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Martin Jagersand

Readings:

Szeliski Ch 8

3DV Ma, Kosecka, Sastry Ch 4



Image motion

• Somehow quantify the 
frame-to-frame differences 
in image sequences.

1. Image intensity difference.

2. Optic flow

3. 3-6 dim image motion 
computation



Motion is used to:

•Attention: Detect and 
direct using eye and 
head motions 

•Control: Locomotion, 
manipulation, tools

•Vision: Segment, depth, 
trajectory



Small camera re-orientation

Note: Almost all pixels change!



Classes of motion

•Still camera, single moving object

•Still camera, several moving objects

•Moving camera, still background

•Moving camera, moving objects



The optic flow field

•Vector field over the image:

[u,v] = f(x,y),  u,v= Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction 



MOVING CAMERAS ARE LIKE 
STEREO

Locations of
points on the object
(the “structure”)

The change in spatial location
between the two cameras (the “motion”)



Given an image point in left image, what is the (corresponding) point in the right
image, which is the projection of the same 3-D point   

Image Correspondance problem



Correspondance for a box

Locations of
points on the object
(the “structure”)

The change in spatial location
between the two cameras (the “motion”)



Motion/Optic flow vectors
How to compute?

Im(x + �x, y + �y, t + �t)

– Solve pixel correspondence problem

–given a pixel in Im1, look for same pixels in Im2

• Possible assumptions
1. color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
2. small motion:  points do not move very far

– This is called the optical flow problem

Im(x, y, t)



Optic/image flow

Assume: 
1. Image intensities from object points remain constant over time 

2. Image displacement/motion small

Im(x + �x, y + �y, t + �t) = Im(x, y, t)



Taylor expansion of intensity variation

Keep linear terms

• Use constancy assumption and rewrite:

• Notice: Linear constraint, but no unique solution

0 =
∂x

∂Im�x +
∂y

∂Im�y +
∂t

∂Im�t

Im(x + �x, y + �y, t + �t) = Im(x, y, t) +
∂x

∂Im�x +
∂y

∂Im�y +
∂t

∂Im�t + h.o.t.



Aperture problem

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
n*f = k

• Min length solution: Can only detect vectors normal 
to gradient direction

• The motion of a line cannot be recovered using only 
local information
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Aperture problem 2



The flow continuity constraint

• Flows of nearby pixels or 
patches are (nearly) equal

• Two equations, two 
unknowns:
n1 * f = k1

n2 * f = k2

• Unique solution f exists, 
provided n1 and n2 not 
parallel

f
n

f



Sensitivity to error

• n1 and n2 might be almost
parallel

• Tiny errors in estimates of k’s 
or n’s can lead to huge errors 
in the estimate of f

f
n

f



Using several points

• Typically solve for motion in 2x2, 4x4 or larger image 
patches. 

• Over determined equation system:

dIm   =  Mu
• Can be solved in least squares sense using Matlab 

u = M\dIm  
• Can also be solved be solved using normal equations 

u = (MTM)-1*M TdIm 
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Conditions for solvability

– SSD Optimal (u, v) satisfies Optic Flow equation

When is this solvable?
• ATA should be invertible 
• ATA entries should not be too small (noise)
• ATA should be well-conditioned
• Study eigenvalues:

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)



Optic Flow Real Image Challenges:

•Can we solve for accurate optic flow vectors 
everywhere using this image sequence?



Edge

– gradients very large or very small
– large λ1, small λ2



Low texture region

– gradients have small magnitude
– small λ1, small λ2



High textured region

– gradients are different, large magnitudes
– large λ1, large λ2



Observation

•This is a two image problem BUT
– Can measure sensitivity by just looking at one of the images!

– This tells us which pixels are easy to track, which are hard

–very useful later on when we do feature tracking...



Errors in Optic flow computation

•What are the potential causes of errors in this 
procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

•When our assumptions are violated
– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

–window size is too large

–what is the ideal window size?



Iterative Refinement

• Used in SSD/Lucas-Kanade tracking 
algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence



Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms 

dominate)

– How might we solve this problem?



Reduce the resolution!



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample
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.
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Application: mpeg compression



HW accelerated computation of flow 
vectors 

•Norbert’s trick: Use an mpeg-card to speed 
up motion computation



Other applications:

•Recursive depth recovery: Kostas and Jane

•Motion control (we will cover)

•Segmentation

•Tracking



Lab:

•Assignment1:

•Purpose:
– Intro to image capture and 

processing

– Hands on optic flow 
experience

•See www page for 
details.

