
Optic Flow and Motion Detection

Computer Vision and
Imaging

Martin Jagersand

Readings:

Szeliski Ch 8

3DV Ma, Kosecka, Sastry Ch 4

Image motion

• Somehow quantify the
frame-to-frame differences
in image sequences.

1. Image intensity difference.

2. Optic flow

3. 3-6 dim image motion
computation

Motion is used to:

•Attention: Detect and
direct using eye and
head motions

•Control: Locomotion,
manipulation, tools

•Vision: Segment, depth,
trajectory

Small camera re-orientation

Note: Almost all pixels change!

Classes of motion

•Still camera, single moving object

•Still camera, several moving objects

•Moving camera, still background

•Moving camera, moving objects

The optic flow field

•Vector field over the image:

[u,v] = f(x,y), u,v= Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction

MOVING CAMERAS ARE LIKE
STEREO

Locations of
points on the object
(the “structure”)

The change in spatial location
between the two cameras (the “motion”)

Given an image point in left image, what is the (corresponding) point in the right
image, which is the projection of the same 3-D point

Image Correspondance problem

Correspondance for a box

Locations of
points on the object
(the “structure”)

The change in spatial location
between the two cameras (the “motion”)

Motion/Optic flow vectors
How to compute?

Im(x + �x, y + �y, t + �t)

– Solve pixel correspondence problem

–given a pixel in Im1, look for same pixels in Im2

• Possible assumptions
1. color constancy: a point in H looks the same in I

– For grayscale images, this is brightness constancy
2. small motion: points do not move very far

– This is called the optical flow problem

Im(x, y, t)

Optic/image flow

Assume:
1. Image intensities from object points remain constant over time

2. Image displacement/motion small

Im(x + �x, y + �y, t + �t) = Im(x, y, t)

Taylor expansion of intensity variation

Keep linear terms

• Use constancy assumption and rewrite:

• Notice: Linear constraint, but no unique solution

0 =
∂x

∂Im�x +
∂y

∂Im�y +
∂t

∂Im�t

Im(x + �x, y + �y, t + �t) = Im(x, y, t) +
∂x

∂Im�x +
∂y

∂Im�y +
∂t

∂Im�t + h.o.t.

Aperture problem

• Rewrite as dot product

• Each pixel gives one equation in two unknowns:
n*f = k

• Min length solution: Can only detect vectors normal
to gradient direction

• The motion of a line cannot be recovered using only
local information

�
∂t

∂Im
=

∂x

∂Im
,
∂y

∂Im
� �

� �x

�y

� �

= ∇Im � �x

�y

� �

f
n

f

�t

Aperture problem 2

The flow continuity constraint

• Flows of nearby pixels or
patches are (nearly) equal

• Two equations, two
unknowns:
n1 * f = k1

n2 * f = k2

• Unique solution f exists,
provided n1 and n2 not
parallel

f
n

f

Sensitivity to error

• n1 and n2 might be almost
parallel

• Tiny errors in estimates of k’s
or n’s can lead to huge errors
in the estimate of f

f
n

f

Using several points

• Typically solve for motion in 2x2, 4x4 or larger image
patches.

• Over determined equation system:

dIm = Mu
• Can be solved in least squares sense using Matlab

u = M\dIm
• Can also be solved be solved using normal equations

u = (MTM)-1*M TdIm

.

.

.

�

∂t

∂Im

.

.

.







 =

.

.

.

.

.

.

∂x

∂Im

∂y

∂Im

.

.

.

.

.

.









�x

�y

� �

Conditions for solvability

– SSD Optimal (u, v) satisfies Optic Flow equation

When is this solvable?
• ATA should be invertible
• ATA entries should not be too small (noise)
• ATA should be well-conditioned
• Study eigenvalues:

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

Optic Flow Real Image Challenges:

•Can we solve for accurate optic flow vectors
everywhere using this image sequence?

Edge

– gradients very large or very small
– large λ1, small λ2

Low texture region

– gradients have small magnitude
– small λ1, small λ2

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

Observation

•This is a two image problem BUT
– Can measure sensitivity by just looking at one of the images!

– This tells us which pixels are easy to track, which are hard

–very useful later on when we do feature tracking...

Errors in Optic flow computation

•What are the potential causes of errors in this
procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

•When our assumptions are violated
– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

–window size is too large

–what is the ideal window size?

Iterative Refinement

• Used in SSD/Lucas-Kanade tracking
algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms

dominate)

– How might we solve this problem?

Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Application: mpeg compression

HW accelerated computation of flow
vectors

•Norbert’s trick: Use an mpeg-card to speed
up motion computation

Other applications:

•Recursive depth recovery: Kostas and Jane

•Motion control (we will cover)

•Segmentation

•Tracking

Lab:

•Assignment1:

•Purpose:
– Intro to image capture and

processing

– Hands on optic flow
experience

•See www page for
details.

•Suggestions welcome!

