

depends on depth independent of depth



Sensing and Perceiving Motion
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E—
E——
- Spatio-temporal pattern e —
E——
—Timet, Spatialx,y EEEEEEEEEE—

|




lterphase sin

e Spatio-temporal pattern
— Timet, Spatialx,y
s(z,y,t) = Acos(KzcosO + Kysin©® — &) cos(wt)
Rewrite as dot product:

bos(a,8] | 2] —wt) + costfa ]| # |+t
\

_ .
Result: Standing wave Is superposition of two moving waves




*Only one term: Motion left or right
*Mixture of both: Standing wave
Direction can flip between left and right




IMAGE L
IMAGE I(x,)

"SPATIAL |
FILTERS |-~ [ fi(x)

TEMPORAL|_ __ _ b ()| | halt)

FILTERS

SEPARABLE

RESPONSES

HALF - PHASE
OPPONENT
ENERGY

FULL
OPPONENT

ENERGY




object based

token matching

V= Ax/Al

e Gradient: In
Computer Vision

e Correlation: In bio

intensity based

Fpe

VISIon

e Spatiotemporal

filters: Unifying
model

correlation model

energy model

8r/dt| |87/8x




Spatial response:
| Gabor functlon

205 20%

Di(x, y) = ! exp (— X - yz )cos(kx—qb)

NEIGHBOR POSITION



Temporal response:

Adelson, Bergen '85

(at)® (ar)7)

D (1) = aexp(—ar) ( 51 7

Note: Terms from
taylor ofsin(t)

Spatio-temporabD=DsD:x




Receptor response to

phase grating .

5 . v e S L\‘;V =
ol . . ..‘ﬁ e »_.x

e Separable convolution

L(0) = L Li(0)

o= fdxdst(x, y)Acos (Kxcos(@) + Kysin(®) — &’

Li(f) = foodr D (t)cos(w(t—1)) .
0



_ Simplified:

 For our grating(Theta=0)

—o*(k—K)>
L, = Zexp ( (2 ) ) cos(¢p — @)
*\Write as sum of components:

= exp(...)*(acos... + bsin...)



Spacetime receptive fielc

. ¢ 3
S Y 2

‘.“f/‘.







*More directionally specific response

a b




Energy model:

i ¢
— . il
o . f/ - ) ) "- ‘.A-.."..A
" = & s K
. A gL ' . E '_.‘i:i it o

Sum odd and even phase
components

e Quadrature rectifier










Higher effects:

Frame 1

Frame 1

Frame 2 Frame 1

Frame 2

Frame 2




Equivalence:
eich and Si

™»
1\

REICHARDT MODEL

-

IMAGE L I(x,1)

INPUT

SPATIAL

FILTERS |- ———| (%)

TEMPORAL
FILTERS

hz(ﬁ

IMAGE | __
INPUT

fa(x)

SPATIAL

FILTERS [~ — | h(¥)

hy (1)

SEPARABLE
RESPONSES

HALF-PHASE
OPPONENT
ENERGY

FULL
OPPONENT
ENERGY

+ (Do

T

(AB'-8A)

fz(!)

TEMPORAL o s h| “)

FILTERS

ha(t) ha(t) | | hy(®

SEPARABLE
RESPONSES

ORIENTED
LINEAR
RESPONSES

ORIENTED
ENERGY

-(A-B‘)2+(A’+8)2

+ /(a+8P+(4'-8)

OPPONENT
ENERGY

______ —4(aB-A'B)




e Evolutionary motion detection Is important

eEarly processing modeled by Reichardt detector
or spatio-temporal filters.

*Higher processing poorly understood