•Suggestions welcome!



Image registration 

WHAT is image registration 

Transform
a “source” image 
to match a “target” image 



Image registration 

WHAT is image registration 

Transform a “source” image to 
match a “target” image 



Medical image registration 

WHAT is image registration 

Transform a “source” image to 
match a “target” image 

Medical image registration  



Medical image registration 

WHAT is image registration 

Transform a “source” image to 
match a “target” image 

Medical image registration  



� Data (source, target)

� different medical images 
modalities (MRI, XRay, 
CT…)

� pre-acquired medical images 
with real-time images (video)

� patient data with an atlas

� For:

� atlas generation

� augmented reality (surgery)

� better diagnosis

� data analysis

Medical applications 



Formulation 
Very similar to tracking and optic flow.

IA IB

Transform a “source” image to 
match a “target” image 

Find best transformation T 
through the minimization of an 
energy

minT Sim (IA - T(IB)) 



Formulation 
Very similar to tracking and optic flow.

IA IB

Transform a “source” image to 
match a “target” image 

Find best transformation T 
through the minimization of an 
energy

minT Sim (IA - T(IB)) 
Maching – similarity score : Sim
- depends on data
- simple – same type of data - SSD : sum (IA(x) - T(IB(x)))2

- different illumination : NCC normalized cross correlation
- different imaging modalities : MI mutual information
Transformation : T
- (linear) rigid, affine [ex. Same patient]
-(nonliear)  image points are allowed to move differently 



Non-rigid registration

Looking for a deformation field (vector field) v that will move each 
voxel in image A to the corresponding voxel in image B
minv sumx (IA(x) – IB(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv
Each step is similar to an optic flow problem

min
δv sumx (IA(x) – IB(x+v+δv))2

δv=-(IA(x) – IB(x+v))/grad IB(x+v)



Non-rigid registration

In practice – motion between images is not small > needs 
regularization and image pyramid to solve robustly 

minv sum (IA(x) – IB(x+v(x)))2 + R(v)

Looking for a deformation field (vector field) v that will move each 
voxel in image A to the corresponding voxel in image B
minv sumx (IA(x) – IB(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv
Each step is similar to an optic flow problem



Organizing Optic Flow

Ugrad: Optional

Grad: Cursory reading

All: optional from the 
PCA on vectors (slide  48)

Martin Jagersand



Organizing different kinds of motion

Two examples:

1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low 
dimensional subspace for complex motion



Remember:
The optic flow field

•Vector field over the image:

[u,v] = f(x,y),  u,v= Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction 



Remember last lecture:

•Solving for the motion of a patch

Over determined equation system:

Imt = Mu

•Can be solved in e.g. least squares sense using 
matlab u = M\Imt
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3-6D Optic flow

•Generalize to many freedooms (DOFs)

Im  = Mu



Example:
All 6 freedoms

X                 Y          Rotation      Scale         Aspect       Shear

M(u) = ∂Im/∂uDifference images

Template



Know what type of motion
(Greg Hager, Peter Belhumeur)

u’i =  A ui + dE.g. Planar Object  => Affine motion model:

It = g(pt, I0)



Mathematical Formulation

• Define a “warped image” g
– f(p,x) = x’ (warping function), p warp parameters
– I(x,t) (image a location x at time t)
– g(p,It) = (I(f(p,x1),t), I(f(p,x2),t), … I(f(p,xN),t))’

• Define the Jacobian of warping function
– M(p,t) =

• Model
– I0 =  g(pt, It ) (image I, variation model g, parameters p)
– ∆I =  M(pt, It) ∆p (local linearization M)

• Compute motion parameters
� ∆p = (MT M)-1 MT ∆I where  M = M(pt,It)

∂p

∂I
[ ]



Planar 3D motion

• From geometry we know that the correct plane-
to-plane transform is 

1. for a perspective camera the projective 
homography

2. for a linear camera (orthographic, weak-, para-
perspective) the affine warp

u
w

v
w

[ ]

= W
a
(p, a) =

a3 a4

a5 a6

[ ]

p+
a1

a2

[ ]

u′

v′

[ ]

= Wh(xh,h) = 1+h7u+h8v

1

h1u h3v h5

h2u h4v h6

[ ]