Image registration

WHAT is image registration

Transform
a “source” image
to match a “target” image

Image registration

WHAT is image registration

Transform a “source” image to
match a “target” image

Medical image registration

WHAT is image registration

Transform a “source” image to
match a “target” image

Medical image registration

Medical image registration

WHAT is image registration

Transform a “source” image to
match a “target” image

Medical image registration

� Data (source, target)

� different medical images
modalities (MRI, XRay,
CT…)

� pre-acquired medical images
with real-time images (video)

� patient data with an atlas

� For:

� atlas generation

� augmented reality (surgery)

� better diagnosis

� data analysis

Medical applications

Formulation
Very similar to tracking and optic flow.

IA IB

Transform a “source” image to
match a “target” image

Find best transformation T
through the minimization of an
energy

minT Sim (IA - T(IB))

Formulation
Very similar to tracking and optic flow.

IA IB

Transform a “source” image to
match a “target” image

Find best transformation T
through the minimization of an
energy

minT Sim (IA - T(IB))
Maching – similarity score : Sim
- depends on data
- simple – same type of data - SSD : sum (IA(x) - T(IB(x)))2

- different illumination : NCC normalized cross correlation
- different imaging modalities : MI mutual information
Transformation : T
- (linear) rigid, affine [ex. Same patient]
-(nonliear) image points are allowed to move differently

Non-rigid registration

Looking for a deformation field (vector field) v that will move each
voxel in image A to the corresponding voxel in image B
minv sumx (IA(x) – IB(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv
Each step is similar to an optic flow problem

min
δv sumx (IA(x) – IB(x+v+δv))2

δv=-(IA(x) – IB(x+v))/grad IB(x+v)

Non-rigid registration

In practice – motion between images is not small > needs
regularization and image pyramid to solve robustly

minv sum (IA(x) – IB(x+v(x)))2 + R(v)

Looking for a deformation field (vector field) v that will move each
voxel in image A to the corresponding voxel in image B
minv sumx (IA(x) – IB(x+v))2

Gradient descent: solve for v iteratively adding small updates delta δv
Each step is similar to an optic flow problem

Organizing Optic Flow

Ugrad: Optional

Grad: Cursory reading

All: optional from the
PCA on vectors (slide 48)

Martin Jagersand

Organizing different kinds of motion

Two examples:

1. Greg Hager paper: Planar motion

2. Mike Black, et al: Attempt to find a low
dimensional subspace for complex motion

Remember:
The optic flow field

•Vector field over the image:

[u,v] = f(x,y), u,v= Vel vector, x,y = Im pos

•FOE, FOC Focus of Expansion, Contraction

Remember last lecture:

•Solving for the motion of a patch

Over determined equation system:

Imt = Mu

•Can be solved in e.g. least squares sense using
matlab u = M\Imt

.

.

.

�

∂t

∂Im

.

.

.







 =

.

.

.

.

.

.

∂x

∂Im

∂y

∂Im

.

.

.

.

.

.









�x

�y

()

t t+1

3-6D Optic flow

•Generalize to many freedooms (DOFs)

Im = Mu

Example:
All 6 freedoms

X Y Rotation Scale Aspect Shear

M(u) = ∂Im/∂uDifference images

Template

Know what type of motion
(Greg Hager, Peter Belhumeur)

u’i = A ui + dE.g. Planar Object => Affine motion model:

It = g(pt, I0)

Mathematical Formulation

• Define a “warped image” g
– f(p,x) = x’ (warping function), p warp parameters
– I(x,t) (image a location x at time t)
– g(p,It) = (I(f(p,x1),t), I(f(p,x2),t), … I(f(p,xN),t))’

• Define the Jacobian of warping function
– M(p,t) =

• Model
– I0 = g(pt, It) (image I, variation model g, parameters p)
– ∆I = M(pt, It) ∆p (local linearization M)

• Compute motion parameters
� ∆p = (MT M)-1 MT ∆I where M = M(pt,It)

∂p

∂I
[]

Planar 3D motion

• From geometry we know that the correct plane-
to-plane transform is

1. for a perspective camera the projective
homography

2. for a linear camera (orthographic, weak-, para-
perspective) the affine warp

u
w

v
w

[]

= W
a
(p, a) =

a3 a4

a5 a6

[]

p+
a1

a2

[]

u′

v′

[]

= Wh(xh,h) = 1+h7u+h8v

1

h1u h3v h5

h2u h4v h6

[]

Planar Texture Variability 1
Affine Variability

•Affine warp function

•Corresponding image variability

•Discretized for images

= [B1. . .B6][y1, . . ., y6]
T = Baya

∆Ia =
∑

i=1

6

∂a i

∂
Iw∆ai = ∂u

∂I
,
∂v

∂I
� �

∂a1

∂u
� � �

∂a6

∂u

∂a1

∂v
� � �

∂a6

∂v

[]

∆a1.
.
.