Planar Texture Variability 1
Affine Variability

•Affine warp function

•Corresponding image variability

•Discretized for images

= [B1. . .B6][y1, . . ., y6]
T = Baya

∆Ia =
∑

i=1
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On The Structure of M

u’i = A ui + d
Planar Object + linear (infinite) camera

-> Affine motion model

X                 Y          Rotation      Scale         Aspect       Shear

M(p) = ∂g/∂p

a3 a4

a5 a6

[ ]

= sR(Θ)
a 0

0 1

[ ]

1 0

h 1

[ ]



Planar motion under perspective 
projection

•Perspective plane-plane transforms defined by 
homographies



Planar Texture Variability 2
Projective Variability

• Homography warp

• Projective variability:

• Where ,

and 

u′

v′

[ ]

= Wh(xh,h) = 1+h7u+h8v
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c1 = 1 + h7u+ h8v

c3 = h2u + h4v+ h6

c2 = h1u + h3v+ h5

= [B1. . .B8][y1, . . ., y8]
T = Bhyh



Planar-perspective motion 3

•In practice hard to compute 8 parameter model 
stably from one image, and impossible to  find 
out-of plane variation

•Estimate variability basis from several images:

Computed                   Estimated



Another idea Black, Fleet) Organizing 
flow fields

•Express flow field f in 
subspace basis m

•Different “mixing” 
coefficients a
correspond to different 
motions



Example:
Image discontinuities



Mathematical formulation

Let:

Mimimize objective function:

=

Where

Motion 
basis

Robust error norm



Experiment
Moving camera

•4x4 pixel 
patches

•Tree in 
foreground 
separates well 



Experiment:
Characterizing lip motion

•Very non-rigid!



Questions to think about

Readings: Book chapter, Fleet et al. paper.

Compare the methods in the paper and lecture

1. Any major differences?

2. How dense flow can be estimated (how many 
flow vectore/area unit)?

3. How dense in time do we need to sample?



Summary

• Three types of visual motion extraction
1. Optic (image) flow: Find x,y – image velocities

2. 3-6D motion: Find object pose change in image coordinates 
based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

• Visual motion still not satisfactorily solved 
problem



(Parenthesis)
Euclidean world motion -> image

Let us assume there is one rigid object moving with
velocity T  and w = d R / dt

For a given point P on the object, we have
p = f P/z  

The apparent velocity of the point is
V = -T – w x P

Therefore, we have v = dp/dt = f (z V – Vz P)/z2



Component wise:

f
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Motion due to translation:
depends on depth

Motion due to rotation:
independent of depth



Sensing and Perceiving Motion

Martin 
Jagersand



Counterphase sin grating

•Spatio-temporal pattern
– Time t, Spatial x,y

s(x, y, t) = A cos(Kx cosΘ + Ky sinΘ � Φ) cos(ωt)



Counterphase sin grating

• Spatio-temporal pattern
– Time t, Spatial x,y

Rewrite as dot product:

=                                      +   

s(x, y, t) = A cos(Kx cosΘ + Ky sinΘ � Φ) cos(ωt)

2

1(cos([a, b]
x

y

� �

� ωt) + cos([a, b]
x

y

� �

+ ωt)

Result: Standing wave is superposition of two moving waves



Analysis:

•Only one term: Motion left or right

•Mixture of both: Standing wave

•Direction can flip between left and right



Reichardt detector

• QT movie



Several
motion models

• Gradient: in 
Computer Vision

• Correlation: In bio 
vision

• Spatiotemporal 
filters: Unifying 
model



Spatial response:
Gabor function

•Definition:



Temporal response:

Adelson, Bergen ’85

Note: Terms from 

taylor of sin(t)

Spatio-temporal D=DsDt



Receptor response to
Counterphase grating

•Separable convolution



Simplified:

•For our grating: (Theta=0)

•Write as sum of components:

= exp(…)*(acos…  +  bsin…)

Ls = 2
A exp

2

��
2(k�K)2

� �

cos(� � Φ)



Space-time receptive field



Combined cells

• Spat:                             Temp:

• Both:

• Comb:



Result:

•More directionally specific response



Energy model:

•Sum odd and even phase 
components

•Quadrature rectifier



Adaption:
Motion aftereffect



Where is motion processed?



Higher effects:



Equivalence:
Reich and Spat



Conclusion

•Evolutionary motion detection is important

•Early processing modeled by Reichardt detector 
or spatio-temporal filters.

•Higher processing poorly understood