∆a6









∆Ia = ∂u

∂I
,

∂v

∂I
� �

1 0 � u 0 � v 0

0 1 0 � u 0 � v

[]

y1.
.
.

y6









u
w

v
w

[]

= W
a
(p, a) =

a3 a4

a5 a6

[]

p+
a1

a2

[]

On The Structure of M

u’i = A ui + d
Planar Object + linear (infinite) camera

-> Affine motion model

X Y Rotation Scale Aspect Shear

M(p) = ∂g/∂p

a3 a4

a5 a6

[]

= sR(Θ)
a 0

0 1

[]

1 0

h 1

[]

Planar motion under perspective
projection

•Perspective plane-plane transforms defined by
homographies

Planar Texture Variability 2
Projective Variability

• Homography warp

• Projective variability:

• Where ,

and

u′

v′

[]

= Wh(xh,h) = 1+h7u+h8v

1

h1u h3v h5

h2u h4v h6

[]

∆Ih =
c1

1

∂u

∂I ,
∂v

∂I
� �

u 0 v 0 1 0 �

c1

uc2
�

c1

vc2

0 u 0 v 0 1 �

c1

uc3
�

c1

vc3









∆h1.
.
.

∆h8









c1 = 1 + h7u+ h8v

c3 = h2u + h4v+ h6

c2 = h1u + h3v+ h5

= [B1. . .B8][y1, . . ., y8]
T = Bhyh

Planar-perspective motion 3

•In practice hard to compute 8 parameter model
stably from one image, and impossible to find
out-of plane variation

•Estimate variability basis from several images:

Computed Estimated

Another idea Black, Fleet) Organizing
flow fields

•Express flow field f in
subspace basis m

•Different “mixing”
coefficients a
correspond to different
motions

Example:
Image discontinuities

Mathematical formulation

Let:

Mimimize objective function:

=

Where

Motion
basis

Robust error norm

Experiment
Moving camera

•4x4 pixel
patches

•Tree in
foreground
separates well

Experiment:
Characterizing lip motion

•Very non-rigid!

Questions to think about

Readings: Book chapter, Fleet et al. paper.

Compare the methods in the paper and lecture

1. Any major differences?

2. How dense flow can be estimated (how many
flow vectore/area unit)?

3. How dense in time do we need to sample?

Summary

• Three types of visual motion extraction
1. Optic (image) flow: Find x,y – image velocities

2. 3-6D motion: Find object pose change in image coordinates
based more spatial derivatives (top down)

3. Group flow vectors into global motion patterns (bottom up)

• Visual motion still not satisfactorily solved
problem

(Parenthesis)
Euclidean world motion -> image

Let us assume there is one rigid object moving with
velocity T and w = d R / dt

For a given point P on the object, we have
p = f P/z

The apparent velocity of the point is
V = -T – w x P

Therefore, we have v = dp/dt = f (z V – Vz P)/z2

Component wise:

f

ywxyw
xwfw

z

fTxT
fv

f

xwxyw
ywfw

z

fTxT
fv

xy
zx

yz
y

yx
zy

xz
x

2

2

−
++−

−
=

−
++−−=

Motion due to translation:
depends on depth

Motion due to rotation:
independent of depth

Sensing and Perceiving Motion

Martin
Jagersand

Counterphase sin grating

•Spatio-temporal pattern
– Time t, Spatial x,y

s(x, y, t) = A cos(Kx cosΘ + Ky sinΘ � Φ) cos(ωt)

Counterphase sin grating

• Spatio-temporal pattern
– Time t, Spatial x,y

Rewrite as dot product:

= +

s(x, y, t) = A cos(Kx cosΘ + Ky sinΘ � Φ) cos(ωt)

2

1(cos([a, b]
x

y

� �

� ωt) + cos([a, b]
x

y

� �

+ ωt)

Result: Standing wave is superposition of two moving waves

Analysis:

•Only one term: Motion left or right

•Mixture of both: Standing wave

•Direction can flip between left and right

Reichardt detector

• QT movie

Several
motion models

• Gradient: in
Computer Vision

• Correlation: In bio
vision

• Spatiotemporal
filters: Unifying
model

Spatial response:
Gabor function

•Definition:

Temporal response:

Adelson, Bergen ’85

Note: Terms from

taylor of sin(t)

Spatio-temporal D=DsDt

Receptor response to
Counterphase grating

•Separable convolution

Simplified:

•For our grating: (Theta=0)

•Write as sum of components:

= exp(…)*(acos… + bsin…)

Ls = 2
A exp

2

��
2(k�K)2

� �

cos(� � Φ)

Space-time receptive field

Combined cells

• Spat: Temp:

• Both:

• Comb:

Result:

•More directionally specific response

Energy model:

•Sum odd and even phase
components

•Quadrature rectifier

Adaption:
Motion aftereffect

Where is motion processed?

Higher effects:

Equivalence:
Reich and Spat

Conclusion

•Evolutionary motion detection is important

•Early processing modeled by Reichardt detector
or spatio-temporal filters.

•Higher processing poorly understood

